CN113582682B - 一种具有高换能系数的无铅压电陶瓷材料及其制备方法 - Google Patents

一种具有高换能系数的无铅压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113582682B
CN113582682B CN202111008062.3A CN202111008062A CN113582682B CN 113582682 B CN113582682 B CN 113582682B CN 202111008062 A CN202111008062 A CN 202111008062A CN 113582682 B CN113582682 B CN 113582682B
Authority
CN
China
Prior art keywords
lead
hours
batio
value
high transduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111008062.3A
Other languages
English (en)
Other versions
CN113582682A (zh
Inventor
郑木鹏
高冲
晏晓东
侯育冬
朱满康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202111008062.3A priority Critical patent/CN113582682B/zh
Publication of CN113582682A publication Critical patent/CN113582682A/zh
Application granted granted Critical
Publication of CN113582682B publication Critical patent/CN113582682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种具有高换能系数的无铅压电陶瓷材料及其制备方法,属于无铅压电陶瓷技术领域。CaTiO3作为相结构调节剂被引入二元铁电体系BaZrO3‑BaTiO3中,获得了三方‑正交‑四方‑立方连续相转变的无铅固溶体。具有三方‑正交共存相的无铅固溶体陶瓷表现出高压电常数和低介电常数的特征,在无铅压电陶瓷能量收集器应用领域具有重要前景。

Description

一种具有高换能系数的无铅压电陶瓷材料及其制备方法
技术领域
本发明属于无铅压电陶瓷材料技术领域,具体涉及一种可应用于能量收集器件的具有高换能系数的无铅铁电材料及其制备方法。
背景技术
随着物联网技术的飞速发展,如何为小型化、集成化的终端设备提供持续供电成为了制约其发展的关键问题。压电能量收集技术可以将环境中无处不在的机械能转换为可再利用的电能,是实现复杂环境下微电子器件自供电的潜在解决方案。基于压电效应的能量收集器件,具有高能量转化效率、高输出电压、不受电磁干扰、易小型化等特点,因而具有广阔的应用前景,受到了各国政府、学术界乃至公众的广泛关注。
然而,目前报道的能量收集器件功率密度较低(μW/mm3量级及以下),与电子器件的功率需求仍然存在明显的差距。为了实现高的能量密度,压电材料需要具有高的换能系数(d×g=d2/ε),即高的压电常数(d)和低的介电常数(ε)。当前,用于能量收集研究的压电材料仍主要以钙钛矿铅基铁电陶瓷材料为主。近年来,随着环保意识的增强,各国相继出台了多项相关法律法规,限制电子产品中铅的使用。因此,开发高性能的无铅压电材料成为了亟待解决的问题。
在本发明中,我们首次通过相结构设计在BaTiO3固溶体中实现了超高的换能系数。本工作中,将CaTiO3作为相结构调节剂引入具有三方相结构的二元体系BaZrO3-BaTiO3中,实现了由成分诱导的连续相转变,同时进一步成功地将d33和εr在三方-正交相界处解耦,获得了具有高换能系数的无铅压电固溶体。
发明内容
本发明提供了一种具有高换能系数的无铅压电陶瓷材料及其制备方法。本发明的无铅压电陶瓷特征在于,该固溶体具有高的压电常数和低的介电常数,从而获得了超高的换能系数。
为实现上述目的,本发明采取以下技术方案:
一种具有高换能系数的无铅压电陶瓷材料,其特征在于,无铅压电陶瓷材料固溶体化学组成为:(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3,x的数值为0~0.35,通过成分细化和工艺探索,优选x的数值为0-0.20,进一步优选x的数值为0.10。
进一步x的数值为0和0.05时固溶体具有三方结构;x的数值为0.10时固溶体具有三方-正交共存相结构,x的数值为0.15时固溶体具有三方-正交-四方共存相结构,x的数值为0.20时固溶体具有正交-四方共存相结构,x的数值为0.25-0.35时固溶体具有立方相结构。
其中,最佳样品组成为:0.80BaTiO3-0.10CaTiO3-0.10BaZrO3,其性能可达到:压电常数d33=495pC/N,介电常数εr=2101,换能系数d33×g33=13167×10-15m2/N。
本发明上述具有三方-正交共存相结构的无铅压电固溶体,其特征在于,选择CaTiO3作为相结构调节剂,将其引入至二元体系BaZrO3-BaTiO3中,通过传统固相烧结法制备得到,合成(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3陶瓷粉体,通过传统固相法制备,具体包括以下步骤:
(1)将原料ZrO2、BaCO3、CaCO3、TiO2烘干,然后按照化学计量比称量,随后,以无水乙醇为介质通过卧式球磨机球磨24小时,然后100℃条件下烘干;干燥的混合物在1200℃条件下保温4小时煅烧,煅烧后的粉体再次球磨24小时并烘干,以获得(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3亚微米粉体;
(2)添加聚乙烯醇粘合剂(优选5wt.%的聚乙烯醇粘合剂)用于造粒,直接在100MPa的压力下成型,然后在560℃条件下保温9小时去除粘合剂,最后在1400-1500℃进行无压烧结,保温3小时,即得到致密的目标固溶体。
制备得到的陶瓷材料表面经过研磨和抛光处理,双面涂覆银电极,对样品进行人工极化和电性能的测试。
在本发明中,由于CaTiO3作为相结构调节剂引入二元体系BaZrO3-BaTiO3中,使得合成的三元体系固溶体具有连续变化的相结构(三方-正交-四方-立方),在多晶型相界(PPB)靠近三方相一侧,由于压电常数和介电常数变化趋势的不一致,在三方-正交相界处实现了d33和εr的解耦,从而获得了超高的换能系数,是潜在的应用于能量收集器件的无铅压电材料。
附图说明
图1为(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3无铅压电固溶体随成分变化的XRD图谱。
图2为(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3无铅压电固溶体随成分的电学性能图。
具体实施方式
下面通过实施例进一步阐明本发明的实质性特点和显著优点。应该指出,本发明决非仅局限于所陈述的实施例。
实施例1(对比例):
按化学式0.90BaTiO3-0.10BaZrO3称量ZrO2、BaCO3、TiO2,以无水乙醇为介质通过卧式球磨机球磨24小时,然后100℃条件下烘干。干燥的混合物在1200℃保温4小时煅烧,再次球磨24小时并烘干,以获得0.90BaTiO3-0.10BaZrO3亚微米粉体,添加5wt.%的聚乙烯醇粘合剂用于造粒,直接在100MPa的压力下压制成型,然后在560℃条件下保温9小时去除粘合剂,最后在1500℃进行固相烧结,保温3小时,得到致密的陶瓷。
实施例2:
按化学式0.85BaTiO3-0.05CaTiO3-0.10BaZrO3称量称量ZrO2、BaCO3、CaCO3、TiO2,其它同实施例1。
实施例3:
按化学式0.80BaTiO3-0.10CaTiO3-0.10BaZrO3称量称量ZrO2、BaCO3、CaCO3、TiO2,其它同实施例1。
实施例4:
按化学式0.75BaTiO3-0.15CaTiO3-0.10BaZrO3称量称量ZrO2、BaCO3、CaCO3、TiO2,其它同实施例1。
实施例5:
按化学式0.70BaTiO3-0.20CaTiO3-0.10BaZrO3称量称量ZrO2、BaCO3、CaCO3、TiO2,其它同实施例1。
表1上述实施例性能对比表
Figure BDA0003235906370000041

Claims (7)

1.一种具有高换能系数的无铅压电陶瓷材料,其特征在于,无铅压电陶瓷材料固溶体化学组成为:(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3,x的数值为0~0.35;
采用的制备方法为:选择CaTiO3作为相结构调节剂,将其引入至二元体系BaZrO3-BaTiO3中,通过传统固相烧结法制备得到,合成(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3陶瓷粉体,通过传统固相法制备,具体包括以下步骤:
(1)将原料ZrO2、BaCO3、CaCO3、TiO2烘干,然后按照化学计量比称量,随后,以无水乙醇为介质通过卧式球磨机球磨24小时,然后100℃条件下烘干;干燥的混合物在1200℃条件下保温4小时煅烧,煅烧后的粉体再次球磨24小时并烘干,以获得(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3亚微米粉体;
(2)添加聚乙烯醇粘合剂用于造粒,直接在100MPa的压力下成型,然后在560℃条件下保温9小时去除粘合剂,最后在1400-1500℃进行无压烧结,保温3小时,即得到致密的目标固溶体。
2.按照权利要求1所述的一种具有高换能系数的无铅压电陶瓷材料,其特征在于,x的数值为0-0.20。
3.按照权利要求1所述的一种具有高换能系数的无铅压电陶瓷材料,其特征在于,x的数值为0.10。
4.按照权利要求1所述的一种具有高换能系数的无铅压电陶瓷材料,其特征在于,x的数值为0和0.05时固溶体具有三方结构;x的数值为0.10时固溶体具有三方-正交共存相结构,x的数值为0.15时固溶体具有三方-正交-四方共存相结构,x的数值为0.20时固溶体具有正交-四方共存相结构,x的数值为0.25-0.35时固溶体具有立方相结构。
5.按照权利要求1所述的一种具有高换能系数的无铅压电陶瓷材料,其特征在于,x=0.1时的化学式0.80BaTiO3-0.10CaTiO3-0.10BaZrO3,其压电常数d33=495pC/N,介电常数εr=2101,换能系数d33×g33=13167×10-15m2/N。
6.制备权利要求1-5任一项所述的一种具有高换能系数的无铅压电陶瓷材料的方法,其特征在于,选择CaTiO3作为相结构调节剂,将其引入至二元体系BaZrO3-BaTiO3中,通过传统固相烧结法制备得到,合成(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3陶瓷粉体,通过传统固相法制备,具体包括以下步骤:
(3)将原料ZrO2、BaCO3、CaCO3、TiO2烘干,然后按照化学计量比称量,随后,以无水乙醇为介质通过卧式球磨机球磨24小时,然后100℃条件下烘干;干燥的混合物在1200℃条件下保温4小时煅烧,煅烧后的粉体再次球磨24小时并烘干,以获得(0.90-x)BaTiO3-xCaTiO3-0.10BaZrO3亚微米粉体;
(4)添加聚乙烯醇粘合剂用于造粒,直接在100MPa的压力下成型,然后在560℃条件下保温9小时去除粘合剂,最后在1400-1500℃进行无压烧结,保温3小时,即得到致密的目标固溶体。
7.权利要求1-5任一项所述的一种具有高换能系数的无铅压电陶瓷材料的应用,用于能量收集器件。
CN202111008062.3A 2021-08-30 2021-08-30 一种具有高换能系数的无铅压电陶瓷材料及其制备方法 Active CN113582682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111008062.3A CN113582682B (zh) 2021-08-30 2021-08-30 一种具有高换能系数的无铅压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111008062.3A CN113582682B (zh) 2021-08-30 2021-08-30 一种具有高换能系数的无铅压电陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113582682A CN113582682A (zh) 2021-11-02
CN113582682B true CN113582682B (zh) 2022-10-18

Family

ID=78240444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111008062.3A Active CN113582682B (zh) 2021-08-30 2021-08-30 一种具有高换能系数的无铅压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113582682B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120058B (zh) * 2023-03-15 2024-02-06 北京工业大学 一种兼具高储能性能和负电容温度系数的介电陶瓷材料及制备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404897B2 (ja) * 1994-06-30 2003-05-12 松下電器産業株式会社 セラミック組成物及びコンデンサ
JP3279856B2 (ja) * 1995-02-14 2002-04-30 ティーディーケイ株式会社 誘電体磁器組成物
JP3898560B2 (ja) * 2002-04-24 2007-03-28 京セラ株式会社 誘電体磁器
JP4201242B2 (ja) * 2002-03-26 2008-12-24 Tdk株式会社 高誘電率誘電体磁器組成物
JP4726672B2 (ja) * 2006-03-28 2011-07-20 京セラ株式会社 圧電磁器
CN101935212A (zh) * 2010-09-09 2011-01-05 西北工业大学 一种锆钛酸钡钙无铅压电陶瓷及其制备方法
CN104205388B (zh) * 2012-03-30 2017-03-15 佳能株式会社 压电陶瓷、压电元件、液体喷射头、超声马达和除尘装置
CN102924078A (zh) * 2012-10-22 2013-02-13 天津大学 一种bctz基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN106699177B (zh) * 2016-12-13 2020-03-13 北京工业大学 一种具有高发电特性的无铅压电能量收集材料及其制备方法
CN107459346B (zh) * 2017-08-11 2019-07-02 哈尔滨工业大学 高电学性能的无铅压电钛酸钡基织构陶瓷的制备方法和应用
CN108727021B (zh) * 2018-06-28 2020-08-28 北京工业大学 一种压电能量收集用兼具宽组分窗口与高换能系数陶瓷材料及制备
CN109516804B (zh) * 2019-01-09 2021-05-11 兰州大学 一种拓宽高性能工作温度区间的无铅压电陶瓷的制备方法
CN112723877B (zh) * 2020-12-29 2022-06-17 北京工业大学 一种具有微米内晶型结构的陶瓷-金属无铅压电复合材料及制备方法

Also Published As

Publication number Publication date
CN113582682A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
CN111302797B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN107698252B (zh) 一种陶瓷材料作为高温稳定压电能量收集材料的应用及制备方法
CN102815938B (zh) 一种钛酸钡基无铅电致伸缩陶瓷及其制备方法
CN106915960B (zh) 一种无铅高储能密度和储能效率陶瓷材料及其制备方法
CN101805185A (zh) 一种制备铌镁酸铅钛酸铅弛豫铁电陶瓷的方法
CN102503405A (zh) 一种复合bzt微波陶瓷介质材料及其制备方法
CN113582682B (zh) 一种具有高换能系数的无铅压电陶瓷材料及其制备方法
CN107032790B (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN107473732B (zh) 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法
CN113880576B (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN106699177B (zh) 一种具有高发电特性的无铅压电能量收集材料及其制备方法
CN111333413B (zh) 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法
CN106966720B (zh) Bnt-bzn二元无铅电致应变陶瓷及制备
CN112723877B (zh) 一种具有微米内晶型结构的陶瓷-金属无铅压电复合材料及制备方法
CN109400153B (zh) 一种应用于压电能量收集具有高换能系数的四元系陶瓷材料及制备
CN103553590A (zh) 钛酸钡基无铅电致伸缩陶瓷及其制备方法
CN108439980B (zh) 一种锆钛酸锰钡陶瓷及其制备方法与应用
CN104671777A (zh) 一种同时具备高电致应变、高储能密度与高稳定介电性能等多功能无铅陶瓷及其制备方法
CN109626989A (zh) 一种无污染环保型多功能陶瓷材料的制备方法
CN115093212B (zh) 一种使用温度超过300℃的高性能铁酸铋-钛酸钡陶瓷及其低温液相烧结制备方法
CN116023138B (zh) 一种应用于宽温区内能量收集的无铅压电陶瓷材料及制备
CN115286380B (zh) 一种具有高退极化温度的bnkt-bt基复合陶瓷材料及其制备方法
CN114262225B (zh) 一种高纯纳米电子陶瓷及其制备方法
CN116986895B (zh) 一种阴离子改性的高压电性能无铅压电陶瓷及其制备方法
CN113292340B (zh) 一种高压电性低损耗施主受主共掺杂压电陶瓷、制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant