CN113574323A - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
CN113574323A
CN113574323A CN202080021472.9A CN202080021472A CN113574323A CN 113574323 A CN113574323 A CN 113574323A CN 202080021472 A CN202080021472 A CN 202080021472A CN 113574323 A CN113574323 A CN 113574323A
Authority
CN
China
Prior art keywords
temperature
indoor
air
target temperature
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080021472.9A
Other languages
English (en)
Other versions
CN113574323B (zh
Inventor
坂田洋子
堀翔太
桥本哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of CN113574323A publication Critical patent/CN113574323A/zh
Application granted granted Critical
Publication of CN113574323B publication Critical patent/CN113574323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • F24F11/67Switching between heating and cooling modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/81Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the air supply to heat-exchangers or bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/30Artificial light
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

本公开的目的在于:防止室内人员感到睡意,同时实现舒适的室内环境。在空调系统(1)中,执行注意力维持模式,在注意力维持模式下,依次反复进行第一动作和第二动作,在第一动作中,将目标温度降低到比规定的基准温度低的第一目标温度,在第二动作中,将目标温度提高到比基准温度高的第二目标温度。在第二动作中,将目标温度从第一目标温度逐渐提高到第二目标温度。在第一动作中将目标温度降低到第一目标温度为止的时间比在第二动作中将目标温度提高到第二目标温度为止的时间短。

Description

空调系统
技术领域
本公开涉及一种空调系统。
背景技术
迄今为止,已有人针对空调系统提出一种技术方案:基于室内人员的体感温度、热舒适性,来控制温度、湿度以及风速等,从而提高室内环境的舒适性(例如,参照专利文献1)。作为表示室内人员的体感温度的指标,已知SET(Standard new EffectiveTemperature,标准有效温度);作为表示室内人员的热舒适性的指标,已知PMV(PredictedMean Vote,预测平均评价)。
现有技术文献
专利文献
专利文献1:日本公开专利公报特开2009-133499号公报
发明内容
-发明要解决的技术问题-
在由空调系统实现的令室内人员感到舒适的环境中,存在使人感到睡意的环境条件。因此,在如办公室、自习室等作业环境中,如果室内人员持续停留在规定温度的舒适环境中,则有可能注意力下降而导致作业效率降低。
本公开的目的在于:防止室内人员感到睡意,同时实现舒适的室内环境。
-用以解决技术问题的技术方案-
本公开的第一方面以空调系统1为对象,空调系统1包括温度调节部37、室内空气温度检测部45以及控制部11,温度调节部37调节室内空气的温度,室内空气温度检测部45检测室内空气的温度,控制部11控制温度调节部37,使得由室内空气温度检测部45检测到的温度接近目标温度。
控制部11执行第一模式,在第一模式下,依次进行至少各一次第一动作和第二动作,在第一动作中,将目标温度降低到比规定的基准温度低的第一目标温度,在第二动作中,将目标温度提高到比基准温度高的第二目标温度。在第二动作中,将目标温度从第一目标温度逐渐提高到第二目标温度。在第一动作中将目标温度降低到第一目标温度为止的时间比在第二动作中将目标温度提高到第二目标温度为止的时间短。
在该第一方面中,在第一动作中将目标温度以相对较短的时间降低到第一目标温度。这样一来,因为室内空气的温度迅速下降而低于基准温度,所以能够使室内温度达到令室内人员101感到凉爽的温度,从而对室内人员101给予凉爽的刺激。由此,能够防止室内人员101感到睡意。
在该第一方面中,在第二动作中花费相对较长的时间将目标温度逐渐提高到第二目标温度。这样一来,因为室内空气的温度缓慢上升而高于基准温度,所以能够减轻因温度变化而给室内人员101带来的负担,同时能够使室内空气在进行第一动作的期间和进行第二动作的期间的总期间内的平均温度达到令室内人员101感到舒适的温度。由此,能够实现令室内人员101感到舒适的室内环境。
本公开的第二方面在第一方面的空调系统1的基础上,温度调节部37由连接在制冷剂回路17中的室内热交换器37构成。在室内热交换器37作为蒸发器发挥作用的制冷运转时,控制部11执行第一模式。而且,当由室内空气温度检测部45检测到的温度比目标温度低了规定温度以上时,控制部11使室内热交换器37停止。
在该第二方面中,在制冷运转时,当由室内空气温度检测部45检测到的温度比目标温度低了规定温度以上时,就使室内热交换器37停止。因此,在制冷运转时,当目标温度设定为比由室内空气温度检测部45检测到的温度高了规定温度以上的情况下,则可能处于室内热交换器37停止而室内风扇39运转的状态。在此情况下,因为附着在室内热交换器37上的水分由于送风而被释放到室内,所以室内空气的湿度上升,会令室内人员101感到不快。
相对于此,在该第二方面中,也是在第二动作中,将目标温度从第一目标温度逐渐提高到第二目标温度,所以在制冷运转时,由室内空气温度检测部45检测到的温度难以比目标温度低规定温度以上,从而能够抑制室内热交换器37停止。由此,能够避免因室内空气的湿度上升而令室内人员101感到不快。
本公开的第三方面在第一方面的空调系统1的基础上,温度调节部37由连接在制冷剂回路17中的室内热交换器37构成。在室内热交换器37作为散热器发挥作用的制热运转时,控制部11执行第一模式。而且,当由室内空气温度检测部45检测到的温度比目标温度高了规定温度以上时,控制部11使室内热交换器37停止。
在该第三方面中,在制热运转时,当由室内空气温度检测部45检测到的温度比目标温度高了规定温度以上时,就使室内热交换器37停止。在第一动作中,因为使目标温度以相对较短的时间降低到第一目标温度,所以第一目标温度容易被设定为比由室内空气温度检测部45检测到的温度低规定温度以上。这有助于在开始第一动作之后立即使室内热交换器37停止,而使得室内空气的温度迅速下降。
本公开的第四方面在第一到第三方面中任一方面的空调系统1的基础上,控制部11推测室内人员101感到舒适的室内空气的舒适温度。此处,基准温度是由控制部11推测出的舒适温度。
在该第四方面中,采用由控制部11推测出的舒适温度作为基准温度。这样一来,容易使室内空气在进行第一动作的期间和进行第二动作的期间的总期间内的平均温度达到令室内人员101感到舒适的温度。因此,适于通过在第一模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
本公开的第五方面在第四方面的空调系统1的基础上,控制部11根据学习模型来推测舒适温度,学习模型是基于与环境信息相关的参数和与室内人员101的冷热感相关的参数而生成的,环境信息包括室内空气的温度、室内空气的湿度、室内的照度、室外空气的温度以及室外空气的湿度中的至少一者。
在该第五方面中,通过将环境信息与室内人员101的冷热感关联起来的学习模型来推测用作基准温度的舒适温度。这样一来,能够高精度地推测室内人员101感到舒适的室内空气的温度以作为舒适温度,并将其设为基准温度。这有利于通过在第一模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
本公开的第六方面在第四方面的空调系统1的基础上,空调系统1包括室外空气温度检测部53和存储部59,室外空气温度检测部53检测室外空气温度,存储部59存储有表示舒适温度与室外空气温度之间的关系的关系信息。控制部11使用存储在存储部59中的关系信息,基于由室外空气温度检测部53检测到的室外空气温度推测舒适温度。
在该第六方面中,使用表示舒适温度与室外空气温度之间的关系的关系信息,根据由室外空气温度检测部53检测到的室外空气温度推测用作基准温度的舒适温度。这样一来,能够将通常的舒适温度推测为室内人员101感到舒适的室内空气的温度,并将其设为基准温度。这有利于通过在第一模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
本公开的第七方面在第四到第六方面中任一方面的空调系统1的基础上,空调系统1包括输入部9,与室内人员101的个体差异相关的信息被输入该输入部9。控制部11基于输入到输入部9的信息来补正基准温度。
在该第七方面中,控制部11基于与室内人员101的个体差异相关的信息来补正基准温度。这样一来,因为与室内人员101的个体差异相关的信息被反映到基准温度中,所以能够将室内人员101感到舒适的室内空气的温度高精度地用作基准温度。这有利于通过在第一模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
本公开的第八方面在第一到第七方面中任一方面的空调系统1的基础上,空调系统1包括室内机组5,室内机组5具有温度调节部37。室内空气温度检测部45设置在与室内机组5不为一体的部件上。
在该第八方面中,室内空气温度检测部45设置在与室内机组5不为一体的部件上。设置有室内空气温度检测部45的与室内机组5不为一体的部件能够布置在室内人员101的附近。这样一来,能够由室内空气温度检测部45检测室内人员101附近的室内空气的温度。这适于通过在第一模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
本公开的第九方面在第一到第八方面中任一方面的空调系统1的基础上,在将基准温度设为Ta、将目标温度设为Ts时,在进行第一动作的一个期间内的基准温度与目标温度之间的温度差Ta-Ts的累计值、和在进行第二动作的一个期间内的目标温度与基准温度之间的温度差Ts-Ta的累计值相等。
在该第九方面中,决定第一动作的目标温度和执行时间、以及第二动作的目标温度和执行时间,使得室内空气在进行第一动作的一个期间和进行第二动作的一个期间的总期间内的平均温度达到基准温度。这适于通过在第一模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
本公开的第十方面在第一到第九方面中任一方面的空调系统1的基础上,空调系统1包括换气装置7和二氧化碳浓度检测部49,换气装置7对室内进行换气,二氧化碳浓度检测部49检测室内的二氧化碳浓度。当由二氧化碳浓度检测部49检测到的二氧化碳浓度达到规定值以上时,控制部11让换气装置7运转。
在该第十方面中,在由二氧化碳浓度检测部49检测到的室内二氧化碳浓度达到了规定值以上时,让换气装置7运转。如果室内二氧化碳浓度较高,则会导致倦怠感或疲劳度增加,或者产生睡意。如果让换气装置7运转,则因为室内空气得到更换而使得室内二氧化碳浓度下降,所以适于实现令室内人员101感到舒适的室内环境。
附图说明
图1是简要示出实施方式的空调系统的示意图;
图2是示出构成实施方式的空调系统的制冷剂回路的图;
图3是示出实施方式的空调系统的结构的框图;
图4是在实施方式的空调系统中使用的关系信息(热舒适性自适应模型)的示意图;
图5是实施方式的空调系统在制冷运转时的注意力维持模式的流程图;
图6是实施方式的空调系统在制热运转时的注意力维持模式的流程图;
图7是实施方式的空调系统在注意力维持模式下的换气控制的流程图。
具体实施方式
(第一实施方式)
下面说明第一实施方式。
该第一实施方式的空调系统1是有助于维持室内人员101对于作业的注意力的系统,其被用于进行以办公室、自习室等供室内人员101作业的室内为对象的空气调节。
-空调系统的结构-
如图1所示,空调系统1包括:设置于室外的室外机组3;设置于室内的室内机组5和换气装置7;遥控器9;各种传感器类45、47、49、51、53、55;以及对该空调系统1的动作进行综合性控制的控制部11。
<室外机组、室内机组>
室外机组3和室内机组5由连接管道13、15相连接,从而构成图2所示的制冷剂回路17。在制冷剂回路17中,所填充的制冷剂循环而进行蒸汽压缩式制冷循环。作为制冷剂,例如使用R32制冷剂。制冷剂回路17包括室外回路19和室内回路21。
室外机组3例如设置在建筑物的屋顶或建筑物旁的地面上、阳台等室外。室外机组3具有压缩机23、四通换向阀25、室外热交换器27、膨胀阀29以及室外风扇31。压缩机23、四通换向阀25、室外热交换器27以及膨胀阀29按照该顺序依次由制冷剂管道33连接起来而构成室外回路19。
压缩机23对已吸入的制冷剂进行压缩后,将压缩后的制冷剂喷出。压缩机23构成为例如容量可变的变频式压缩机。压缩机23例如是旋转式压缩机。室外风扇31设置在室外热交换器27的附近。室外风扇31由室外风扇电机35驱动。室外风扇31例如由螺旋桨风扇构成。室外风扇31输送室外空气,并使其通过室外热交换器27。
室外热交换器27使由室外风扇31输送来的室外空气与在内部流动的制冷剂进行热交换。室外热交换器27例如由翅片管式热交换器构成。膨胀阀29是开度可变的控制阀。膨胀阀29对在内部流动的制冷剂进行减压。膨胀阀29例如由电子膨胀阀构成。
四通换向阀25使制冷剂回路17中的制冷剂的流路在第一状态(图2中实线所示的状态)和第二状态(图2中虚线所示的状态)之间进行切换。第一状态下的四通换向阀25使压缩机23的喷出部与室外热交换器27连通,并使压缩机23的吸入部与室内热交换器37连通。第二状态下的四通换向阀25使压缩机23的喷出部与室内热交换器37连通,并使压缩机23的吸入部与室外热交换器27连通。
室内机组5例如安装在室内的壁面或天花板上。图1所示的室内机组5是安装在壁面上的壁挂式机组。室内机组5具有室内热交换器37和室内风扇39。室内热交换器37构成室内回路21。室内风扇39设置在室内热交换器37的附近。室内风扇39由室内风扇电机41驱动。
室内风扇39例如由贯流式风扇构成。室内风扇39输送室内空气,使其通过室内热交换器37。室内热交换器37使由室内风扇39输送来的室内空气与在内部流动的制冷剂进行热交换。室内热交换器37例如由翅片管式热交换器构成。此处,室内热交换器37是调节室内空气的温度的温度调节部之一例。
在制冷剂回路17中,当四通换向阀25处于第一状态时,进行如下制冷循环(制冷剂沿图2中的实线箭头方向流动的制冷循环),在该制冷循环中,室外热交换器27作为冷凝器发挥作用,并且室内热交换器37作为散热器(蒸发器)发挥作用。此外,在制冷剂回路17中,当四通换向阀25处于第二状态时,进行如下制冷循环(制冷剂沿图2中的虚线箭头方向流动的制冷循环),在该制冷循环中,室外热交换器27作为散热器(蒸发器)发挥作用,并且室内热交换器37作为冷凝器发挥作用。
<换气装置>
换气装置7例如安装在室内的壁面或天花板上。图1所示的换气装置7是安装在壁面上的壁挂式装置。换气装置7包括换气扇43,根据需要还包括管道。换气扇43将外部的空气引入室内,并将室内空气排向外部。换气扇43由换气扇电机(未图示)驱动。
<遥控器>
遥控器9是与室内机组5不为一体的部件,大多放置在供室内人员101进行作业的桌子103上等室内人员101的附近。遥控器9构成为能够由室内人员101操作。遥控器9具有供室内人员101进行操作的操作部和显示规定信息的显示部,但未图示。遥控器9以无线方式与控制部11连接。遥控器9向控制部11输出操作信号。
经由操作部能够打开和关闭空调系统1、切换运转模式和控制模式、设定后述的注意力维持模式下的清醒强度、输入后述的与基准温度相关的补正信息。操作部具有用于进行上述各种操作的多个按钮。多个按钮包括用于打开和关闭后述的注意力维持模式的集中按钮、用于设定清醒强度的选择按钮。
作为在注意力维持模式下所设定的清醒强度,例如有“弱”、“中”以及“强”这三种模式。此处,“清醒强度”表示注意力维持模式下对室内人员101施加的凉爽刺激的强度。关于清醒强度的设定内容在下文中详述。
用操作部输入的补正信息是与室内人员101的个体差异相关的信息。补正信息也可以是与室内人员101感到热或冷的体感相关的信息(怕热或怕冷等抽象信息)。此外,补正信息也可以是如+1.0℃或-1.0℃这样的具体补正温度的信息。补正信息还可以是室内人员101的性别、年龄、代谢量、体脂肪率以及血压等与冷热感相关的个人参数。
在显示部上显示设定温度(基准温度)、室内空气的湿度、运转模式的信息等。作为运转模式的信息,能够列举出以下信息:是制冷运转还是制热运转、进而是否正在执行后述的注意力维持模式、注意力维持模式下的清醒强度被设定为哪一强度等。
<传感器类>
空调系统1包括如下传感器类:室内空气温度传感器45、室内空气湿度传感器47、CO2浓度传感器49、照度传感器51、室外空气温度传感器53以及室外空气湿度传感器55。上述各传感器45、47、49、51、53、55以有线方式或无线方式与控制部11连接。各传感器45、47、49、51、53、55向控制部11输出检测信号。此处,室内空气温度传感器45是室内空气温度检测部之一例。CO2浓度传感器49是二氧化碳浓度检测部之一例。
室内空气温度传感器45、室内空气湿度传感器47、CO2浓度传感器49以及照度传感器51例如设置于室内机组5。室内空气温度传感器45对被吸入室内机组5中的室内空气的温度进行检测。室内空气湿度传感器47对被吸入室内机组5中的室内空气的湿度进行检测。CO2浓度传感器49对被吸入室内机组5中的室内空气的CO2浓度(二氧化碳浓度)进行检测。照度传感器51对室内的亮度(照度)进行检测。
室外空气温度传感器53和室外空气湿度传感器55例如设置于室外机组3。室外空气温度传感器53对被吸入室外机组3中的室外空气的温度进行检测。室外空气湿度传感器55对被吸入室外机组3中的室外空气的湿度进行检测。
<控制部>
控制部11是以公知的微型计算机为基础的控制器。如图3所示,控制部11具有执行程序的中央处理器(Central Processing Unit:CPU)57、以及存储有在中央处理器中执行的各种程序和数据的存储部59。存储部59由ROM(Read Only Memory:只读存储器)、RAM(Random Access Memory:随机存取存储器)等构成。控制部11例如内置在室内机组5中。
控制部11基于室内空气温度传感器45、室内空气湿度传感器47、CO2浓度传感器49、照度传感器51、室外空气温度传感器53和室外空气湿度传感器55的检测信号、以及来自遥控器9的操作信号,计算对室外机组3(压缩机23、四通换向阀25、膨胀阀29、室外风扇31)、室内机组5(室内风扇39)以及换气装置7(换气扇43)的控制量。控制部11向室外机组3、室内机组5以及换气装置7输出与计算出的控制量相关的控制信号。
在存储部59中存储有关系信息,该关系信息表示室内空气的湿度、室内空气的CO2浓度、室内的照度、室外空气温度以及室外空气湿度中的至少一者与令室内人员101感到舒适的室内空气的舒适温度之间的关系。作为关系信息,例如使用被称为自适应舒适模型(Adaptive Comfort Model)等的热舒适性自适应模型的信息。
室内人员101的舒适温度根据人对环境的适应能力随着室外空气温度的变化而变化。热舒适性自适应模型是基于室内空气的温度和室内人员101的冷热感声明,从统计信息通过回归分析而得到的模型,是表示如图4的曲线图所示的室外空气温度与舒适温度之间的关系的信息。在图4所示的热舒适性自适应模型中,室外空气温度越高,舒适温度就越高。在图4中,位于上下侧的双点划线之间的范围表示统计上90%的人感到舒适的舒适温度的范围,位于上下侧的一点划线之间的范围表示统计上80%的人感到舒适的舒适温度的范围。
控制部11使用存储在存储部59中的关系信息,在该第一实施方式中使用热舒适性自适应模型的信息,基于由室外空气温度传感器53检测到的室外空气温度,推测室内人员101的舒适温度。一般而言,作为与舒适性相关的气温概念,已知中性温度这一概念,中性温度是对于人来说不热也不冷而感觉舒适的气温。在图4所示的热舒适性自适应模型中,能够将舒适温度范围内的用实线NL表示的中间温度视为中性温度。控制部11将利用该热舒适性自适应模型根据室外空气温度求出的中性温度推测为室内人员101的舒适温度。
控制部11基于推测出的舒适温度自动地设定基准温度。在没有通过遥控器9输入与基准温度相关的补正信息的情况下,控制部11将推测出的舒适温度设定为基准温度。在通过遥控器9输入了与基准温度相关的补正信息的情况下,控制部11基于该补正信息补正基准温度。
例如,在已输入室内人员101怕热的信息作为补正信息的情况下,进行将基准温度降低规定温度的补正;在已输入室内人员101怕冷的信息作为补正信息的情况下,进行将基准温度提高规定温度的补正。此外,在已输入具体的补正温度信息作为补正信息的情况下,根据该补正温度进行将基准温度提高或降低的补正。此外,在已输入与冷热感相关的个人参数作为补正信息的情况下,进行将基准温度提高或降低规定温度的补正,该规定温度是根据该个人参数而决定的。
需要说明的是,控制部11也可以基于来自遥控器9的操作信号设定基准温度。基准温度也可以由室内人员通过操作遥控器9来手动设定。
控制部11基于来自遥控器9的操作信号,以指定好的运转模式(制冷运转或制热运转)控制室外机组3和室内机组5的动作,并基于来自上述各种传感器45、47、49、51、53、55的检测信号,控制空调系统1的运转。
控制部11具有多个控制模式,根据基于来自遥控器9的操作信号设定的控制模式来控制室外机组3、室内机组5以及换气装置7的动作。控制部11的控制模式有:用于提高室内人员101的注意力的注意力维持模式、以及在注意力维持模式关闭时所转变成的正常运转模式。此处,“提高室内人员101的注意力”是指能够使室内人员101感到舒适而不会感到睡意。此处,注意力维持模式是第一模式之一例。
此外,控制部11基于由CO2传感器检测到的室内空气的CO2浓度,控制换气装置7的动作。CO2浓度是评价室内空气质量的指标之一。如果室内空气的CO2浓度高,则会导致倦怠感或疲劳度增加,或者产生睡意。因此,优选不让室内空气的CO2浓度变得过高。
当由CO2浓度传感器49检测到的室内的CO2浓度达到规定的第一基准值以上时,控制部11就让换气装置7运转。第一基准值按照针对建筑物的环境管理设定的基准,例如被设定为1000ppm。此外,当由CO2浓度传感器49检测到的室内空气的CO2浓度低于规定的第二基准值时,控制部11让换气装置7停止。第二基准值例如被设定为900ppm。
-空调系统的运转动作-
空调系统1按照通过遥控器9设定的运转模式,切换着进行制冷运转和制热运转,来调节室内空气的温度。在制冷运转时和制热运转时的任一情况下,都能够通过在遥控器9上按下集中按钮的操作来执行注意力维持模式,并能够通过再次操作集中按钮来解除该注意力维持模式。
<制冷运转>
在制冷运转中,使四通换向阀25处于第一状态。由压缩机23压缩后的制冷剂通过作为散热器发挥作用的室外热交换器27放热(冷凝)。已放热后的制冷剂被膨胀阀29减压,然后在作为蒸发器发挥作用的室内热交换器37中流动。在室内热交换器37中,制冷剂从室内空气中吸热而蒸发。已由室内热交换器37冷却后的室内空气由室内风扇39被供往室内空间。已蒸发了的制冷剂被吸入压缩机23。在制冷运转中,在室内热交换器37的附近产生冷凝水。
在制冷运转时,当由室内空气温度传感器45检测到的温度比目标温度低了规定的第一温度以上时,通过让压缩机23停止,不让制冷剂在制冷剂回路17中流动,从而使室内热交换器37停止。此时,室内风扇39保持运转状态。在该第一实施方式中,成为让室内热交换器37停止的基准的第一温度(室内空气的温度与目标温度之间的温度差)例如被设定为1.0℃。当由室内空气温度传感器45检测到的温度达到目标温度时,让室内热交换器37重新开始运转。
<制热运转>
在制热运转中,使四通换向阀25处于第二状态。由压缩机23压缩后的制冷剂在作为散热器(冷凝器)发挥作用的室内热交换器37中流动。在室内热交换器37中,制冷剂向室内空气放热而冷凝。已由室内热交换器37加热后的室内空气由室内风扇39被供往室内空间。已冷凝了的制冷剂由膨胀阀29减压后,在室外热交换器27中蒸发。已蒸发了的制冷剂被吸入压缩机23。
在制热运转时,当由室内空气温度传感器45检测到的温度比目标温度高了规定的第二温度以上时,通过让压缩机23停止,不让制冷剂在制冷剂回路17中流动,从而使室内热交换器37停止。此时,室内风扇39保持运转状态。在该第一实施方式中,成为让室内热交换器37停止的基准的第二温度(室内空气的温度与目标温度之间的温度差)例如被设定为1.0℃。当由室内空气温度传感器45检测到的温度达到目标温度时,让室内热交换器37重新开始运转。
<正常运转模式>
在正常运转模式下,将基准温度设定为目标温度。基准温度在使用热舒适性自适应模型的信息的推测控制下,根据由室外空气温度传感器53检测到的室外空气温度的变化而改变,因此目标温度根据室外空气温度的变化而被更新。在正常运转模式下,控制室内热交换器37,使得由室内空气温度传感器45检测到的温度接近目标温度。
<注意力维持模式>
在注意力维持模式下,依次进行至少各一次第一动作和第二动作。第一动作是将目标温度降低到比基准温度低的第一目标温度的动作。第二动作是将目标温度提高到比基准温度高的第二目标温度的动作。在第一动作中将目标温度降低到第一目标温度为止的时间比在第二动作中将目标温度提高到第二目标温度为止的时间短。这将通过在后述的第一动作和第二动作中的控制来阐明。
在注意力维持模式下,在第一动作中,控制室内热交换器37,使得由室内空气温度传感器45检测到的温度接近第一目标温度,在第二动作中,控制室内热交换器37,使得由室内空气温度传感器45检测到的温度接近第二目标温度。在执行注意力维持模式的期间交替反复进行上述第一动作和第二动作。
第一目标温度和第二目标温度是根据通过遥控器9设定好的清醒强度来决定的。清醒强度的设定情况反映在第一目标温度相对于基准温度的降低幅度和第二目标温度相对于基准温度的提高幅度上。上述第一目标温度的降低幅度和第二目标温度的提高幅度例如被设定为使第一目标温度与第二目标温度之间的温度差在3℃以下。之所以进行上述设定,是因为如果室内空气的温度的变化幅度超过3℃,则会对室内人员101的身体产生负担。
将清醒强度设定为“弱”例如是将第一目标温度相对于基准温度的降低幅度设为1.5℃,并将第二目标温度相对于基准温度的提高幅度设为1.5℃的设定。在进行该设定的情况下,第一目标温度被设定成比基准温度低1.5℃的温度,第二目标温度被设定成比基准温度高1.5℃的温度。如上所述,在将清醒强度设定为“弱”的情况下,第一目标温度相对于基准温度的降低幅度比较小。
将清醒强度设定为“中”例如是将第一目标温度相对于基准温度的降低幅度设为2.0℃,并将第二目标温度相对于基准温度的提高幅度设为1.0℃的设定。在进行该设定的情况下,第一目标温度被设定成比基准温度低2.0℃的温度,第二目标温度被设定成比基准温度高1.0℃的温度。如上所述,在将清醒强度设定为“中”的情况下,第一目标温度相对于基准温度的降低幅度比将清醒强度设定为“弱”时的降低幅度大。
将清醒强度设定为“强”例如是将第一目标温度相对于基准温度的降低幅度设为2.5℃,并将第二目标温度相对于基准温度的提高幅度设为0.5℃的设定。在进行该设定的情况下,第一目标温度被设定成比基准温度低2.5℃的温度,第二目标温度被设定成比基准温度高0.5℃的温度。如上所述,在将清醒强度设定为“强”的情况下,第一目标温度相对于基准温度的降低幅度比将清醒强度设定为“中”时的降低幅度大。
在第一动作中,在开始第一动作之后立即将目标温度设定为第一目标温度。相对于此,在第二动作中,在开始第二动作之后并没有立即将目标温度设定为第二目标温度,而是将目标温度从第一目标温度分阶段地提高到第二目标温度。具体而言,将目标温度从第一目标温度以每隔30秒提高0.5℃的方式逐渐提高到第二目标温度。之所以将目标温度分阶段提高的提高幅度设为0.5℃,是因为成为让室内热交换器37停止的基准的第一温度(室内空气的温度与目标温度之间的温度差)被设定为1.0℃。根据该控制,在制冷运转时,能够抑制室内热交换器37停止。
第一动作的执行时间和第二动作的执行时间被设定为:在将基准温度设为Ta、将目标温度设为Ts时,在进行第一动作的一个期间内的基准温度Ta与目标温度Ts之间的温度差Ta-Ts的累计值、和在进行第二动作的一个期间内的目标温度Ts与基准温度Ta之间的温度差Ts-Ta的累计值相等。
具体而言,第一动作的执行时间和第二动作的执行时间被设定为:在将基准温度设为Ta、将第一目标温度设为Ts1、将第二目标温度设为Ts2、将第一动作的执行时间设为ΔTL、将第二动作的执行时间设为ΔTH、将第二动作中目标温度分阶段提高的提高幅度设为ΔTr时,满足以下的关系式(1)。
[公式1]
Figure BDA0003263433780000131
其中,N=(Ts2-Ts1)/ΔTr。需要说明的是,N>1。
第一动作的执行时间ΔTL例如被设定为4分钟以下。这是因为,在室内空气的温度较低的凉爽的环境中,如果室内人员101滞留的持续时间超过4分钟,就容易感到寒冷。在该第一实施方式中,第一动作的执行时间ΔTL例如被设定为4分钟。
第二动作的执行时间ΔTH是基于上述关系式(1),根据清醒强度的设定情况而设定的。
在将清醒强度设定为“弱”的设定(第一目标温度Ts1相对于基准温度Ta的降低幅度为1.5℃,第二目标温度Ts2相对于基准温度Ta的提高幅度为1.5℃,第一动作的执行时间ΔTL为4分钟,第二动作中目标温度分阶段提高的提高幅度ΔTr为0.5℃的情况)下,第二动作的执行时间ΔTH根据上述关系式(1)被设定为6.5分钟。
在将清醒强度设定为“中”的设定(第一目标温度Ts1相对于基准温度Ta的降低幅度为2.0℃,第二目标温度Ts2相对于基准温度Ta的提高幅度为1.0℃,第一动作的执行时间ΔTL为4分钟,第二动作中目标温度分阶段提高的提高幅度ΔTr为0.5℃的情况)下,第二动作的执行时间ΔTH根据上述关系式(1)被设定为11.75分钟。
在将清醒强度设定为“强”的设定(第一目标温度Ts1相对于基准温度Ta的降低幅度为2.5℃,第二目标温度Ts2相对于基准温度Ta的提高幅度为0.5℃,第一动作的执行时间ΔTL为4分钟,第二动作中目标温度分阶段提高的提高幅度ΔTr为0.5℃的情况)下,第二动作的执行时间ΔTH根据上述关系式(1)被设定为27.5分钟。
-制冷运转时的注意力维持模式-
按照图5所示的流程图执行空调系统1的制冷运转时的注意力维持模式。
如图5所示,在制冷运转中,首先,在开始后的步骤C-ST01中,基于来自遥控器9的操作信号,判断是否按下了集中按钮。当在该步骤C-ST01中判断为没有按下集中按钮时(判断为“否”时),则返回而反复进行该步骤C-ST01,以监视是否按下了集中按钮。
当在该步骤C-ST01中判断为已按下了集中按钮时(判断为“是”时),则进入下一步骤C-ST02。在步骤C-ST02中,开始执行注意力维持模式。接着,进入步骤C-ST03。此外,在执行步骤C-ST03以后的步骤的同时,执行后述的换气控制。
在步骤C-ST03中,读取各种传感器45、47、49、51、53、55的检测信号,获取如室内空气的温度、室内空气的湿度、室内的照度、室外空气的温度以及室外空气的湿度这样的室内和室外的环境信息,并且读取通过遥控器9设定的设定信息,获取与基准温度相关的室内人员101的补正信息以及清醒强度的设定信息等。接着,进入步骤C-ST04。
在步骤C-ST04中,使用热舒适性自适应模型的信息,基于在步骤C-ST03中获取的室外空气温度,推测室内人员101的舒适温度(中性温度),将推测出的舒适温度设定为基准温度。此时,在已通过遥控器9设定了与基准温度相关的补正信息的情况下,基于该补正信息补正基准温度。接着,进入步骤C-ST05。
在步骤C-ST05中,基于在步骤C-ST04中设定好的基准温度和在步骤C-ST03中获取的清醒强度的设定信息,来设定第一目标温度和第二目标温度。需要说明的是,基于在步骤C-ST03中获取的清醒强度的设定信息来决定第一动作的执行时间ΔTL和第二动作的执行时间ΔTH。接着,进入步骤C-ST06。
在步骤C-ST06中,开始执行第一动作,将目标温度设定为第一目标温度。这样一来,因为室内空气的温度迅速下降而低于基准温度,所以能够使室内温度达到令室内人员101感到凉爽的温度,从而对室内人员101给予与清醒强度的设定相对应的凉爽的刺激。接着,进入步骤C-ST07。
在步骤C-ST07中,判断是否在遥控器9上再次按下集中按钮而解除了注意力维持模式。当在该步骤C-ST07中判断为解除了注意力维持模式时(判断为“是”时),则结束注意力维持模式,转移到正常运转模式。当在该步骤C-ST07中判断为没有解除注意力维持模式时(判断为“否”时),则进入步骤C-ST08。
在步骤C-ST08中,判断是否经过了第一动作的执行时间ΔTL。当在该步骤C-ST08中判断为没有经过第一动作的执行时间ΔTL时(判断为“否”时),则返回步骤C-ST07,反复进行步骤C-ST07和步骤C-ST08,直到解除注意力维持模式或经过第一动作的执行时间为止。此外,当在步骤C-ST08中判断为经过了第一动作的执行时间ΔTL时(判断为“是”时),则进入步骤C-ST09。
在步骤C-ST09中,取代第一动作而开始执行第二动作,将目标温度从第一目标温度分阶段地提高到第二目标温度。
此时,当目标温度被设定为比由室内空气温度传感器45检测到的温度高了第一温度(1.0℃)以上时,则会处于室内热交换器37停止而室内风扇39运转的状态。在此情况下,因为附着在室内热交换器37上的水分由于送风而被释放到室内,所以室内空气的湿度上升,有可能令室内人员101感到不快。在该第一实施方式中,如上所述,因为将目标温度从第一目标温度以每隔30秒提高0.5℃的方式逐渐提高到第二目标温度,所以由室内空气温度传感器45检测到的温度难以比目标温度低第一温度(1.0℃)以上,从而能够抑制室内热交换器37停止。
接着,在步骤C-ST10中,判断是否在遥控器9上再次按下集中按钮而解除了注意力维持模式。当在该步骤C-ST10中判断为解除了注意力维持模式时(判断为“是”时),则结束注意力维持模式,转移到正常运转模式。当在该步骤C-ST10中判断为没有解除注意力维持模式时(判断为“否”时),则进入步骤C-ST11。
在步骤C-ST11中,判断是否经过了第二动作的执行时间ΔTH。当在该步骤C-ST11中判断为没有经过第二动作的执行时间ΔTH时(判断为“否”时),则返回步骤C-ST10,反复进行步骤C-ST10和步骤C-ST11,直到解除注意力维持模式或经过第二动作的执行时间ΔTH为止。当在步骤C-ST11中判断为经过了第二动作的执行时间ΔTH时(判断为“是”时),则返回步骤C-ST06,取代第二动作而开始执行第一动作。
在该制冷运转时的注意力维持模式下第一动作和第二动作的反复运转一直执行到室内人员101操作遥控器9解除该注意力维持模式为止。根据执行该注意力维持模式,一边向室内人员周期性地给予凉爽的刺激,一边将室内空气在第一动作和第二动作各进行一次的一个循环的总期间内的平均温度调节成舒适温度。
-制热运转时的注意力维持模式-
按照图6所示的流程图执行空调系统1的制热运转时的注意力维持模式。
如图6所示,在制热运转中,首先,在开始后的步骤H-ST01中,基于来自遥控器9的操作信号,判断是否按下了集中按钮。当在该步骤H-ST01中判断为没有按下集中按钮时(判断为“否”时),则返回而反复进行该步骤H-ST01,以监视是否按下了集中按钮。
当在该步骤H-ST01中判断为已按下了集中按钮时(判断为“是”时),则进入下一步骤H-ST02。在步骤H-ST02中,开始执行注意力维持模式。接着,进入步骤H-ST03。此外,在执行步骤H-ST03以后的步骤的同时,执行后述的换气控制。
在步骤H-ST03中,读取各种传感器45、47、49、51、53、55的检测信号,获取如室内空气的温度、室内空气的湿度、室内的照度、室外空气的温度及室外空气的湿度这样的室内和室外的环境信息,并且读取通过遥控器9设定的设定信息,获取与基准温度相关的补正信息以及清醒强度的设定信息等。接着,进入步骤H-ST04。
在步骤H-ST04中,使用热舒适性自适应模型的信息,基于在步骤H-ST03中获取的室外空气温度,推测室内人员101的舒适温度(中性温度),将推测出的舒适温度设定为基准温度。此时,在已通过遥控器9设定了与基准温度相关的补正信息的情况下,基于该补正信息补正基准温度。
接着,进入步骤H-ST05。在步骤H-ST05中,基于在步骤H-ST04中设定好的基准温度和在步骤H-ST03中获取的清醒强度的设定信息,来设定第一目标温度和第二目标温度。需要说明的是,基于在步骤H-ST03中获取的清醒强度的设定信息来决定第一动作的执行时间ΔTL和第二动作的执行时间ΔTH。接着,进入步骤H-ST06。
在步骤H-ST06中,开始执行第一动作,将目标温度设定为第一目标温度。
此时,无论将清醒强度设定为哪种强度,第一目标温度都比基准温度低1.5℃以上,所以在开始执行第一动作之后,由室内空气温度传感器45检测到的温度立即就会比第一目标温度高第一温度(1.0℃)以上,室内热交换器37停止。这样一来,因为室内空气的温度迅速下降而低于基准温度,所以能够使室内空气的温度达到令室内人员101感到凉爽的温度,从而对室内人员101给予与清醒强度的设定相对应的凉爽的刺激。在该第一动作中,当由室内空气温度传感器45检测到的温度达到第一目标温度时,让室内热交换器37重新开始运转。接着,进入步骤H-ST07。
在步骤H-ST07中,判断是否在遥控器9上按下集中按钮而解除了注意力维持模式。当在该步骤H-ST07中判断为解除了注意力维持模式时(判断为“是”时),则结束注意力维持模式,转移到正常运转模式。当在该步骤H-ST07中判断为没有解除注意力维持模式时(判断为“否”时),则进入步骤H-ST08。
在步骤H-ST08中,判断是否经过了第一动作的执行时间ΔTL。当在该步骤H-ST08中判断为没有经过第一动作的执行时间ΔTL时(判断为“否”时),则返回步骤H-ST07,反复进行步骤H-ST07和步骤H-ST08,直到解除注意力维持模式或经过第一动作的执行时间ΔTL为止。当在步骤H-ST08中判断为经过了第一动作的执行时间ΔTL时(判断为“是”时),则进入步骤H-ST09。
在步骤H-ST09中,取代第一动作而开始执行第二动作,将目标温度从第一目标温度分阶段地提高到第二目标温度。
此时,当将目标温度从第一目标温度突然提高到第二目标温度时,则由于空调系统进行制热运转,因而室内空气的温度急剧上升。如果室内空气的温度急剧上升,则室内人员101的血管扩张,促进身体放热,因此深部体温下降,室内人员101容易感到睡意。在该第一实施方式中,如上所述,因为将目标温度从第一目标温度以每隔30秒提高0.5℃的方式逐渐提高到第二目标温度,所以能够抑制室内人员101的血管扩张,从而能够避免室内人员101容易感到睡意。
接着,在步骤H-ST10中,判断是否在遥控器9上再次按下集中按钮而解除了注意力维持模式。当在该步骤H-ST10中判断为解除了注意力维持模式时(判断为“是”时),则结束注意力维持模式,转移到正常运转模式。当在该步骤H-ST10中判断为没有解除注意力维持模式时(判断为“否”时),则进入步骤H-ST11。
在步骤H-ST11中,判断是否经过了第二动作的执行时间ΔTH。当在该步骤H-ST11中判断为没有经过第二动作的执行时间ΔTH时(判断为“否”时),则返回步骤H-ST10,反复进行步骤H-ST10和步骤H-ST11,直到解除注意力维持模式或经过第二动作的执行时间ΔTH为止。当在步骤H-ST11中判断为经过了第二动作的执行时间ΔTH时(判断为“是”时),则返回步骤H-ST06,取代第二动作而开始执行第一动作。
在该制热运转时的注意力维持模式下第一动作和第二动作的反复运转一直执行到室内人员101操作遥控器9解除该注意力维持模式为止。根据执行该注意力维持模式,一边向室内人员周期性地给予凉爽的刺激,一边将室内空气在第一动作和第二动作各进行一次的一个循环的总期间内的平均温度调节成舒适温度。
如上所述,在制冷运转时的注意力维持模式下进行的控制和在制热运转时的注意力维持模式下进行的控制几乎相同,而不同点在于:在制冷运转时的注意力维持模式下的第一动作是在不让室内热交换器37停止的情况下进行的,相对于此,在制热运转时的注意力维持模式下的第一动作是在让室内热交换器37停止的情况下进行的;以及,在制冷运转时的注意力维持模式下的第二动作是为了避免室内热交换器37停止而将目标温度逐渐提高的,相对于此,在制热运转时的注意力维持模式下的第二动作是为了避免室内人员101容易感到睡意而将目标温度逐渐提高的。
<换气控制>
按照图7所示的流程图执行空调系统1的换气控制。
如图5~图7所示,在制冷运转时的注意力维持模式下的步骤C-ST02或制热运转时的注意力维持模式下的步骤H-ST02中,在开始执行注意力维持模式时一起执行了换气控制。
如图7所示,首先,在步骤V-ST01中,判断是否在遥控器9上再次按下集中按钮而解除了注意力维持模式。当在该步骤V-ST01中判断为解除了注意力维持模式时(判断为“是”时),则结束注意力维持模式,转移到正常运转模式(参照图5和图6)。当在该步骤V-ST01中判断为没有解除注意力维持模式时(判断为“否”时),则进入步骤V-ST02。
在步骤V-ST02中,获取由CO2浓度传感器49检测到的室内空气的CO2浓度。接着,进入步骤V-ST03。
在步骤V-ST03中,判断室内空气的CO2浓度是否在第一基准值(1000ppm)以上。当在该步骤V-ST03中判断为室内空气的CO2浓度低于第一基准值(1000ppm)时(判断为“否”时),则返回步骤V-ST01,反复进行步骤V-ST01~步骤V-ST03,直到解除注意力维持模式或室内空气的CO2浓度达到第一基准值(1000ppm)以上为止。
当在步骤V-ST03中判断为室内空气的CO2浓度在第一基准值(1000ppm)以上时(判断为“是”时),则进入步骤V-ST04。在步骤V-ST04中,让换气装置7开始运转。接着,进入步骤V-ST05。
在步骤V-ST05中,判断是否在遥控器9上再次按下集中按钮而解除了注意力维持模式。当在该步骤V-ST05中判断为解除了注意力维持模式时(判断为“是”时),则结束注意力维持模式,转移到正常运转模式(参照图5和图6)。当在该步骤V-ST05中判断为没有解除注意力维持模式时(判断为“否”时),则进入步骤V-ST06。
在步骤V-ST06中,获取由CO2浓度传感器49检测到的室内空气的CO2浓度。接着,进入步骤V-ST07。
在步骤V-ST07中,判断室内空气的CO2浓度是否低于第二基准值(900ppm)。当在该步骤V-ST07中判断为室内空气的CO2浓度在第二基准值(900ppm)以上时(判断为“否”时),则返回步骤V-ST04,反复进行步骤V-ST04~步骤V-ST07,直到解除注意力维持模式或室内空气的CO2浓度低于第二基准值(900ppm)为止。
当在步骤V-ST07中判断为室内空气的CO2浓度低于第二基准值(900ppm)时(判断为“是”时),则返回而再次进行步骤V-ST01以后的步骤。
如上所述,执行换气控制直到解除注意力维持模式为止。根据执行该换气控制,室内空气的CO2浓度被调节到第一基准值(1000ppm)以下。
-第一实施方式的效果-
在该第一实施方式的空调系统1中,在第一动作中将目标温度以相对较短的时间降低到第一目标温度。这样一来,因为室内空气的温度迅速下降而低于基准温度,所以能够使室内温度达到令室内人员101感到凉爽的温度,从而对室内人员101给予凉爽的刺激。由此,能够防止室内人员101感到睡意。
在该第一实施方式的空调系统1中,在第二动作中花费相对较长的时间将目标温度分阶段地提高到第二目标温度。这样一来,因为室内空气的温度缓慢上升而高于基准温度,所以能够减轻因温度变化而给室内人员101带来的负担,同时能够使室内空气在进行第一动作的期间和进行第二动作的期间的总期间内的平均温度达到令室内人员101感到舒适的温度。由此,能够实现令室内人员101感到舒适的室内环境。
因此,根据该第一实施方式的空调系统1,能够防止室内人员感到睡意,同时能够实现舒适的室内环境。其结果是,能够维持室内人员的注意力,抑制室内人员的作业效率降低。
在该第一实施方式的空调系统1中,在制冷运转时,当由室内空气温度传感器45检测到的温度比目标温度低了规定温度以上时,就使室内热交换器37停止。不过,在第二动作中,因为将目标温度从第一目标温度分阶段地提高到第二目标温度,所以在制冷运转时,由室内空气温度传感器45检测到的温度难以比目标温度低规定温度以上,从而能够抑制室内热交换器37停止。由此,能够避免因室内空气的湿度上升而令室内人员101感到不快。
在该第一实施方式的空调系统1中,在制热运转时,当由室内空气温度传感器45检测到的温度比目标温度高了第一温度(1.0℃)以上时,就使室内热交换器37停止。在第一动作中,因为在开始进行第一动作之后立即将目标温度降低到第一目标温度,所以第一目标温度设定为比由室内空气温度传感器45检测到的温度低第一温度(1.0℃)以上。由此,因为在开始进行第一动作之后不久室内热交换器37就会停止,所以有助于使室内空气的温度迅速下降。
在该第一实施方式的空调系统1中,使用表示舒适温度与室外空气温度之间的关系的关系信息,根据由室外空气温度传感器45检测到的室外空气温度推测舒适温度,将推测出的舒适温度用作基准温度。这样一来,能够将通常的舒适温度推测为令室内人员101感到舒适的室内空气的温度,并将其设为基准温度。这适于通过在第一模式下对室内空气的温度进行控制,来实现令非特定的室内人员101感到舒适的室内环境。
在该第一实施方式的空调系统1中,基于与室内人员101的个体差异相关的信息来补正基准温度。这样一来,因为与室内人员101的个体差异相关的信息被反映到基准温度中,所以能够将令室内人员101感到舒适的室内空气的温度高精度地用作基准温度。这有利于通过在注意力维持模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
在该第一实施方式的空调系统1中,第一动作的目标温度和执行时间、以及第二动作的目标温度和执行时间按照上述关系式(1)决定,而使得室内空气在进行第一动作的一个期间和进行第二动作的一个期间的总期间内的平均温度达到基准温度。这适于通过在注意力维持模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
在该第一实施方式的空调系统1中,当由CO2浓度传感器49检测到的室内空气的CO2浓度达到第一基准值(1000ppm)以上时,让换气装置7运转。这样一来,因为可根据需要更换室内空气而使得室内的CO2浓度下降,所以适于实现令室内人员101感到舒适的室内环境。
(第二实施方式)
下面说明第二实施方式。
第二实施方式的空调系统1在第一实施方式的空调系统1的基础上,改变了基准温度的设定方法。这里,对该第二实施方式的空调系统1与第一实施方式的空调系统1的不同点进行说明。
空调系统1使用人工智能(AI:Artificial Intelligence)来设定基准温度。
在空调系统1的存储部59中,存储有基于与环境信息相关的参数和与室内人员101的冷热感相关的参数而生成的学习模型,该环境信息包括室内空气的温度、室内空气的湿度、室内的照度、室外空气的温度以及室外空气的湿度中的至少一者。在该第二实施方式中,学习模型的与环境信息相关的参数中包括与室内空气的温度、室内空气的湿度、室内的照度、室外空气的温度以及室外空气的湿度相关的参数。
学习模型也可以通过如下独立学习来生成:在室内人员101利用空调系统1时,通过操作遥控器9输入室内人员101的冷热感信息,将该信息输入时的室内空气温度传感器45、室内空气湿度传感器47、照度传感器51、室外空气温度传感器53以及室外空气湿度传感器55的各检测值作为环境信息的参数,而与室内人员101的冷热感相关的参数建立关联。
学习模型也可以通过如下学习来生成:将在经由网络与多个空调系统1连接的服务器中从利用各空调系统1的室内人员101处收集到的室内空气温度传感器45、室内空气湿度传感器47、照度传感器51、室外空气温度传感器53以及室外空气湿度传感器55的各检测值、和与室内人员101的冷热感相关的信息分别作为环境信息的参数和与室内人员101对该环境的冷热感相关的参数来建立关联。
控制部11使用上述学习模型,基于由室内空气温度传感器45、室内空气湿度传感器47、照度传感器51、室外空气温度传感器53以及室外空气湿度传感器55检测到的室内空气的温度、室内空气的湿度、室内的照度、室外空气的温度以及室外空气的湿度,来推测舒适温度。控制部11将通过学习模型推测出的舒适温度设定为基准温度。控制部11根据需要基于与基准温度相关的补正信息来补正基准温度。
-第二实施方式的效果-
在该第二实施方式的空调系统1中,通过将环境信息与室内人员101的冷热感关联起来的学习模型来推测用作基准温度的舒适温度。这样一来,能够高精度地推测令室内人员101感到舒适的室内空气的温度以作为舒适温度,并将其设为基准温度。这有利于通过在注意力维持模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
(其他实施方式)
关于上述第一实施方式和上述第二实施方式,也可以采用以下结构。
-第一变形例-
室内空气温度传感器45也可以设置在遥控器9上。这样一来,由于遥控器9大多放置在室内人员101的附近,所以能够检测室内人员101附近的室内空气的温度。这有利于通过在注意力维持模式下对室内空气的温度进行控制,来实现令室内人员101感到舒适的室内环境。
需要说明的是,室内空气温度传感器45也可以不设置在遥控器9上,而将其设置在与室内机组5不为一体的部件上。此外,除了室内空气温度传感器45以外,室内空气湿度传感器47、照度传感器51、CO2浓度传感器49也可以设置在遥控器9等与室内机组5不为一体的部件上。
-第二变形例-
可以由经由网络与第一实施方式的空调系统1连接的服务器保有在该空调系统1中用于设定基准温度的热舒适性自适应模型等关系信息,也可以由经由网络与第二实施方式的空调系统1连接的服务器保有在该空调系统1中用于设定基准温度的学习模型。在此情况下,空调系统1只要向服务器请求提供关系信息、学习模型的信息,并从服务器获取设定基准温度所需的信息即可。
以上对实施方式和变形例进行了说明,但应理解的是:在不脱离权利要求书的主旨和范围的情况下,可以对其方式、具体情况进行各种改变。此外,只要不影响本公开的对象的功能,还可以对上述实施方式和变形例适当地进行组合和替换。
例如,以空调系统1由室外机组3和室内机组5采用一对一的成对形式构成的情况为例进行了说明,但并不限于此。空调系统1也可以是相对于室外机组3设置多台室内机组5的多联式空调系统。
在注意力维持模式的第一动作中,在开始第一动作之后立即将目标温度降低到第一目标温度,但并不限于此。在注意力维持模式的第一动作中,也可以不在开始第一动作之后立即将目标温度降低到第一目标温度,而只要在第一动作中将目标温度降低到第一目标温度为止的时间比在第二动作中将目标温度提高到第二目标温度为止的时间短即可。
在执行注意力维持模式时的换气控制中,作为让换气装置7运转的CO2浓度的第一基准值例举出1000ppm,并且作为让换气装置7停止的CO2浓度的第二基准值例举出900ppm,但并不限于此。将第一基准值设定为1000ppm、将第二基准值设定为900ppm只不过是为了进行换气控制所设定的一个示例,上述第一基准值和第二基准值只要是适于实现令室内人员感到舒适的室内环境,则可以设定成任意的值。
-产业实用性-
综上所述,本公开对于空调系统是有用的。
-符号说明-
1 空调系统
3 室外机组
5 室内机组
7 换气装置
9 遥控器(输入部)
11 控制部
13 连接管道
15 连接管道
17 制冷剂回路
19 室外回路
21 室内回路
23 压缩机
25 四通换向阀
27 室外热交换器
29 膨胀阀
31 室外风扇
33 制冷剂管道
35 室外风扇电机
37 室内热交换器(温度调节部)
39 室内风扇
41 室内风扇电机
43 换气扇
45 室内空气温度传感器(室内空气温度检测部)
47 室内空气湿度传感器
49 CO2浓度传感器(二氧化碳浓度检测部)
51 照度传感器
53 室外空气温度传感器(室外空气温度检测部)
55 室外空气湿度传感器
57 中央处理器
59 存储部
101 室内人员
103 桌子

Claims (10)

1.一种空调系统,其包括温度调节部(37)、室内空气温度检测部(45)以及控制部(11),所述温度调节部(37)调节室内空气的温度,所述室内空气温度检测部(45)检测室内空气的温度,所述控制部(11)控制所述温度调节部(37),使得由所述室内空气温度检测部(45)检测到的温度接近目标温度,其特征在于:
所述控制部(11)执行第一模式,在所述第一模式下,依次进行至少各一次第一动作和第二动作,在所述第一动作中,将所述目标温度降低到比规定的基准温度低的第一目标温度,在所述第二动作中,将所述目标温度提高到比所述基准温度高的第二目标温度,
在所述第二动作中,将所述目标温度从所述第一目标温度逐渐提高到所述第二目标温度,
在所述第一动作中将所述目标温度降低到所述第一目标温度为止的时间比在所述第二动作中将所述目标温度提高到所述第二目标温度为止的时间短。
2.根据权利要求1所述的空调系统,其特征在于:
所述温度调节部(37)由连接在制冷剂回路(17)中的室内热交换器(37)构成,
在所述室内热交换器(37)作为蒸发器发挥作用的制冷运转时,所述控制部(11)执行所述第一模式,
当由所述室内空气温度检测部(45)检测到的温度比所述目标温度低了规定温度以上时,所述控制部(11)使所述室内热交换器(37)停止。
3.根据权利要求1所述的空调系统,其特征在于:
所述温度调节部(37)由连接在制冷剂回路(17)中的室内热交换器(37)构成,
在所述室内热交换器(37)作为散热器发挥作用的制热运转时,所述控制部(11)执行所述第一模式,
当由所述室内空气温度检测部(45)检测到的温度比所述目标温度高了规定温度以上时,所述控制部(11)使所述室内热交换器(37)停止。
4.根据权利要求1到3中任一项权利要求所述的空调系统,其特征在于:
所述控制部(11)推测室内人员(101)感到舒适的室内空气的舒适温度,
所述基准温度是由所述控制部(11)推测出的所述舒适温度。
5.根据权利要求4所述的空调系统,其特征在于:
所述控制部(11)根据学习模型来推测所述舒适温度,所述学习模型是基于与环境信息相关的参数和与室内人员(101)的冷热感相关的参数而生成的,所述环境信息包括室内空气的温度、室内空气的湿度、室内的照度、室外空气的温度以及室外空气的湿度中的至少一者。
6.根据权利要求4所述的空调系统,其特征在于:
所述空调系统包括室外空气温度检测部(53)和存储部(59),
所述室外空气温度检测部(53)检测室外空气温度,
所述存储部(59)存储有表示所述舒适温度与室外空气温度之间的关系的关系信息,
所述控制部(11)使用存储在所述存储部(59)中的所述关系信息,基于由所述室外空气温度检测部(53)检测到的室外空气温度推测所述舒适温度。
7.根据权利要求4到6中任一项权利要求所述的空调系统,其特征在于:
所述空调系统包括输入部(9),与室内人员(101)的个体差异相关的信息被输入所述输入部(9),
所述控制部(11)基于输入到所述输入部(9)的信息来补正所述基准温度。
8.根据权利要求1到7中任一项权利要求所述的空调系统,其特征在于:
所述空调系统包括室内机组(5),所述室内机组(5)具有所述温度调节部(37),
所述室内空气温度检测部(45)设置在与所述室内机组(5)不为一体的部件上。
9.根据权利要求1到8中任一项权利要求所述的空调系统,其特征在于:
在将所述基准温度设为Ta、将所述目标温度设为Ts时,
在进行所述第一动作的一个期间内的所述基准温度与所述目标温度之间的温度差(Ta-Ts)的累计值、和在进行所述第二动作的一个期间内的所述目标温度与所述基准温度之间的温度差(Ts-Ta)的累计值相等。
10.根据权利要求1到9中任一项权利要求所述的空调系统,其特征在于:
所述空调系统包括换气装置(7)和二氧化碳浓度检测部(49),
所述换气装置(7)对室内进行换气,
所述二氧化碳浓度检测部(49)检测室内的二氧化碳浓度,
当由所述二氧化碳浓度检测部(49)检测到的二氧化碳浓度达到规定值以上时,所述控制部(11)让所述换气装置(7)运转。
CN202080021472.9A 2019-04-22 2020-03-19 空调系统 Active CN113574323B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019080991A JP6939841B2 (ja) 2019-04-22 2019-04-22 空調システム
JP2019-080991 2019-04-22
PCT/JP2020/012271 WO2020217799A1 (ja) 2019-04-22 2020-03-19 空調システム

Publications (2)

Publication Number Publication Date
CN113574323A true CN113574323A (zh) 2021-10-29
CN113574323B CN113574323B (zh) 2023-05-16

Family

ID=72937017

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080021472.9A Active CN113574323B (zh) 2019-04-22 2020-03-19 空调系统

Country Status (5)

Country Link
US (1) US20210404691A1 (zh)
EP (1) EP3929497A4 (zh)
JP (1) JP6939841B2 (zh)
CN (1) CN113574323B (zh)
WO (1) WO2020217799A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10678279B2 (en) 2012-08-01 2020-06-09 Tendril Oe, Llc Optimization of energy use through model-based simulations
US9310815B2 (en) 2013-02-12 2016-04-12 Tendril Networks, Inc. Setpoint adjustment-based duty cycling
CA3147754A1 (en) * 2019-07-24 2021-01-28 Adriana KNATCHBULL-HUGESSEN Adaptive thermal comfort learning for optimized hvac control
CN112283902A (zh) * 2020-10-30 2021-01-29 海信(广东)空调有限公司 空调器控制方法和空调器
US11940169B2 (en) * 2022-01-05 2024-03-26 Haier Us Appliance Solutions, Inc. Air conditioner with thermostat setpoint estimation
US20230296277A1 (en) * 2022-03-21 2023-09-21 Lennox Industries Inc. Hvac system with improved operation of a variable speed compressor during a peak demand response
JP7249068B1 (ja) * 2022-03-28 2023-03-30 cynaps株式会社 換気制御システム

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074713A (ja) * 1993-06-16 1995-01-10 Mitsubishi Electric Corp 空気調和機の室温制御装置
JPH0979655A (ja) * 1995-09-13 1997-03-28 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2004092918A (ja) * 2002-08-29 2004-03-25 Toshiba Kyaria Kk 空気調和機
JP2005069560A (ja) * 2003-08-25 2005-03-17 Nakai:Kk 汎用型温度調整ユニット
JP2007265377A (ja) * 2006-03-01 2007-10-11 Toyota Central Res & Dev Lab Inc 運転者状態判定装置及び運転支援装置
CN201102456Y (zh) * 2007-10-31 2008-08-20 冯荣 驾驶员疲劳行车刺激装置
US20080295531A1 (en) * 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd. Method to control sleep operation of air conditioner
JP2009202841A (ja) * 2008-02-29 2009-09-10 Denso Corp 運転者警告システム
CN101535733A (zh) * 2006-11-10 2009-09-16 大金工业株式会社 空调机及室内湿度控制方法
JP2011189888A (ja) * 2010-03-16 2011-09-29 Aisin Seiki Co Ltd 車両用香り供給装置
JP2012001056A (ja) * 2010-06-15 2012-01-05 Nissan Motor Co Ltd 覚醒誘導装置
JP2012128787A (ja) * 2010-12-17 2012-07-05 Nissan Motor Co Ltd 運転支援装置および運転支援方法
CN105241019A (zh) * 2015-10-29 2016-01-13 青岛海尔空调器有限总公司 换新风控制方法
US20160161137A1 (en) * 2014-12-04 2016-06-09 Delta Electronics, Inc. Controlling system for environmental comfort degree and controlling method of the controlling system
JP2016161165A (ja) * 2015-02-27 2016-09-05 ダイキン工業株式会社 室内環境制御システム
CN107743569A (zh) * 2015-06-08 2018-02-27 开利公司 Hvac系统启动/停止控制
CN108361927A (zh) * 2018-02-08 2018-08-03 广东美的暖通设备有限公司 一种基于机器学习的空调器控制方法、装置以及空调器
JP2018144655A (ja) * 2017-03-06 2018-09-20 株式会社デンソー 眠気抑制装置
JP2019008427A (ja) * 2017-06-21 2019-01-17 株式会社デンソー 覚醒維持装置
JP2019043301A (ja) * 2017-08-31 2019-03-22 株式会社デンソー 覚醒維持装置及び制御プログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157550A (ja) * 1988-12-12 1990-06-18 Mitsubishi Electric Corp 空気調和機
JP3189410B2 (ja) * 1992-09-02 2001-07-16 三菱電機株式会社 冷暖房装置
JPH07103542A (ja) * 1993-10-06 1995-04-18 Daikin Plant Kk 温度脈動形空気調和装置
JP2001355893A (ja) * 2000-06-14 2001-12-26 Sanyo Electric Co Ltd 空気調和機およびその制御方法
JP4479783B2 (ja) 2007-11-28 2010-06-09 ダイキン工業株式会社 空気調和機
JP2010096382A (ja) * 2008-10-15 2010-04-30 Panasonic Corp 換気装置
KR20120044593A (ko) * 2010-10-28 2012-05-08 엘지전자 주식회사 공기조화장치 및 공기조화장치의 제어방법
KR102157072B1 (ko) * 2013-12-03 2020-09-17 삼성전자 주식회사 공조장치 또는 공조시스템의 온도 제어장치 및 방법
KR101611738B1 (ko) * 2014-10-16 2016-04-11 엘지전자 주식회사 공기조화기 및 그 제어방법
SE541469C2 (en) * 2015-11-20 2019-10-08 Sens Geoenergy Storage Ab Methods and systems for heat pumping
JP2018056012A (ja) * 2016-09-29 2018-04-05 パナソニック株式会社 環境制御システム、環境制御方法及びプログラム
CN111033136B (zh) * 2017-08-28 2022-01-14 松下知识产权经营株式会社 空气环境控制系统、空气环境控制装置及空气环境控制方法
WO2019199593A1 (en) * 2018-04-09 2019-10-17 Carrier Corporation Portable user profile for smart buildings
US11255560B2 (en) * 2018-06-20 2022-02-22 Mitsubishi Electric Corporation Air-conditioning apparatus and method of determining operation condition
US11927356B2 (en) * 2019-04-18 2024-03-12 Mitsubishi Electric Corporation Controller of air conditioning apparatus, outdoor unit, branch unit, heat source unit, and air conditioning apparatus

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074713A (ja) * 1993-06-16 1995-01-10 Mitsubishi Electric Corp 空気調和機の室温制御装置
JPH0979655A (ja) * 1995-09-13 1997-03-28 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JP2004092918A (ja) * 2002-08-29 2004-03-25 Toshiba Kyaria Kk 空気調和機
JP2005069560A (ja) * 2003-08-25 2005-03-17 Nakai:Kk 汎用型温度調整ユニット
JP2007265377A (ja) * 2006-03-01 2007-10-11 Toyota Central Res & Dev Lab Inc 運転者状態判定装置及び運転支援装置
CN101535733A (zh) * 2006-11-10 2009-09-16 大金工业株式会社 空调机及室内湿度控制方法
US20080295531A1 (en) * 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd. Method to control sleep operation of air conditioner
CN201102456Y (zh) * 2007-10-31 2008-08-20 冯荣 驾驶员疲劳行车刺激装置
JP2009202841A (ja) * 2008-02-29 2009-09-10 Denso Corp 運転者警告システム
JP2011189888A (ja) * 2010-03-16 2011-09-29 Aisin Seiki Co Ltd 車両用香り供給装置
JP2012001056A (ja) * 2010-06-15 2012-01-05 Nissan Motor Co Ltd 覚醒誘導装置
JP2012128787A (ja) * 2010-12-17 2012-07-05 Nissan Motor Co Ltd 運転支援装置および運転支援方法
US20160161137A1 (en) * 2014-12-04 2016-06-09 Delta Electronics, Inc. Controlling system for environmental comfort degree and controlling method of the controlling system
JP2016161165A (ja) * 2015-02-27 2016-09-05 ダイキン工業株式会社 室内環境制御システム
CN107743569A (zh) * 2015-06-08 2018-02-27 开利公司 Hvac系统启动/停止控制
CN105241019A (zh) * 2015-10-29 2016-01-13 青岛海尔空调器有限总公司 换新风控制方法
JP2018144655A (ja) * 2017-03-06 2018-09-20 株式会社デンソー 眠気抑制装置
JP2019008427A (ja) * 2017-06-21 2019-01-17 株式会社デンソー 覚醒維持装置
JP2019043301A (ja) * 2017-08-31 2019-03-22 株式会社デンソー 覚醒維持装置及び制御プログラム
CN108361927A (zh) * 2018-02-08 2018-08-03 广东美的暖通设备有限公司 一种基于机器学习的空调器控制方法、装置以及空调器

Also Published As

Publication number Publication date
EP3929497A1 (en) 2021-12-29
WO2020217799A1 (ja) 2020-10-29
EP3929497A4 (en) 2022-11-30
US20210404691A1 (en) 2021-12-30
JP2020176797A (ja) 2020-10-29
CN113574323B (zh) 2023-05-16
JP6939841B2 (ja) 2021-09-22

Similar Documents

Publication Publication Date Title
CN113574323A (zh) 空调系统
CN112567183B (zh) 空调装置、控制装置、空气调节方法以及存储介质
US8770492B2 (en) Air conditioner and controlling method thereof
KR101502096B1 (ko) 공기 조화기의 제어 방법
JP4957342B2 (ja) 空気調和システム及び空調管理装置
CN109855253B (zh) 用于空调器的控制方法
JP6832985B2 (ja) 空調装置
JPWO2018190334A1 (ja) 空調装置、制御装置、空調方法及びプログラム
CN111771089A (zh) 空调机
JP6701449B1 (ja) 空調装置、制御装置、空調方法及びプログラム
JP6698947B1 (ja) 空調装置、制御装置、空調方法及びプログラム
JP6932264B2 (ja) 空調装置、制御装置、空調方法及びプログラム
CN113677937B (zh) 空调系统
JP3239110B2 (ja) 空気調和機の制御方法
JP4592599B2 (ja) 空気調和機
JP7038835B2 (ja) 空調装置、制御装置、空調方法及びプログラム
JP2012007887A (ja) 空気調和システム及び空調管理装置
JP6537705B2 (ja) 制御装置、空調システム、空調方法及びプログラム
JPWO2020035907A1 (ja) 空調装置、制御装置、空調方法及びプログラム
KR20080001293A (ko) 공기 조화기의 슬립 모드 제어 장치 및 방법
JP2004353973A (ja) 変動パターンに基づく空調制御装置および方法
KR101143480B1 (ko) 무선통신을 활용한 센서기반 실내환경 진단 및 제어 장치
JPH07120043A (ja) 空気調和機
JPWO2020035909A1 (ja) 空調装置、制御装置、空調方法及びプログラム
KR100747723B1 (ko) 공기조화기 및 그 제어 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant