CN101733021B - 一种互穿网络结构全氟离子交换膜及其制备方法 - Google Patents

一种互穿网络结构全氟离子交换膜及其制备方法 Download PDF

Info

Publication number
CN101733021B
CN101733021B CN2009102556092A CN200910255609A CN101733021B CN 101733021 B CN101733021 B CN 101733021B CN 2009102556092 A CN2009102556092 A CN 2009102556092A CN 200910255609 A CN200910255609 A CN 200910255609A CN 101733021 B CN101733021 B CN 101733021B
Authority
CN
China
Prior art keywords
ion exchange
resin
sulfonic acid
exchange resin
structural formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009102556092A
Other languages
English (en)
Other versions
CN101733021A (zh
Inventor
王学军
张永明
张恒
杨磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Dongyue Polymer Material Co Ltd
Original Assignee
Shandong Dongyue Polymer Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Dongyue Polymer Material Co Ltd filed Critical Shandong Dongyue Polymer Material Co Ltd
Priority to CN2009102556092A priority Critical patent/CN101733021B/zh
Publication of CN101733021A publication Critical patent/CN101733021A/zh
Application granted granted Critical
Publication of CN101733021B publication Critical patent/CN101733021B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种网络结构的全氟离子交换膜及其制备方法。它采用极性有机溶剂将一种氢型全氟磺酸离子交换树脂与另一种盐型全氟磺酸离子交换树脂溶解;使用流延法在平滑的固体表面流延;然后在加热条件下成膜,所述氢型全氟磺酸离子交换树脂与盐型全氟磺酸离子交换树脂分子链形成高分子互穿网络结构的离子交换膜。本制膜方法能够得到交换性能良好的均质离子交换膜材料,克服现有熔融模压过程无法制备均质交联离子交换膜的缺点,具有工艺过程简单,易于工业放大等优点。

Description

一种互穿网络结构全氟离子交换膜及其制备方法
技术领域
本发明涉及一种全钒液流电池(VRB)及质子交换膜燃料电池(PEMFC)用全氟离子交换膜,特别涉及一种互穿网络结构的全氟离子交换膜及其制备方法,属于高分子功能膜材料领域。
背景技术
全钒氧化还原液流电池(VRB)通过不同价态的钒离子相互转化实现电能的储存与释放,是众多化学电源中唯一使用同种元素组成的电池系统,从原理上避免了正负半电池间不同种类活性物质相互渗透产成的交叉污染。全钒氧化还原液流电池用于电能和化学能相互转化,适合于大规模电能储存,在风能、太阳能发电过程;现有电网系统的“消峰填谷”,改善电网安全性和可靠性;通讯系统的应急电源等领域,存在广阔的应用空间。该项技术的开发利用,预计每年将存在数十亿元的市场需求。质子交换膜燃料电池(PEMFC)是一种清洁高效安静的电化学发电装置,全氟磺酸树脂质子交换膜燃料电池以其运行温度低,比功率大,对环境友好,燃料储运安全方便而在移动电器,汽车等行业有很好的应用前景。
现行的全钒液流电池(VRB)中广泛使用的是全氟磺酸型离子交换膜,它具有质子交换率高、机械稳定性和抗氧化降解性好等优点,但是该类膜的全氟化生产过程复杂、过程参数控制严格、膜的生产成本过高,在很大程度上制约了全钒液流电池(VRB)的工业化和商业化。与全氟磺酸型离子交换膜相比,烃类磺酸型离子交换膜具有制备工艺简单、原料价廉易得、生产成本远低于全氟磺酸型离子交换膜等优点,但其却存在着化学稳定性差、抗氧化降解能力弱等缺点,当其应用于全钒液流电池(VRB)的隔膜时,容易被正极电解质溶液中的强氧化性V5+所氧化降解,导致全钒液流电池(VRB)的电池性能下降,电池的使用寿命缩短。因此,研制开发价格低廉、性能优异、抗氧化性好的离子交换膜是促进全钒液流电池(VRB)发展的关键之一,新型质子交换膜的制备已经引起全世界科研人员的关注。
目前使用的离子膜存在着寿命短、后期机械强度差、电导率偏低等问题。为了克服这些困难,各国研究者进行了大量的工作。于景荣(phys.Chem.Chem.Phys.,2003,5(3):611-615)等采用热压的方法,制备了PSSA-Nafion复合膜,并用于质子交换膜燃料电池(PEMFC)上;Bo Yang等(Electrochemistry Communications 2004,(6):231-236)采用热压法制备了Nafion/SPEEK/Nafion复合膜,并用于直接甲醇燃料电池(DMFC)中;任素珍(J.Membr.Sci.,2005,(247):59-63)等采用多次浸泡/干燥的方法,制备了SPEEK/Nafion复合膜,并应用于直接甲醇燃料电池(DMFC)。以上制备的氟/烃复合离子交换膜,由于两层膜之间没有化学键交联,其结合性较差,在应用过程中容易发生分层现象,从而导致氟/烃复合离子交换膜的电阻增大。专利(公开号CN101383404)提出了一种适用于全钒液流电池(VRB)的,全氟磺酸型离子交换膜与烃类磺酸型离子交换膜之间具有良好结合性的氟/烃复合离子交换膜及其制备方法。然而此种复合与交联也只在两层接触面上进行,难以保证整个复合膜的力学与机械性能的均一稳定性。文献(J Membr Sci,1995,98C1-2):77-87.)使用交联剂二乙烯基苯处理离子交换树脂Amberlite CG400和Amberlite CG120浸渍后的膜,改善对钒离子的阻挡效果。然而在增加交联度的同时可能会减小离子交换树脂的电导率。
尽管上述研究在一定程度上提高质子交换膜性能,但普遍存在两方面问题。1)膜材料复合过程难以控制,成本较高且磺化剂的使用容易引起环境污染;2)处理过程常常包括多个步骤,难于适用于大规模批量化生产。
发明内容
针对现有技术的不足,本发明的目的在于提供一种适用于质子交换膜燃料电池(PEMFC)及全钒液流电池(VRB)用的互穿网络结构离子交换膜及其制备方法。
本发明的技术方案如下:
本发明的一种互穿网络结构离子交换膜是由一种氢型全氟磺酸离子交换树脂分子与另一种盐型全氟磺酸离子交换树脂分子组成互穿网络结构。其互穿网络结构示意图参见附图1。
互穿聚合物网络结构即IPN(interpenetrating Polymer Network),是两种或两种以上的共混聚合物,分子链相互贯穿,并至少一种聚合物分子链以化学键的方式交链而形成的网络结构。
互穿聚合物网络(IPN)是20世纪70年代发展起来的一种新型高分子材料,由于IPN材料中2种或2种以上的聚合物网络相互缠结,互穿而不失去原聚合物固有的特性,从而获得其他聚合物无法比拟的独特性能。
所述的氢型全氟磺酸型离子交换树脂的化学结构如结构式1所示:
Figure G2009102556092D00021
结构式1
其中x、y、z分别为1~10000的整数;且x/(x+y+z)=45%~85%,y/(x+y+z)=10%~45%,z/(x+y+z)=0.01%~10%,均为摩尔比;其中,m为0、1或2,n为1-6的整数;Rf为-F、-CF3、-CF2CF3、-CF2CF2CF3或-CF(CF3)2;X为H+或Na+型。
根据m、n取值及结构中单体比例的不同,所形成的全氟磺酸离子交换树脂为干树脂,数均分子量为6万到30万,交换容量在0.8-2.6mmol/g。
所述的盐型全氟磺酸型离子交换树脂的化学结构如结构式2、结构式3、结构式4所示:
Figure G2009102556092D00022
结构式2
M与M′选自Ce,Mn,La,Zn,W,Ti,V,Cr,Fe,Co,Ni,Cu,Zr,Nb,Mo,Ru,Rh,Pd,Ta,Re,Tr,Pt;其中a、b为自然数,c、d为不小于零的整数,c+d≠0;(a+b)/(a+b+c+d)=0.5-0.92;(c+d)/(a+b+c+d)=0.08-0.5;式中n、m表示金属离子的价态;若树脂侧基的磺酸盐转成氢型后,其整体的交换容量为0.8-2.63mmol/g;
结构式3
M与M′选自Ce,Mn,La,Zn,W,Ti,V,Cr,Fe,Co,Ni,Cu,Zr,Nb,Mo,Ru,Rh,Pd,Ta,Re,Tr,Pt;其中a、b为自然数,c、d为不小于零的整数,c+d≠0;(a+b)/(a+b+c+d)=0.5-0.92;(c+d)/(a+b+c+d)=0.08-0.5;式中n、m表示金属离子的价态。若树脂侧基的磺酸盐转成氢型后,其整体的交换容量为0.8-2.62mmol/g;
Figure G2009102556092D00032
结构式4
M与M′选自Ce,Mn,La,Zn,W,Ti,V,Cr,Fe,Co,Ni,Cu,Zr,Nb,Mo,Ru,Rh,Pd,Ta,Re,Tr,Pt;其中a、b为自然数,c、d为不小于零的整数,c+d≠0;(a+b)/(a+b+c+d)=0.5-0.92;(c+d)/(a+b+c+d)=0.08-0.5;式中n、m表示金属离子的价态;若树脂侧基的磺酸盐转成氢型后,其整体的交换容量为0.8-2.32mmol/g;
上述M与M′可以相同也可以不同。
所述的盐型全氟磺酸型离子交换树脂为干树脂,数均分子量为6万到30万。所述的盐型全氟磺酸型离子交换树脂是结构式2、结构式3或结构式4所示树脂中的一种或几种的混合物。
本发明的一种互穿网络结构离子交换膜,其制备过程包括下列步骤:
(1)将氢型全氟磺酸型离子交换树脂溶解于有机溶剂中,然后加入盐型全氟磺酸型离子交换树脂溶解,搅匀溶液待用;
(2)使用流延法把步骤(1)得到的溶液在水平且平滑的玻璃板或哈氏合金钢板表面流延成薄膜;
(3)把步骤(2)得到的薄膜加热到一定温度,一段时间后从平板表面剥离得到互穿网络结构的全氟磺酸离子交换膜;
(4)把步骤(3)得到的离子交换膜,用稀酸进行处理得到本发明的互穿网络结构离子交换膜。
步骤(1)中所述的有机溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAc)、二甲基亚砜(DMSO)或N-甲基-2-吡咯烷酮(NMP)中的一种或多种溶剂的混合溶剂;
步骤(1)中所述的氢型全氟磺酸离子交换树脂为干树脂,数均分子量为6万到30万,为H+或Na+型,交换容量为0.8-2.60mmol/g,在溶液中的浓度用重量百分数表示时为5%~45%;
步骤(1)中所述的盐型全氟磺酸型离子交换树脂,为干树脂,数均分子量为6万到30万,选自结构式2、结构式3或结构式4所示树脂中的一种或几种的混合物,加入量与加入的氢型全氟磺酸离子交换树脂之质量比为0.2∶1~1∶1;
步骤(2)中所得到的薄膜,膜厚在15~300微米之间;干燥后可从所述平板表面剥离。
步骤(3)中所述的加热温度为50℃~180℃,加热时间的长度在15分钟到12个小时,其中升温过程可以包括梯度升温;
步骤(4)中所述的稀酸,优选的是盐酸和硫酸,浓度为3%-12%。
与现有技术相比,本发明的优良效果如下:
本发明所述的方法避免现有方法中使用磺化剂、多步处理等繁琐的工艺过程,以及熔融法无法制备均相质子交换膜的缺点。在铸膜液中预先导入具有质子交换功能的磺酸基团,使用溶液流延法制备均相质子交换膜。发挥含氟高分子材料耐电化学腐蚀性强,韧性好的特长,组成膜材料的基本部分。利用磺酸基间的物理交联,使基体磺酸盐型高分子形成互穿网络构造,所含的磺酸基团彼此连接组成离子通道,有效降低膜质子交换阻力。所述制膜方法简单,容易实现工业化放大生产。该质子交换膜适用于用作全钒液流电池的隔膜,也可以作为常见的阳离子交换膜用于电场驱动的分离过程等场合。利用本发明的质子交换膜电导性高的特点,可以有效降低全钒液流电池内阻,为发展新型质子交换膜制备提供普适性方法,为进一步工业生产奠定基础。
附图说明
图1是互穿网络结构离子交换膜网络结构图示意图;其中实线表示氢型全氟磺酸离子交换树脂分子,虚线表示盐型全氟磺酸离子交换树脂分子。
具体实施方式
以下通过实施例对本发明进行进一步说明,但本发明不仅限于以下实施例。
实施例1:
将120g氢型干磺酸树脂(数均分子量8万,交换容量0.95mmol/g,H+型)溶解于880gN,N-二甲基甲酰胺(DMF)中,得到磺酸溶液(铸膜液),加入盐型全氟磺酸型离子交换树脂(结构式3,数均分子量8万,交换容量0.85mmol/g,Ce型)50g,溶解、搅拌均匀后,在光滑且水平的玻璃表面流涎,70℃下蒸发溶剂10h成膜,从玻璃上剥离后得到离子交换膜,用5%盐酸处理得到膜厚50微米的互穿网络结构的离子交换膜。
实施例2:
将50g氢型干磺酸树脂(数均分子量15万,交换容量0.8mmol/g,H+型)溶解于880g二甲基亚砜(DMSO)中,得到磺酸溶液(铸膜液),加入盐型全氟磺酸型离子交换树脂(结构式2,数均分子量8万,交换容量1.25mmol/g,La型)50g,溶解、搅拌均匀后,在光滑且水平的哈氏合金平板表面流涎,升温到150℃蒸发溶剂1h成膜,从玻璃上剥离后得到离子交换膜,用12%盐酸处理得到膜厚18微米的互穿网络结构的离子交换膜。
实施例3:
将420g氢型干磺酸树脂(数均分子量28万,交换容量1.05mmol/g,H+型)溶解于880gN,N-二甲基乙酰胺(DMAc)中,得到磺酸溶液(铸膜液),加入盐型全氟磺酸型离子交换树脂(结构式4,数均分子量8万,交换容量2.55mmol/g,Mn型)100g,溶解、搅拌均匀后,在光滑且水平的玻璃表面流涎,100℃下蒸发溶剂2h成膜,从玻璃上剥离后得到离子交换膜,用10%硫酸处理得到膜厚150微米的互穿网络结构的离子交换膜。
实施例4:
将800g氢型干磺酸树脂(数均分子量12万,交换容量1.45mmol/g,Na+型)溶解于880g N-甲基-2-吡咯烷酮(NMP)中,得到磺酸溶液(铸膜液),加入盐型全氟磺酸型离子交换树脂(结构式3与结构式4混合物,数均分子量分别为8万和20万,交换容量分别为1.15mmol/g和1.85mmol/g,分别为Ce型和Mn型)200g,溶解、搅拌均匀后,在光滑且水平的玻璃表面流涎,160℃下蒸发溶剂20分钟成膜,从玻璃上剥离后得到离子交换膜,用4%硫酸处理得到膜厚250微米的互穿网络结构的离子交换膜。
实施例5:
同实施例1,所不同的是铸膜液中溶剂用量是480g,所用平板为哈氏合金板。
实施例6:
同实施例1,所不同的是铸膜液中溶剂为二甲基亚砜(DMSO)与N-甲基-2-吡咯烷酮(NMP)的混合物(体积比1∶1)。
实施例7:
同实施例1,所不同的是盐型磺酸树脂为三种盐型树脂的混合物(数均分子量12万、16万和24万,均为Ce型,质量比1∶1∶1)。
实施例8:
同实施例2,所不同的是铸膜液在平板表面流涎后,升温到55℃蒸发溶剂10分钟后,再升温到175℃,15分钟,成膜。
实施例9:
同实施例2,所不同的是铸膜液在平板表面流涎后,升温到75℃蒸发溶剂5分钟后,再升温到175℃,15分钟,成膜。
实施例10:
实施例3,所不同的是溶剂为N-甲基-2-吡咯烷酮(NMP)。
实施例11:
同实施例3,所不同的是氢型磺酸树脂为两种氢型树脂的混合物(数均分子量28万和15万,交换容量1.85mmol/g和1.95mmol/g,质量比1∶2,均为H+型)。
实施例12:
同实施例3,所不同的是盐型磺酸树脂(结构式4,数均分子量25万,交换容量1.88mmol/g,M=Ce,M’=La)。

Claims (8)

1.一种互穿网络结构的离子交换膜,其特征在于:是由氢型全氟磺酸离子交换树脂分子与另一种盐型全氟磺酸离子交换树脂分子组成互穿网络结构;所述的氢型全氟磺酸型离子交换树脂的化学结构如结构式1所示:
Figure FSB00000564354900011
其中x、y、z分别为1~10000的整数;且x/(x+y+z)=45%~85%,y/(x+y+z)=10%~45%,z/(x+y+z)=0.01%~10%,均为摩尔比;其中,m为0、1或2,n为1-6的整数;Rf为-F、-CF3、-CF2CF3、-CF2CF2CF3或-CF(CF3)2
根据m、n取值及结构中单体比例的不同,所形成的全氟磺酸离子交换树脂为干树脂,数均分子量为6万到30万,交换容量在0.8-2.6mmol/g;H+型;
所述的盐型全氟磺酸型离子交换树脂的化学结构如结构式2、结构式3、结构式4所示:
Figure FSB00000564354900012
M与M′选自Ce,Mn,La,Zn,W,Ti,V,Cr,Fe,Co,Ni,Cu,Zr,Nb,Mo,Ru,Rh,Pd,Ta,Re,Tr,Pt;其中a、b为自然数,c、d为不小于零的整数,c+d≠0;(a+b)/(a+b+c+d)=0.5-0.92;(c+d)/(a+b+c+d)=0.08-0.5;式中n、m表示金属离子的价态;若树脂侧基的磺酸盐转成氢型后,其整体的交换容量为0.8-2.63mmol/g;
Figure FSB00000564354900021
M与M′选自Ce,Mn,La,Zn,W,Ti,V,Cr,Fe,Co,Ni,Cu,Zr,Nb,Mo,Ru,Rh,Pd,Ta,Re,Tr,Pt;其中a、b为自然数,c、d为不小于零的整数,c+d≠0;(a+b)/(a+b+c+d)=0.5-0.92;(c+d)/(a+b+c+d)=0.08-0.5;式中n、m表示金属离子的价态;若树脂侧基的磺酸盐转成氢型后,其整体的交换容量为0.8-2.62mmol/g;
Figure FSB00000564354900022
M与M′选自Ce,Mn,La,Zn,W,Ti,V,Cr,Fe,Co,Ni,Cu,Zr,Nb,Mo,Ru,Rh,Pd,Ta,Re,Tr,Pt;其中a、b为自然数,c、d为不小于零的整数,c+d≠0;(a+b)/(a+b+c+d)=0.5-0.92;(c+d)/(a+b+c+d)=0.08-0.5;式中n、m表示金属离子的价态;若树脂侧基的磺酸盐转成氢型后,其整体的交换容量为0.8-2.32mmol/g;
所述的盐型全氟磺酸型离子交换树脂为干树脂,数均分子量为6万到30万;所述的盐型全氟磺酸型离子交换树脂是结构式2、结构式3或结构式4所示树脂中的一种或几种的混合物。
2.制备权利要求1所述的一种互穿网络结构的离子交换膜的方法,包括如下步骤:
(1)将氢型全氟磺酸离子交换树脂分子与另一种盐型全氟磺酸离子交换树脂溶解于有机溶剂中,搅匀溶液待用;
(2)使用流延法把步骤(1)得到的溶液在水平且平滑的玻璃板或哈氏合金钢板表面流延成薄膜;
(3)把步骤(2)得到的薄膜加热到一定温度,一段时间后从平板表面剥离得到互穿网络结构的全氟磺酸离子交换膜;
(4)把步骤(3)得到的离子交换膜,用稀酸进行处理得到互穿网络结构离子交换膜。
3.如权利要求2所述的制备方法,其特征在于:步骤(1)中所述的有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲基亚砜或N-甲基-2-吡咯烷酮中的一种或多种溶剂的混合溶剂。
4.如权利要求2所述的制备方法,其特征在于:步骤(1)中所述的氢型全氟磺酸型离子交换树脂为干树脂,数均分子量为6万到30万,为H+型;交换容量为0.8-2.60mmol/g,在溶液中的浓度用重量百分数表示时为5%~45%。
5.如权利要求2所述的制备方法,其特征在于:步骤(1)中所述的盐型全氟磺酸型离子交换树脂,为干树脂,数均分子量为6万到30万,选自结构式2、结构式3或结构式4所示树脂中的一种或几种的混合物,加入量与加入的氢型全氟磺酸离子交换树脂之质量比为0.2∶1~1∶1。
6.如权利要求2所述的制备方法,其特征在于:步骤(2)中所得到的薄膜,膜厚在15~300微米之间;干燥后从所述平板表面剥离。
7.如权利要求2所述的制备方法,其特征在于:步骤(3)中所述的加热温度为50℃~180℃,加热时间15分钟到12个小时,其中升温过程包括梯度升温。
8.如权利要求2所述的制备方法,其特征在于:步骤(4)中所述的稀酸是盐酸和硫酸,浓度为3%-12%。
CN2009102556092A 2009-12-09 2009-12-09 一种互穿网络结构全氟离子交换膜及其制备方法 Expired - Fee Related CN101733021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102556092A CN101733021B (zh) 2009-12-09 2009-12-09 一种互穿网络结构全氟离子交换膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102556092A CN101733021B (zh) 2009-12-09 2009-12-09 一种互穿网络结构全氟离子交换膜及其制备方法

Publications (2)

Publication Number Publication Date
CN101733021A CN101733021A (zh) 2010-06-16
CN101733021B true CN101733021B (zh) 2011-09-28

Family

ID=42457355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102556092A Expired - Fee Related CN101733021B (zh) 2009-12-09 2009-12-09 一种互穿网络结构全氟离子交换膜及其制备方法

Country Status (1)

Country Link
CN (1) CN101733021B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049203A (zh) * 2010-11-04 2011-05-11 厦门大学 一种酸性介质中的阴离子交换膜
CN103357280A (zh) * 2012-03-31 2013-10-23 氢神(天津)燃料电池有限公司 全氟离子交换膜的制备方法及由所述方法获得的离子交换膜
CN108329494A (zh) * 2017-12-22 2018-07-27 江苏国立化工科技有限公司 全氟磺酸离子膜的制备方法
CN110142905A (zh) * 2019-05-09 2019-08-20 朝阳华鼎储能技术有限公司 离子交换膜流延连续成型方法及装置
CN111525168B (zh) * 2020-04-29 2023-04-28 辽宁科京新材料有限公司 一种全氟磺酸复合离子传导膜的制备方法

Also Published As

Publication number Publication date
CN101733021A (zh) 2010-06-16

Similar Documents

Publication Publication Date Title
US20190036143A1 (en) Poly(aryl piperidinium) polymers for use as hydroxide exchange membranes and ionomers
EP1648047B1 (en) Polymer electrolyte for a direct oxidation fuel cell, method of preparing the same, and direct oxidation fuell cell comprising the same
CN101757860B (zh) 一种互穿网络结构的离子交换膜及其制备方法
Wang et al. Novel sulfonated poly (ether ether ketone)/oxidized g-C3N4 composite membrane for vanadium redox flow battery applications
CN101383404B (zh) 一种氟/烃复合离子交换膜及其制备方法
CN104659395B (zh) 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法
Kim et al. Nafion–Nafion/polyvinylidene fluoride–Nafion laminated polymer membrane for direct methanol fuel cells
Quan et al. Novel sulfonated poly (ether ether ketone)/triphenylamine hybrid membrane for vanadium redox flow battery applications
CN101733021B (zh) 一种互穿网络结构全氟离子交换膜及其制备方法
CN101475699A (zh) 一种质子传导膜的制备方法
CN102838777B (zh) 一种speek/pani/pma复合质子交换膜的回收方法
KR20230138951A (ko) 복합 양성자 전도성 막
CN114736411B (zh) 一种导电聚苯胺/氧化石墨烯修饰的Nafion复合质子交换膜及其应用
Kumar et al. Polypyrrole and polyaniline-based membranes for fuel cell devices: A review
CN101764235B (zh) 一种互穿网络结构离子交换膜及其制备方法
CN101777657B (zh) 用功能性氟树脂制备的燃料电池用含氟质子交换膜
CN101791526B (zh) 一种基于氟乙基乙烯基醚多元醇的含氟网络结构离子交换膜及其制备方法
CN117276610A (zh) 一种高韧性COFs/PTFE复合质子交换膜及其制备方法
KR20080048352A (ko) 분산성이 개선된 고분자 전해질 연료전지용 전극, 이를포함하는 고분자 전해질 연료전지 및 그 제조방법
Dharmadhikari et al. Synthesis of proton exchange membranes for dual-chambered microbial fuel cells
CN101794889B (zh) 一种基于聚氨酯的互穿网络离子交换膜及其制备方法
Fang et al. Electrophoretic fabrication of proton exchange membranes in fuel cells
CN101794888B (zh) 一种互穿网络结构离子交换膜及其制备方法
CN107546399B (zh) 主链与离子交换基团分离的离子交换膜及其制备和应用
CN1265478C (zh) 直接醇类燃料电池的改性质子交换膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110928

Termination date: 20171209

CF01 Termination of patent right due to non-payment of annual fee