CN113552531A - 基于三极化嵌套阵列的部分极化信号参数估计方法 - Google Patents
基于三极化嵌套阵列的部分极化信号参数估计方法 Download PDFInfo
- Publication number
- CN113552531A CN113552531A CN202110718742.8A CN202110718742A CN113552531A CN 113552531 A CN113552531 A CN 113552531A CN 202110718742 A CN202110718742 A CN 202110718742A CN 113552531 A CN113552531 A CN 113552531A
- Authority
- CN
- China
- Prior art keywords
- polarization
- signal
- array
- vector
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 132
- 238000000034 method Methods 0.000 title claims abstract description 55
- 239000011159 matrix material Substances 0.000 claims abstract description 68
- 238000005457 optimization Methods 0.000 claims abstract description 9
- 239000013598 vector Substances 0.000 claims description 56
- 238000003491 array Methods 0.000 claims description 8
- 238000011084 recovery Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 6
- 238000012935 Averaging Methods 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- 238000004088 simulation Methods 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000000342 Monte Carlo simulation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/02—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
- G01S3/14—Systems for determining direction or deviation from predetermined direction
- G01S3/146—Systems for determining direction or deviation from predetermined direction by comparing linear polarisation components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Data Mining & Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Complex Calculations (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
本发明公开了一种基于三极化嵌套阵列的部分极化信号参数估计方法,主要用于解决欠定条件下部分极化信号波达方向及极化参数估计问题。其实现步骤是:根据优化法则布置三极化嵌套阵列;构建三极化阵列的部分极化信号接收模型;利用子协方差矩阵相加构造虚拟均匀线阵;利用子协方差矩阵相加构造虚拟协阵输出;利用Toeplitz方法恢复矩阵的秩;估计信号波达方向;估计噪声方差;估计信号极化参数。该方法优势:采用的三极化阵列及子协方差矩阵相加方法可累积信号所有极化分量的功率;采用了优化的嵌套阵列,可在欠定条件下估计噪声方差,从而实现极化参数的无偏估计;除了能估计信号的波达方向和极化度,还能估计极化指向角和极化椭圆率角。
Description
技术领域
本发明属于信号处理技术领域,特别涉及对部分极化信号的波达方向和极化参数的估计,具体是一种基于三极化嵌套阵列的部分极化信号参数估计方法。
背景技术
阵列信号处理是利用传感器阵列来进行高维信号处理的技术,广泛应用于雷达、通信、声呐及医学诊断等军用和民用技术领域。嵌套阵列由于具备欠定估计的能力,即估计的信号个数大于阵元数,且其虚拟协阵是均匀线阵,而受到学者的广泛关注。另外,由于常规的完全极化信号只属于部分极化信号的一种特例,研究部分极化信号的参数估计更具普遍意义。因此,本专利关注的是利用嵌套阵列进行部分极化信号的参数估计,涉及的参数包含波达方向和极化参数。
为了能够估计信号的极化参数,阵列必须包含多极化传感器,形成极化敏感阵列。文献:He J,Zhang Z,Shu T,et al.Direction Finding of Multiple PartiallyPolarized Signals With a Nested Cross-Diople Array[J].IEEE Antennas&WirelessPropagation Letters,2017,16:1679-1682提出一种基于正交子空间的方法(简称正交子空间法)来估计多个不同部分极化信号的波达方向。该方法采用的是嵌套阵,每个阵元为双极化阵元。但该方法没有给出估计信号极化参数的方法。文献:Shu T,He J,Han X,etal.Joint DOA and Degree-of-Polarization Estimation of Partially-PolarizedSignals Using Nested Arrays[J].IEEE Communications Letters,2020,24(10):2182-2186基于同上的阵型,提出一种四元数方法(简称四元数法)。该方法根据四元数理论,不仅能估计信号的波达方向还可以估计极化参数中的极化度。但以上方法存在以下问题:第一,采用的都是双极化阵列,无法累积信号所有极化分量的功率;第二,由于欠定条件下无法估计噪声方差,导致四元数法估计的极化度是有偏的;第三,以上两种方法都无法估计信号极化参数中的极化指向角和极化椭圆率角。
发明内容
本发明的目的在于针对上述现有技术的不足,提供一种基于三极化嵌套阵列的部分极化信号参数估计方法。
本发明是通过以下技术方案来实现:
步骤(1)根据优化法则布置三极化嵌套阵列,总阵元个数L=L1+L2,L1和L2分别为嵌套阵两个子阵列的阵元个数;
步骤(2)构建三极化阵列的部分极化信号接收模型:K个来自θ=[θ1,θ2,…,θK]方向的窄带不相关信号沿y-z平面入射到三极化嵌套阵列上,θk∈[0,π]为以逆时针方向从y轴正半轴旋转到各个入射信号方向的夹角,k=1,2,...,K;
阵列在第n个快拍时所有三极化阵元的接收数据用向量形式表示为:n=1,2,...,N,N表示采样的快拍数,(·)T表示转置操作,表示复数域,ηl[n]为第l个阵元在第n个快拍时接收的数据,l=1,2,...,L;极化阵列流型表示Kronecker积,第k个信号的导向矢量a(θk)=[a1(θk),a2(θk),…,aL(θk)]T,al(θk)表示第k个信号在第l个阵元处的响应,极化响应矩阵第n个快拍的信号矢量sk[n]表示第k个信号在第n个快拍时水平和垂直极化分量构成的向量;第n个快拍的噪声矢量υl[n]表示第l个阵元在第n个快拍时的噪声向量;
步骤(3)利用子协方差矩阵相加构造虚拟协阵输出;
步骤(4)利用Toeplitz方法恢复矩阵的秩;
步骤(7)估计信号极化参数:
结合已估计出的和重构出各个信号的协方差矩阵k=1,2,...,K,即恢复出中的各个参数rk,HH、rk,VV和rk,HV,rk,HH、rk,VV分别表示第k个信号水平和垂直极化分量的功率,rk,HV表示第k个信号的水平和垂直极化分量的相关系数;恢复的rk,HH构成向量rHH,恢复的rk,VV构成向量rVV,恢复的rk,HV构成向量rHV,则重构部分极化信号的协方差矩阵表示为:
解方程[G(αk)W(βk)]Hξk,2=0,得到信号的极化指向角αk和极化椭圆率角βk的估计值。
进一步,步骤(1)具体是:在三维直角坐标中,沿y轴布置嵌套阵列,满足优化法则L1<(L2+1)/(L2-2);各个阵元的位置构成向量μd=[1,2,…,L1,L1+1,2(L1+1),…,L2(L1+1)]Td,d表示相邻阵元的最小间距,取d=λ/2,λ为信号波长;每个阵元包含三个极化方向,分别为x方向极化、y方向极化和z方向极化,每个极化方向有单独的输出,即每个阵元有三个输出端口。
al(θk)=exp[j(2πμldcosθk)/λ],μl表示向量μ的第l个元素;
sk[n]=[sk,H[n],sk,V[n]]T,包含第k个信号的水平和垂直极化分量;
υl[n]=[υl,x[n],υl,y[n],υl,z[n]]T,包含第l个阵元在x、y和z方向极化的输出包含的噪声,满足其中σ2表示噪声方差,I3表示3阶单位矩阵,表示均值为μ、方差为σ2的复高斯分布;
再进一步,步骤(3)具体是:
将各个三极化阵元的x、y和z方向极化输出分别抽取出来,并按顺序构成x方向极化输出向量x[n]、y方向极化输出向量y[n]及z方向极化输出向量z[n],表示为:其中,η1:3:3L-2[n]表示由η[n]的第1,4,7,…,3L-2个元素构成的向量,其余表示类似;
定义辅助向量vec(·)表示将矩阵按列向量化;将μv中的元素从小到大排列并去除重复的元素以保证每个元素只出现一次,得到一个连续整数序列,构成长度为L′=2L2(L1+1)-1的列向量μc;计算转换矩阵满足T的第i行第j列的元素i=1,2,...,L′,j=1,2,...,L2;其中,表示实数域,[·]i表示取向量的第i个元素;δi,j为Kronecker Delta函数,只有当i=j时,δi,j=1,否则δi,j=0;虚拟协阵的输出为:
又进一步,其特征在于,步骤(4)中Toeplitz矩阵表示为RT的信号子空间与V=[v(θ1),v(θ2),…,v(θK)]的列空间相同,其中v(θk)的第l个元素表示为vl(θk)=exp(j2π(l-1)dcos(θk)/λ),l=1,2,…,L2(L1+1),k=1,2,...,K,当L2(L1+1)>K时,满足rank(RT)>K,rank(·)表示矩阵的秩。
还进一步,步骤(7)中所述恢复出Rsk中的各个参数rk,HH、rk,VV和rk,HV具体是:
恢复参数rk,HH:
恢复参数rk,VV:
恢复参数rk,HV:
本发明与现有技术相比有以下优点:
首先,本发明采用的是三极化阵列,为累积信号所有极化分量的功率和估计噪声方差提供条件;其次,本发明提出了子协方差矩阵相加的方法,一方面可将三极化嵌套阵列模型转换为传统嵌套阵列模型,从而能构造虚拟协阵及提升阵列自由度,另一方面累积了信号所有极化分量的功率;再者,本发明除了能估计信号的波达方向和极化度,还能估计极化指向角和极化椭圆率角;最后,本发明采用的是优化的嵌套阵列,可在欠定条件下估计噪声方差,从而实现极化参数的无偏估计。
附图说明
图1是本发明的方法总体流程框图;
图2是本发明中三极化阵列接收信号示意图;
图3是本发明中部分极化信号的极化椭圆示意图;
图4是本发明方法在欠定条件下多次估计的空间谱示意图;
图5是本发明方法与其他方法在不同信噪比下的波达方向估计性能比较;
图6是本发明方法与其他方法在不同快拍数下的波达方向估计性能比较;
图7是本发明方法与四元数法在不同信噪比下的极化度性能比较。
具体实施方式
以下参照附图,对发明的具体技术方案和效果作进一步地详细说明。
如图1所示,基于三极化嵌套阵列的部分极化信号参数估计方法,具体如下:
步骤(1)根据优化法则布置三极化嵌套阵列:
在三维直角坐标中,沿y轴布置嵌套阵列,满足优化法则L1<(L2+1)/(L2-2),L1和L2分别为嵌套阵两个子阵列的阵元个数,总阵元个数L=L1+L2;各个阵元的位置构成向量μd=[1,2,…,L1,L1+1,2(L1+1),…,L2(L1+1)]Td,d表示相邻阵元的最小间距,取d=λ/2,λ为信号波长;每个阵元包含三个极化方向,分别为x方向极化、y方向极化和z方向极化,每个极化方向有单独的输出,即每个阵元有三个输出端口。
该三极化阵列如图2所示。相比与双极化天线,利用三极化天线进行信号接收有潜力完全积累信号所有极化分量的功率,不会造成信号功率的浪费。
步骤(2)构建三极化阵列的部分极化信号接收模型:
假设K个来自θ=[θ1,θ2,…,θK]方向的窄带不相关信号沿y-z平面入射到三极化嵌套阵列上,波达方向θk∈[0,π]为以逆时针方向从y轴正半轴旋转到各个入射信号方向的夹角,k=1,2,...,K;第l个阵元在第n个快拍时接收的数据表示为:
其中,表示复数域,ηl,x[n]、ηl,y[n]和ηl,z[n]对应于第l个阵元在x、y和z方向极化的输出,N表示采样的快拍数;表示第k个信号的极化响应矩阵;al(θk)=exp[j(2πμldcosθk)/λ]表示第k个信号在第l个阵元处的响应,μl表示向量μ的第l个元素;sk[n]=[sk,H[n],sk,V[n]]T包含第k个信号的水平和垂直极化分量;第l个阵元噪声υl[n]=[υl,x[n],υl,y[n],υl,z[n]]T包含第l个阵元在x、y和z方向极化的输出包含的噪声,满足其中σ2表示噪声方差,I3表示3阶单位矩阵,表示均值为μ、方差为σ2的复高斯分布,(·)T表示转置操作;
其中,rk,HH、rk,VV分别表示第k个信号水平和垂直极化分量的功率,rk,HV表示第k个信号的水平和垂直极化分量的相关系数;和分别表示第k个信号的随机极化成分的功率和完全极化成分的功率,该信号的极化度(DOP)表示为ρk∈[0,1],(·)H表示取共轭转置,E{·}表示求期望;
阵列在第n个快拍时所有三极化阵元的接收数据用向量形式表示为:
步骤(3)利用子协方差矩阵相加构造虚拟协阵输出:
将各个三极化阵元的x、y和z方向极化输出分别抽取出来,并按顺序构成x方向极化输出向量x[n]、y方向极化输出向量y[n]及z方向极化输出向量z[n],表示为:
定义辅助向量vec(·)表示将矩阵按列向量化;将μv中的元素从小到大排列并去除重复的元素以保证每个元素只出现一次,然后得到一个连续整数序列,构成列向量μc;根据嵌套阵理论,可知μc的长度为2L2(L1+1)-1;计算转换矩阵使其满足:其中,表示实数域,Ti,j表示T的第i行第j列,[·]i表示取向量的第i个元素。δi,j为Kronecker Delta函数,只有当i=j时,δi,j=1,否则δi,j=0;虚拟协阵的输出为:
容易看出,该步骤通过子协方差矩阵相加得到的协方差矩阵的表达式类似于传统的嵌套阵列协方差矩阵模型,且pk为第k个信号的水平和垂直极化分量的功率之和,完整的利用了信号各个极化分量的功率,这一点是双极化阵列无法做到的。
步骤(4)利用Toeplitz方法恢复矩阵的秩:
由于虚拟协阵输出γ为单测量向量,其对应的秩亏问题使得无法同时对多个信号参数进行估计。通过构造Toeplitz矩阵的方法可以恢复矩阵的秩。Toeplitz矩阵表示为:
RT的信号子空间与V=[v(θ1),v(θ2),…,v(θK)]的列空间相同,其中v(θk)的第l个元素表示为vl(θk)=exp(j2π(l-1)dcos(θk)/λ),l=1,2,…,L2(L1+1),k=1,2,...,K,当L2(L1+1)>K时,满足rank(RT)>K,rank(·)表示矩阵的秩。
步骤(5)估计信号波达方向:
以MUSIC算法为例,首先对RT进行特征值分解,其L2(L1+1)-K个最小特征值对应的特征向量构成噪声子空间Un,然后利用V=[v(θ1),v(θ2),…,v(θK)]与噪声子空间正交的关系得到MUSIC空间谱其中v(θ)的第l个元素vl(θ)=exp(j2π(l-1)dcos(θ)/λ)。该空间谱的K个最大峰值对应的角度即为信号的波达方向。将信号的估计结果表示为
步骤(6)估计噪声方差:
需要注意的是,欠定条件下能够实现这一步骤的前提是步骤一中的嵌套阵需满足优化法则L1<(L2+1)/(L2-2)。这是由于当L1<(L2+1)/(L2-2)时,由于使用了三极化阵列,即使在欠定条件下也能得到R的噪声子空间维度大于零,从而可用平均对应于噪声子空间的特征值的方法估计噪声方差。若使用的是双极化阵列,则无法使用本步骤进行噪声方差估计。
步骤(7)估计信号极化参数:
然后,对每个估计出的部分极化信号的协方差矩阵进行处理。
再解方程[G(αk)W(βk)]Hξk,2=0,即得到信号的极化指向角αk和极化椭圆率角βk的估计值。
下面结合仿真实例对本发明的效果进行验证。
仿真实例1:设置嵌套阵列的两个子阵阵元数分别为L1=3,L2=3,满足优化法则,即共L=L1+L2=6个三极化阵元,假设10个信号的入射角度均匀分布于[30150]间,极化指向角均匀分布于[-π/3,π/4]之间,极化椭圆率角均匀分布于[-π/5,π/6]之间,信号极化度全部设置为0.9。信噪比设置为20dB,采样快拍数设置为500。将算法运行10次,可得10次叠加的信号的空间功率谱如图4所示,其中虚线部分表示真实信号的角度,峰值位置代表所估计信号的角度。从图中可以看出,本发明能够稳定估计出这10个信号的波达方向,且信号源个数10大于阵元个数6,成功实现了欠定估计。下表给出了各个信号的波达方向、极化度、极化指向角和极化椭圆率角真实值与估计值的比较,估计值对应于10次运行结果的均值。从表中可以看出,本发明能够有效估计出信号的角度和各个极化参数,且估计精度较高。
仿真实例2:为了验证本发明的估计性能,将背景技术中的正交子空间法、四元数法及克拉美罗下限与本发明作对比,其中本发明对应的克拉美罗算法可通过文献:C.Zhou,Y.Gu,X.Fan,Z.Shi,G.Mao,Y.D.Zhang.Direction-of-Arrival Estimation for CoprimeArray via Virtual Array Interpolation[J].IEEE Trans.Signal Process.,vol.66,no.22,pp.5956-5971,2018推得。设置快拍数为300个,信噪比从-10dB扫描至10dB,蒙特卡洛实验次数为500次,信号的极化度统一设置为0.7。其余参数与仿真实例1相同,仿真结果如图5所示。从图中可以看出,本发明方法在各个信噪比的均方根误差达到最小,估计效果最好。正交子空间算法估计效果优于四元数算法。四元数法精度最差主要因为其性能以信号水平极化和垂直极化功率相同为前提。
仿真实例3:设置信噪比为20dB,快拍数从50个扫描至500个,蒙特卡洛实验次数为500次,对比算法和其余参数与仿真实例2相同,仿真结果如图6所示。从图中可以看出,本发明算法在不同快拍数下的均方根误差均达到最小,估计效果最好。
仿真实例4:比较本发明方法和其他方法在极化度估计上的统计性能。由于正交子空间法不能对信号极化度进行估计,于是此例中将本发明与四元数方法作对比。设置信号快拍数为500个,信噪比从-8dB扫描至12dB,蒙特卡洛实验次数为500次,信号极化度统一设置为0.7,其余参数与仿真实例1相同,仿真结果如图7所示,从图中可以看出由于本发明方法由于估计了噪声方差,实现了对极化参数的无偏估计,其均方根误差远小于四元数法。
以上所述仅为本发名的较佳实施范例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (6)
1.基于三极化嵌套阵列的部分极化信号参数估计方法,其特征在于,该方法具体是:
步骤(1)根据优化法则布置三极化嵌套阵列,总阵元个数L=L1+L2,L1和L2分别为嵌套阵两个子阵列的阵元个数;
步骤(2)构建三极化阵列的部分极化信号接收模型:
K个来自θ=[θ1,θ2,…,θK]方向的窄带不相关信号沿y-z平面入射到三极化嵌套阵列上,θk∈[0,π]为以逆时针方向从y轴正半轴旋转到各个入射信号方向的夹角,k=1,2,...,K;
阵列在第n个快拍时所有三极化阵元的接收数据用向量形式表示为:N表示采样的快拍数,(·)T表示转置操作,表示复数域,ηl[n]为第l个阵元在第n个快拍时接收的数据,l=1,2,...,L;极化阵列流型 表示Kronecker积,第k个信号的导向矢量a(θk)=[a1(θk),a2(θk),…,aL(θk)]T,al(θk)表示第k个信号在第l个阵元处的响应,极化响应矩阵第n个快拍的信号矢量sk[n]表示第k个信号在第n个快拍时水平和垂直极化分量构成的向量;第n个快拍的噪声矢量υl[n]表示第l个阵元在第n个快拍时的噪声向量;
步骤(3)利用子协方差矩阵相加构造虚拟协阵输出;
步骤(4)利用Toeplitz方法恢复矩阵的秩;
步骤(7)估计信号极化参数:
结合已估计出的和重构出各个信号的协方差矩阵k=1,2,...,K,即恢复出中的各个参数rk,HH、rk,VV和rk,HV,rk,HH、rk,VV分别表示第k个信号水平和垂直极化分量的功率,rk,HV表示第k个信号的水平和垂直极化分量的相关系数;恢复的rk,HH构成向量rHH,恢复的rk,VV构成向量rVV,恢复的rk,HV构成向量rHV,则重构部分极化信号的协方差矩阵表示为:
解方程[G(αk)W(βk)]Hξk,2=0,得到信号的极化指向角αk和极化椭圆率角βk的估计值。
2.如权利要求1所述基于三极化嵌套阵列的部分极化信号参数估计方法,其特征在于,步骤(1)具体是:
在三维直角坐标中,沿y轴布置嵌套阵列,满足优化法则L1<(L2+1)/(L2-2);各个阵元的位置构成向量μd=[1,2,…,L1,L1+1,2(L1+1),…,L2(L1+1)]Td,d表示相邻阵元的最小间距,取d=λ/2,λ为信号波长;每个阵元包含三个极化方向,分别为x方向极化、y方向极化和z方向极化,每个极化方向有单独的输出,即每个阵元有三个输出端口。
al(θk)=exp[j(2πμldcosθk)/λ],μl表示向量μ的第l个元素;
sk[n]=[sk,H[n],sk,V[n]]T,包含第k个信号的水平和垂直极化分量;
υl[n]=[υl,x[n],υl,y[n],υl,z[n]]T,包含第l个阵元在x、y和z方向极化的输出包含的噪声,满足υl[n]~CN(0,σ2I3),其中σ2表示噪声方差,I3表示3阶单位矩阵,CN(μ,σ2)表示均值为μ、方差为σ2的复高斯分布;
4.如权利要求3所述基于三极化嵌套阵列的部分极化信号参数估计方法,其特征在于,步骤(3)具体是:
将各个三极化阵元的x、y和z方向极化输出分别抽取出来,并按顺序构成x方向极化输出向量x[n]、y方向极化输出向量y[n]及z方向极化输出向量z[n],表示为:其中,η1:3:3L-2[n]表示由η[n]的第1,4,7,…,3L-2个元素构成的向量,其余表示类似;
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110718742.8A CN113552531B (zh) | 2021-06-28 | 2021-06-28 | 基于三极化嵌套阵列的部分极化信号参数估计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110718742.8A CN113552531B (zh) | 2021-06-28 | 2021-06-28 | 基于三极化嵌套阵列的部分极化信号参数估计方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113552531A true CN113552531A (zh) | 2021-10-26 |
CN113552531B CN113552531B (zh) | 2023-12-15 |
Family
ID=78131079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110718742.8A Active CN113552531B (zh) | 2021-06-28 | 2021-06-28 | 基于三极化嵌套阵列的部分极化信号参数估计方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113552531B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7414582B1 (en) * | 2006-03-03 | 2008-08-19 | L-3 Communications Integrated Systems L.P. | Method and apparatus for all-polarization direction finding |
CN108872929A (zh) * | 2018-04-12 | 2018-11-23 | 浙江大学 | 基于内插虚拟阵列协方差矩阵子空间旋转不变性的互质阵列波达方向估计方法 |
CN109143152A (zh) * | 2018-09-25 | 2019-01-04 | 哈尔滨工业大学 | 基于张量建模的极化阵列波达方向和极化参数估计方法 |
CN112363110A (zh) * | 2020-11-30 | 2021-02-12 | 海南大学 | 一种基于嵌套交叉偶极子阵列的无网格单比特doa估计方法 |
CN112731278A (zh) * | 2020-12-28 | 2021-04-30 | 杭州电子科技大学 | 一种部分极化信号的角度与极化参数欠定联合估计方法 |
CN112731275A (zh) * | 2020-12-28 | 2021-04-30 | 杭州电子科技大学 | 一种基于零化插值的互质阵部分极化信号参数估计方法 |
CN112883330A (zh) * | 2021-01-20 | 2021-06-01 | 东南大学 | 基于秩最小化Toeplitz重构的互质阵波达方向估计方法 |
-
2021
- 2021-06-28 CN CN202110718742.8A patent/CN113552531B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7414582B1 (en) * | 2006-03-03 | 2008-08-19 | L-3 Communications Integrated Systems L.P. | Method and apparatus for all-polarization direction finding |
CN108872929A (zh) * | 2018-04-12 | 2018-11-23 | 浙江大学 | 基于内插虚拟阵列协方差矩阵子空间旋转不变性的互质阵列波达方向估计方法 |
CN109143152A (zh) * | 2018-09-25 | 2019-01-04 | 哈尔滨工业大学 | 基于张量建模的极化阵列波达方向和极化参数估计方法 |
CN112363110A (zh) * | 2020-11-30 | 2021-02-12 | 海南大学 | 一种基于嵌套交叉偶极子阵列的无网格单比特doa估计方法 |
CN112731278A (zh) * | 2020-12-28 | 2021-04-30 | 杭州电子科技大学 | 一种部分极化信号的角度与极化参数欠定联合估计方法 |
CN112731275A (zh) * | 2020-12-28 | 2021-04-30 | 杭州电子科技大学 | 一种基于零化插值的互质阵部分极化信号参数估计方法 |
CN112883330A (zh) * | 2021-01-20 | 2021-06-01 | 东南大学 | 基于秩最小化Toeplitz重构的互质阵波达方向估计方法 |
Non-Patent Citations (2)
Title |
---|
MINJIE WU*等: "DOA Estimation of Partially Polarized Signals", 《PROCEEDINGS OF 2017 13TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS》, pages 111 - 120 * |
曹明阳: "基于张量的信号波达方向估计方法研究", 《中国博士学位论文全文数据库信息科技辑》, pages 32 - 62 * |
Also Published As
Publication number | Publication date |
---|---|
CN113552531B (zh) | 2023-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109655799B (zh) | 基于iaa的协方差矩阵向量化的非均匀稀疏阵列测向方法 | |
CN110109050B (zh) | 嵌套阵列下基于稀疏贝叶斯的未知互耦的doa估计方法 | |
CN110244272B (zh) | 基于秩一去噪模型的波达方向估计方法 | |
CN105445696A (zh) | 一种嵌套l型天线阵列结构及其波达方向估计方法 | |
CN112731278B (zh) | 一种部分极化信号的角度与极化参数欠定联合估计方法 | |
CN111337893A (zh) | 一种基于实值稀疏贝叶斯学习的离格doa估计方法 | |
CN107290709A (zh) | 基于范德蒙分解的互质阵列波达方向估计方法 | |
CN108919178A (zh) | 一种基于对称嵌套阵列的混合场信源定位方法 | |
CN113835063B (zh) | 一种无人机阵列幅相误差与信号doa联合估计方法 | |
CN112379327A (zh) | 一种基于秩损估计的二维doa估计与互耦校正方法 | |
CN113673317B (zh) | 基于原子范数最小化可降维的二维离格doa估计方法 | |
CN107907855A (zh) | 一种互素阵列转化为均匀线阵的doa估计方法及装置 | |
CN108872930B (zh) | 扩展孔径二维联合对角化doa估计方法 | |
CN112731275B (zh) | 一种基于零化插值的互质阵部分极化信号参数估计方法 | |
CN111983554A (zh) | 非均匀l阵下的高精度二维doa估计 | |
CN111965591A (zh) | 一种基于四阶累积量矢量化dft的测向估计方法 | |
CN109946663B (zh) | 一种线性复杂度的Massive MIMO目标空间方位估计方法和装置 | |
CN109521393A (zh) | 一种基于信号子空间旋转特性的波达方向估计算法 | |
CN109696651B (zh) | 一种基于m估计的低快拍数下波达方向估计方法 | |
CN113296050B (zh) | 基于各向异性阵列的极化和角度参数联合估计方法 | |
CN116699511A (zh) | 一种多频点信号波达方向估计方法、系统、设备及介质 | |
CN107135026B (zh) | 未知互耦存在时基于矩阵重构的稳健波束形成方法 | |
CN113552531A (zh) | 基于三极化嵌套阵列的部分极化信号参数估计方法 | |
CN106877918B (zh) | 互耦条件下稳健自适应波束形成方法 | |
CN113937514A (zh) | 基于开关的部分极化信号多极化阵列测向方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |