CN106750442A - 一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法 - Google Patents

一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法 Download PDF

Info

Publication number
CN106750442A
CN106750442A CN201611116469.7A CN201611116469A CN106750442A CN 106750442 A CN106750442 A CN 106750442A CN 201611116469 A CN201611116469 A CN 201611116469A CN 106750442 A CN106750442 A CN 106750442A
Authority
CN
China
Prior art keywords
high temperature
proton exchange
cross
polyethylene
temperature proton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611116469.7A
Other languages
English (en)
Inventor
刘会雪
于书淳
马晓星
何春霞
李慧
郭会娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huanghe Science and Technology College
Original Assignee
Huanghe Science and Technology College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huanghe Science and Technology College filed Critical Huanghe Science and Technology College
Priority to CN201611116469.7A priority Critical patent/CN106750442A/zh
Publication of CN106750442A publication Critical patent/CN106750442A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L39/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
    • C08L39/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2439/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2439/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法,以聚苯并咪唑为聚合物骨架,以1‑乙烯基‑1,2,4‑三氮唑为交联剂,通过自交联形成交联型高温质子交换膜。本发明提出的具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜在不增湿条件下即具有较好的质子电导能力及优异的尺寸稳定性,有效解决了聚苯并咪唑浸渍磷酸后的溶胀问题,可以作为质子交换膜应用于高温质子交换膜燃料电池、直接醇类燃料电池、电化学传感器或其它电化学装置中。

Description

一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温 质子交换膜及其制备方法
技术领域
本发明属于燃料电池材料技术领域,具体涉及一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法。
背景技术
质子交换膜燃料电池(PEMFC)是一种高效、清洁、环境友好的发电装置,是电动汽车的理想动力源,亦可作为分散电站、潜艇及航天器等军用电源或便携式电源等,具有十分广阔的应用前景。然而目前广泛使用的是以Nafion®为代表的全氟型磺酸膜燃料电池,但这类质子交换膜的质子导电能力受膜内水含量和温度的影响极大,阻醇性能差,PEMFC的工作温度不能超过80℃。由于PEMFC受工作温度的限制,使得它在实际应用时面临CO耐受性差、系统的水热管理困难等问题。因此将PEMFC运行温度提高到100℃以上,就能有效地克服传统Nafion基PEMFC的上述问题,这一类型的燃料电池(FC)通常称之为高温质子交换膜燃料电池(HT-PEMFC),是PEMFC技术的一个重要的发展方向。
HT-PEMFC系统有如下优点:1)电化学反应速率提高,有效降低了阴极电化学极化过电位,允许降低催化剂担量,允许使用非铂催化剂;2)对反应气体的增湿要求降低;3)电池内水以气相存在简化了水热管理;此外,HT-PEMFC在一定程度上简化了FC冷却系统。鉴于HT-PEMFC诱人的发展前景,国内外广泛开展了HT-PEMFC关键材料的研制,包括高温质子交换膜、催化剂和载体等,并取得了较好的初步结果,其中高温质子交换膜是研究的热点之一。
目前对于HT-PEMFC质子交换膜的研究主要集中在聚苯并咪唑(PBI)上,它于1959年在美国专利上首次被报道,1988年美国Hoechst Celanese公司将PBI膜产品推向市场。如今,PBI作为工程热塑性塑料里最为出众的聚合物基材料,在用作HT-PEMFC的高温质子交换膜方面展现出巨大的有效性和可行性。但是PBI型膜材料在高温运行时(T≥150℃),会不可避免地发生降解。
研究发现,燃料电池运行过程中,氧气经过膜渗透到阳极侧,在阳极Pt及微量过渡金属离子的催化作用下,形成•OH和HOO•等自由基,•OH自由基进攻PBI主链上的含氮基团,HOO•自由基攻击苯环上的碳氢键,使PBI主链断裂;同时高温氧化环境还容易使PBI主链上的两个端氨基氧化,端羧基发生脱羧反应产生亚苯基自由基。产生的这些自由基会加剧PBI膜的降解,导致电池性能大幅下降。房建华等采用环氧化物(CN 200710171866.9)、二卤(多卤)烷烃(CN 200710171865.4)和马来酸酐(CN 200710171867.3)对PBI主链上的一个端氨基进行交联保护,从而减缓膜的降解;李忠芳等人采用尿素(CN 101768270 A),作为端氨基的保护性试剂对PBI进行了改性。变价金属类自由基淬灭剂(如CeO2、MnO2等)、或者改变聚合物 结构可以有效淬灭HT-PEMFC运行过程中产生的自由基,从而减缓PBI膜的降解。
综上所述,目前得到该类质子交换膜聚合物基底容易受自由基攻击而降解等难题制约其商业化的应用,通过将膜内添加自由基淬灭剂、在膜内构建交联结构,可以有效的避免自由基攻击而降解,提升膜的使用寿命,并提高膜的尺寸稳定性。
发明内容
针对现有技术的不足,本发明的目的在于提供一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法,通过以聚苯并咪唑为聚合物骨架,以乙烯基-1,2,4-三氮唑为交联剂,通过自交联形成交联型高温质子交换膜,从而提高聚苯并咪唑高温质子交换膜的电导率以及尺寸稳定性。
为了实现上述目的,本发明采用的技术方案为:
一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜的制备方法,包括以下步骤:
(1)将0.2~1 g聚苯并咪唑溶解于5~10 mL高沸点溶剂中,搅拌溶解后,加入相同质量的三氮唑基聚乙烯,搅拌直至溶解;
(2)再将溶液放入油浴中,50~100 ℃下搅拌,反应12~48 h;
(3)将溶液中继续加入5~10 mL高沸点溶剂,搅拌30 min后,倒入铸膜板中,60~80 ℃下将溶剂蒸干,将得到的高温质子交换膜小心揭下,浸泡在乙醇中,洗涤后干燥;
(4)将干燥后的交联型高温质子交换膜浸泡在磷酸溶液中,60~120 ℃下浸渍24~48 h,后取出,得到高温质子交换膜。
优选地,步骤(1)、(3)中所述高沸点溶剂为N,N-二甲基乙酰胺或N-甲基吡咯烷酮。
优选地,步骤(1)中所述的三氮唑基聚乙烯的制备方法,包括如下步骤:
(1)将0.5~2 g1-乙烯基-1,2,4-三氮唑溶于10~20 mL二甲基甲酰胺中,再加入链引发剂偶氮二异丁腈,其中链引发剂的质量含量为高沸点溶剂的20~50%;
(2)将溶液搅拌溶解后,放入油浴中,反应24~48 h,反应温度为50~80 ℃;
(3)反应结束后,将溶液倒入乙醇中,得到白色絮状物,用乙醇洗涤后干燥。
优选地,步骤(4)中所述磷酸的质量分数为50%~85%。
采用上述制备方法得到的具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜。
本发明提供的具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法,与现有技术相比具有以下有益效果:
1. 本发明采用聚苯并咪唑为聚合物骨架,以乙烯基-1,2,4-三氮唑为交联剂,通过自交联制得的复合膜结构均匀,适用于无水体系,工作温度区间为120~200 ℃;
2. 本发明采用聚苯并咪唑/聚乙烯三氮唑交联结构,可以有效降低膜浸渍磷酸后的溶胀,并大幅提升高温质子交换膜的电导率,交联结构的构筑同时可以有效提升复合膜的抗氧化能力;
3. 本发明所采用的交联剂聚乙烯三氮唑,可以有效吸附磷酸分子,提高膜在电池运行过程中电导率的长期稳定性。
附图说明
图1 是实施例1制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜与传统PBI复合膜的电导率随温度的变化图;
图2 是实施例2制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜与传统PBI复合膜的电池极化曲线图;
图3是实施例3制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜与传统PBI复合膜的电导率稳定性图。
具体实施方式
下面实施例中所用聚苯并咪唑(PBI,CAS:25928-81-8)购自FuMA-Tech公司;二甲基甲酰胺(DMF,CAS:68-12-2)、二甲基乙酰胺(DMAC,CAS:127-19-5)、N-甲基吡咯烷酮(NMP,CAS 872-50-4)购自天津市大茂化学试剂公司;1-乙烯基-1,2,4-三唑(CAS: 2764-83-2)购自上海源叶生物科技有限公司;偶氮二异丁腈(AIBN,CAS: 78-67-1)购自天津市大茂化学试剂公司;磷酸购自上海阿拉丁生化科技股份有限公司。
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例,并配合附图进行详细描述。
实施例1
一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜的制备方法,包括以下步骤:
(1)将0.2 g1-乙烯基-1,2,4-三氮唑溶于10 mL二甲基甲酰胺中,再加入链引发剂偶氮二异丁腈,其中链引发剂的质量含量为高沸点溶剂的20%;
(2)将溶液搅拌溶解后,放入油浴中,反应24 h,反应温度为60 ℃;
(3)反应结束后,将溶液倒入乙醇中,得到白色絮状物,用乙醇洗涤后干燥,得三氮唑基聚乙烯;
(4)将0.2 g聚苯并咪唑溶解于10 mL N-甲基吡咯烷酮中,搅拌溶解后,加入相同质量的三氮唑基聚乙烯,搅拌直至溶解;
(5)再将溶液放入油浴中,80 ℃下搅拌,反应12 h;
(6)将溶液中继续加入10 mL N-甲基吡咯烷酮,搅拌30 min后,倒入铸膜板中,80 ℃下将溶剂蒸干,将得到的高温质子交换膜小心揭下,浸泡在乙醇中洗涤后干燥;
(7)将干燥后的交联型高温质子交换膜浸泡在质量分数为85 wt%磷酸溶液中,60 ℃下浸渍24 h后取出,得到交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜。
为了与上述制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜进行对比,采用溶液浇铸法制备厚度为50 μm的PBI膜,再浸渍磷酸,制得PBI/磷酸膜,具体制备步骤为:将PBI的N-甲基吡咯烷酮溶液倒在玻璃模具中,于80 ℃下真空干燥25 h,得到PBI膜;将PBI膜浸没于60 ℃的磷酸溶液中60 h,取出并在80 ℃干燥24 h,记作传统PBI复合膜;其中,PBI的N-甲基吡咯烷酮溶液中PBI的质量分数为2%,磷酸溶液的浓度为70 wt%。
实施例1制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及传统PBI复合膜,测试电导率随温度的变化图。将实施例1制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及传统PBI复合膜均裁成尺寸为40 mm×10 mm的矩形片,然后将实施例1制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及传统PBI复合膜分别置于电导率夹具中,将夹具放于真空干燥箱中,在90 ℃下保持3 h,然后温度从 90 ℃升至170 ℃,每隔10℃测试下膜的电导率,结果如图1所示。
从图1可以看出,实施例1制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜相比传统PBI复合膜,电导率大幅提升,这是由于交联结构中三氮唑的存在,提供了更多的磷酸吸附位点,从而提升了膜的电导率。
实施例2
一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜的制备方法,包括以下步骤:
(1)将1 g1-乙烯基-1,2,4-三氮唑溶于10 mL二甲基甲酰胺中,再加入链引发剂偶氮二异丁腈,其中链引发剂的质量含量为高沸点溶剂的50%;
(2)将溶液搅拌溶解后,放入油浴中,反应48 h,反应温度为80 ℃;
(3)反应结束后,将溶液倒入乙醇中,得到白色絮状物,用乙醇洗涤后干燥,得三氮唑基聚乙烯;
(4)将1 g聚苯并咪唑溶解于8 mL N-甲基吡咯烷酮中,搅拌溶解后,加入相同质量的三氮唑基聚乙烯,搅拌直至溶解;
(5)再将溶液放入油浴中,50 ℃下搅拌,反应48 h;
(6)将溶液中继续加入8 mL N-甲基吡咯烷酮,搅拌30 min后,倒入铸膜板中,60 ℃下将溶剂蒸干,将得到的高温质子交换膜小心揭下,浸泡在乙醇中洗涤后干燥;
(7)将干燥后的交联型高温质子交换膜浸泡在质量分数为60 wt%磷酸溶液中,120 ℃下浸渍48 h后取出,得到交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜。
为了与上述制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜进行对比,采用溶液浇铸法制备厚度为50 μm的PBI膜,再浸渍磷酸,制得PBI/磷酸膜,具体制备步骤为:将PBI的N-甲基吡咯烷酮溶液倒在玻璃模具中,于80 ℃下真空干燥25 h,得到PBI膜;将PBI膜浸没于60 ℃的磷酸中60 h,取出并在80 ℃干燥24 h,即得,记作传统PBI复合膜;其中,PBI的NMP溶液中PBI的质量分数为2%,磷酸的浓度为70 wt%。
将实施例2制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及传统PBI复合膜,在单电池评价装置上测试其不同温度下的电池性能。其中,电池负极采用碳(C)载镍(Ni)催化剂与PBI溶液混合均匀后涂抹于碳纸上制得(采用专利CN02127802.4中公开的制备方法),Ni占C/Ni催化剂的质量百分比为40%,C/Ni与PBI的质量比为1:1;电池正极采用碳(C)载铂(Pt)催化剂与PBI溶液混合均匀后涂抹于碳纸上制得(采用专利CN02127802.4中公开的制备方法),Pt占C/ Pt催化剂的质量百分比为70%,正极中Pt载量为0.5 mg/cm2;电池操作环境分别设定为:电池温度为150 ℃;氢气及氧气流速分别为50 mL/min、100 mL/min,气体无增湿,压强为0.05 MPa,测试结果如图2所示。
从图2可以看出,实施例2制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜相比传统PBI复合膜,由于电导率的提升,降低了电池的反应内阻,使得电池放电性能也大为提升,最高功率密度可达1000 mW/cm2
实施例3
一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜的制备方法,包括以下步骤:
(1)将0.5 g1-乙烯基-1,2,4-三氮唑溶于10 mL二甲基甲酰胺中,再加入链引发剂偶氮二异丁腈,其中链引发剂的质量含量为高沸点溶剂的40%;
(2)将溶液搅拌溶解后,放入油浴中,反应30 h,反应温度为50 ℃;
(3)反应结束后,将溶液倒入乙醇中,得到白色絮状物,用乙醇洗涤后干燥,得三氮唑基聚乙烯;
(4)将0.8 g聚苯并咪唑溶解于9 mL N-甲基吡咯烷酮中,搅拌溶解后,加入相同质量的三氮唑基聚乙烯,搅拌直至溶解;
(5)再将溶液放入油浴中,80 ℃下搅拌,反应32 h;
(6)将溶液中继续加入9 mL N-甲基吡咯烷酮,搅拌30 min后,倒入铸膜板中,60 ℃下将溶剂蒸干,将得到的高温质子交换膜小心揭下,浸泡在乙醇中洗涤后干燥;
(7)将干燥后的交联型高温质子交换膜浸泡在质量分数为70 wt%磷酸溶液中,90 ℃下浸渍48 h后取出,得到交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜。
为了与上述制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜进行对比,采用溶液浇铸法制备厚度为50 μm的PBI膜,再浸渍磷酸,制得PBI/磷酸膜,具体制备步骤为:将PBI的N-甲基吡咯烷酮溶液倒在玻璃模具中,于80 ℃下真空干燥25 h,得到PBI膜;将PBI膜浸没于60 ℃的磷酸中60 h,取出并在80 ℃干燥24 h,记作传统PBI复合膜;其中,PBI的N-甲基吡咯烷酮溶液中PBI的质量分数为2%,磷酸的浓度为70 wt%。
测试传统PBI复合膜、实施例2及实施例3制得的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜经过水浸泡后的电导率变化,具体方法如下:将2种膜分别浸泡在去离子水中5 min后取出,测试膜于150 ℃的电导率,重复此步骤,记录次数与电导率变化情况。
从图3可以看出,本发明制备的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜,不仅电导率有所提升,而且电导率在水中的稳定性更加突出,说明本发明的结构有效地降低了膜的离子流失率。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (5)

1.一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜的制备方法,其特征在于,包括以下步骤:
(1)将0.2~1 g聚苯并咪唑溶解于5~10 mL高沸点溶剂中,搅拌溶解后,加入相同质量的三氮唑基聚乙烯,搅拌直至溶解;
(2)再将溶液放入油浴中,50~100 ℃下搅拌,反应12~48 h;
(3)将溶液中继续加入5~10 mL高沸点溶剂,搅拌30 min后,倒入铸膜板中,60~80 ℃下将溶剂蒸干,将得到的高温质子交换膜小心揭下,浸泡在乙醇中,洗涤后干燥;
(4)将干燥后的交联型高温质子交换膜浸泡在磷酸溶液中,60~120 ℃下浸渍24~48 h,后取出,得到高温质子交换膜。
2.根据权利要求1所述的具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜的制备方法,其特征在于:步骤(1)、(3)中所述高沸点溶剂为N,N-二甲基乙酰胺或N-甲基吡咯烷酮。
3.根据权利要求1所述的具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜的制备方法,其特征在于:步骤(1)中所述的三氮唑基聚乙烯的制备方法,包括如下步骤:
(1)将0.5~2 g1-乙烯基-1,2,4-三氮唑溶于10~20 mL二甲基甲酰胺中,再加入链引发剂偶氮二异丁腈,其中链引发剂的质量含量为高沸点溶剂的20~50%;
(2)将溶液搅拌溶解后,放入油浴中,反应24~48 h,反应温度为50~80 ℃;
(3)反应结束后,将溶液倒入乙醇中,得到白色絮状物,用乙醇洗涤后干燥。
4.根据权利要求1所述的具有高电导率的交联型高温质子交换膜的制备方法,其特征在于:步骤(4)中所述磷酸溶液中磷酸的质量分数为50%~85%。
5.一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜,其特征在于:所述具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜是通过权利要求1至4任一项权利要求所述的方法制备得到的。
CN201611116469.7A 2017-01-12 2017-01-12 一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法 Pending CN106750442A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611116469.7A CN106750442A (zh) 2017-01-12 2017-01-12 一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611116469.7A CN106750442A (zh) 2017-01-12 2017-01-12 一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法

Publications (1)

Publication Number Publication Date
CN106750442A true CN106750442A (zh) 2017-05-31

Family

ID=58882170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611116469.7A Pending CN106750442A (zh) 2017-01-12 2017-01-12 一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106750442A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962274A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 一种耐高温复合质子交换膜及其制备方法
CN111303436A (zh) * 2020-03-06 2020-06-19 珠海冠宇电池有限公司 一种聚烯烃-g-超支化聚苯并咪唑接枝共聚物及其制备方法与应用
CN111342098A (zh) * 2018-12-18 2020-06-26 中国科学院大连化学物理研究所 一种磷酸掺杂的聚苯并咪唑交联膜的制备方法
CN112126105A (zh) * 2020-09-18 2020-12-25 上海交通大学 在线交联法制备聚苯并咪唑/磷酸复合膜及其制备方法
US11180621B2 (en) 2018-09-14 2021-11-23 University Of South Carolina Method for producing PBI films without organic solvents
US11302948B2 (en) 2018-09-14 2022-04-12 University Of South Carolina Polybenzimidazole (PBI) membranes for redox flow batteries
US11482721B2 (en) 2018-09-14 2022-10-25 University Of South Carolina Low permeability polybenzimidazole (PBI) gel membranes for redox flow batteries
US11777124B2 (en) 2020-03-06 2023-10-03 University Of South Carolina Proton-conducting PBI membrane processing with enhanced performance and durability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050719A (zh) * 2012-12-12 2013-04-17 常州大学 质子型离子液体基质子交换膜及其制备
CN105601968A (zh) * 2015-11-19 2016-05-25 黄河科技学院 一种高温燃料电池用聚苯并咪唑多层复合膜的制备方法
CN105801736A (zh) * 2016-03-30 2016-07-27 陕西科技大学 一种聚乙烯基三氮唑化合物及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050719A (zh) * 2012-12-12 2013-04-17 常州大学 质子型离子液体基质子交换膜及其制备
CN105601968A (zh) * 2015-11-19 2016-05-25 黄河科技学院 一种高温燃料电池用聚苯并咪唑多层复合膜的制备方法
CN105801736A (zh) * 2016-03-30 2016-07-27 陕西科技大学 一种聚乙烯基三氮唑化合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOUSUMI HAZARIKA: "Proton Exchange Membrane Developed from Novel Blends of Polybenzimidazole and Poly(vinyl-1,2,4-triazole)", 《ACS APPL. MATER. INTERFACES》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109962274A (zh) * 2017-12-14 2019-07-02 中国科学院大连化学物理研究所 一种耐高温复合质子交换膜及其制备方法
US11180621B2 (en) 2018-09-14 2021-11-23 University Of South Carolina Method for producing PBI films without organic solvents
US11302948B2 (en) 2018-09-14 2022-04-12 University Of South Carolina Polybenzimidazole (PBI) membranes for redox flow batteries
US11482721B2 (en) 2018-09-14 2022-10-25 University Of South Carolina Low permeability polybenzimidazole (PBI) gel membranes for redox flow batteries
US11799112B2 (en) 2018-09-14 2023-10-24 University Of South Carolina Polybenzimidazole (PBI) membranes for redox flow batteries
US11884787B2 (en) 2018-09-14 2024-01-30 University Of South Carolina PBI films formed without use of organic solvents
CN111342098A (zh) * 2018-12-18 2020-06-26 中国科学院大连化学物理研究所 一种磷酸掺杂的聚苯并咪唑交联膜的制备方法
CN111342098B (zh) * 2018-12-18 2021-06-08 中国科学院大连化学物理研究所 一种磷酸掺杂的聚苯并咪唑交联膜的制备方法
CN111303436A (zh) * 2020-03-06 2020-06-19 珠海冠宇电池有限公司 一种聚烯烃-g-超支化聚苯并咪唑接枝共聚物及其制备方法与应用
US11777124B2 (en) 2020-03-06 2023-10-03 University Of South Carolina Proton-conducting PBI membrane processing with enhanced performance and durability
CN112126105A (zh) * 2020-09-18 2020-12-25 上海交通大学 在线交联法制备聚苯并咪唑/磷酸复合膜及其制备方法

Similar Documents

Publication Publication Date Title
CN106750442A (zh) 一种具有高电导率的交联型聚苯并咪唑/聚乙烯三氮唑高温质子交换膜及其制备方法
Yan et al. A highly proton-conductive and vanadium-rejected long-side-chain sulfonated polybenzimidazole membrane for redox flow battery
CN106750441B (zh) 一种交联型聚三氮唑离子液体/聚苯并咪唑高温质子交换膜及其制备方法
Chen et al. Polybenzimidazole membrane with dual proton transport channels for vanadium flow battery applications
CN110224166B (zh) 一种磷酸掺杂交联型聚苯并咪唑高温质子交换膜及其制备方法
Lu et al. Crosslinked poly (vinylbenzyl chloride) with a macromolecular crosslinker for anion exchange membrane fuel cells
CN106558719A (zh) 一种具有高抗氧化性能的聚苯并咪唑/聚乙烯基苄基氯交联型高温质子交换膜及其制备方法
CN109524699B (zh) 具有高电导率的交联型高温质子交换膜及其制备方法
CN106549171B (zh) 一种具有高抗氧化性能高电导率的交联型聚苯并咪唑高温质子交换膜及其制备方法
Geng et al. A facile strategy for disentangling the conductivity and selectivity dilemma enables advanced composite membrane for vanadium flow batteries
CN113851683B (zh) 一种咔唑类聚芳烃哌啶阴离子交换膜的制备方法
CN111244513A (zh) 一种高温燃料电池质子交换膜及其制备方法与应用
Mu et al. Novel ether-free membranes based on poly (p-terphenylene methylimidazole) for vanadium redox flow battery applications
CN108649255A (zh) 聚苯并咪唑质子交换膜及制备方法和应用
CN110993998A (zh) 一种含萘环聚苯并咪唑型质子交换膜及其制备方法和应用
CN112259769A (zh) 自具微孔聚苯并咪唑质子交换膜及制备方法和应用
CN106356547A (zh) 一种具有高抗氧化能力的交联型聚苯并咪唑/二氧化硅高温质子交换膜及其制备方法
Meng et al. Semi‐interpenetrating Network Membrane from Polyethyleneimine‐Epoxy Resin and Polybenzimidazole for HT‐PEM Fuel Cells
Li et al. Enhanced proton conductivity and relative selectivity of sulfonated poly (arylene ether ketone sulfone) proton exchange membranes by using triazole-grafted 3-Glycidyloxypropyltrimethoxysilane
Che et al. The effect of grafted alkyl side chains on the properties of poly (terphenyl piperidinium) based high temperature proton exchange membranes
CN106336518A (zh) 一种聚苯并咪唑/自由基淬灭剂复合膜的制备方法
CN106410247A (zh) 一种具有高磷酸吸附能力的聚苯并咪唑磷酸高温质子交换膜及其制备方法
Yang et al. Construction of Quaternized Polysulfone/Polyquaternium‐10 Anion Exchange Membrane with Semi‐Interpenetrating Network for Alkaline Fuel Cell
Ju et al. Effect of solvent-free membranes-forming processes on HT-PEM properties of highly soluble polybenzimidazole
CN101733021B (zh) 一种互穿网络结构全氟离子交换膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531