CN113501839A - γ-氨丙基三乙氧基硅烷的管道化连续合成方法 - Google Patents

γ-氨丙基三乙氧基硅烷的管道化连续合成方法 Download PDF

Info

Publication number
CN113501839A
CN113501839A CN202110781329.6A CN202110781329A CN113501839A CN 113501839 A CN113501839 A CN 113501839A CN 202110781329 A CN202110781329 A CN 202110781329A CN 113501839 A CN113501839 A CN 113501839A
Authority
CN
China
Prior art keywords
gamma
reaction
reaction tube
triethoxysilane
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110781329.6A
Other languages
English (en)
Other versions
CN113501839B (zh
Inventor
陈道伟
沈涛
黄亮兵
周少东
周贵平
钱超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG KAIHUA SYNTHETIC MATERIAL CO Ltd
Zhejiang University ZJU
Original Assignee
ZHEJIANG KAIHUA SYNTHETIC MATERIAL CO Ltd
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG KAIHUA SYNTHETIC MATERIAL CO Ltd, Zhejiang University ZJU filed Critical ZHEJIANG KAIHUA SYNTHETIC MATERIAL CO Ltd
Priority to CN202110781329.6A priority Critical patent/CN113501839B/zh
Publication of CN113501839A publication Critical patent/CN113501839A/zh
Application granted granted Critical
Publication of CN113501839B publication Critical patent/CN113501839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种γ‑氨丙基三乙氧基硅烷的管道化连续合成方法,包括依次进行以下步骤:将液氨泵入管道化反应器的反应管前段内,加热加压形成超临界状态氨;将预热过的卤代丙基三乙氧基硅烷泵入管道化反应器的反应管后段内,超临界状态氨与预热过的卤代丙基三乙氧基硅烷在反应管后段中进行反应;从管道化反应器流出的反应液经后处理,得γ‑氨丙基三乙氧基硅烷。该方法具有原子利用率高,操作简单,便于连续化生产的特点。

Description

γ-氨丙基三乙氧基硅烷的管道化连续合成方法
技术领域
本发明涉及一种含氮硅烷偶联剂的合成方法,具体涉及一种γ-氨丙基三乙氧基硅烷的管道化连续合成方法。
背景技术
γ-氨丙基三乙氧基硅烷(KH-550)是一种优良的玻璃纤维处理剂,能提高复合材料的机械强度,电性能和抗老化性能,在玻纤棉和矿物棉生产,聚氨酯、环氧、腈类、酚酫胶粘剂和密封材料中有广泛应用。近几年来,随着对KH-550应用性能研究的深入,其应用领域已经扩展到催化剂制备、电子电器材料工业、光谱、介孔材料等学科和行业。
氨解法是一种常见的KH-550的合成方法。主要有以下几种:
1、以γ-氯丙基三乙氧基硅烷为原料,和液氨在高温高压下反应生成KH-550(如专利CN104961762),该法需要添加大大过量的液氨(摩尔比过量20倍),该部分液氨占据了反应釜的大部分空间,但又不参与反应,产能不高。同时产生氯化铵盐固体副产物,必须间断性过滤,目前常见的均为釜式反应器间歇生产,难以实现连续化。此方法中如果液氨量不足,铵盐固体快速析出,传质迅速恶化,未反应完的γ-氯丙基三乙氧基硅烷难以和液氨继续接触,严重降低产率。
2、添加催化剂(如专利CN101768180)能降低反应温度,但是催化剂成本高,分离步骤繁琐,工业化成本较高。
3、加氢还原法,其以2-氰乙基三乙氧基硅烷为原料通过加氢反应生成KH-550(如专利CN106749386),该法存在加氢产率低,需要多次加氢的问题。
4、使用含氢硅烷和单烯化合物或单炔化合物通过硅氢加成制备KH-550的报道,但是其需要使用催化剂成分比较复杂。
因此,开发一种KH-550制备新工艺,促进KH-550的绿色化高效生产,提高产品经济效益,意义重大。
发明内容
本发明要解决的问题是提供一种连续制备KH-550的方法。该法具有原子利用率高,操作简单,便于连续化生产的特点。
为了解决上述技术问题,本发明提供一种γ-氨丙基三乙氧基硅烷的管道化连续合成方法,包括依次进行以下步骤:
1)、将液氨泵入管道化反应器的反应管前段内,加热加压,从而形成超临界状态氨;
2)、将预热过的卤代丙基三乙氧基硅烷泵入管道化反应器的反应管后段内,超临界状态氨与预热过的卤代丙基三乙氧基硅烷在反应管后段中进行反应,反应温度为120~135℃(优选123~132.4℃),反应压力为10.5~14Mpa(优选11.3~14Mpa),卤代丙基三乙氧基硅烷在反应管后段内的反应停留时间为20~40min(优选30~40min);卤代丙基三乙氧基硅烷泵:液氨的质量流速比=2.3~5:1(优选3.5~4.7:1);
说明:管道化反应器的反应管前段、反应管后段的反应温度和反应压力均相同;
3)、从管道化反应器流出的反应液经后处理,得γ-氨丙基三乙氧基硅烷(KH-550)。
作为本发明的γ-氨丙基三乙氧基硅烷的管道化连续合成方法的改进,卤代丙基三乙氧基硅烷为以下任一:γ-氯丙基三乙氧基硅烷、γ-溴丙基三乙氧基硅烷、γ-碘丙基三乙氧基硅烷。
作为本发明的γ-氨丙基三乙氧基硅烷的管道化连续合成方法的进一步改进,卤代丙基三乙氧基硅烷的预热温度为80~100℃。
作为本发明的γ-氨丙基三乙氧基硅烷的管道化连续合成方法的进一步改进,所述后处理为:从管道化反应器流出的反应液经过滤(除去氯化铵固体)、减压蒸馏,得γ-氨丙基三乙氧基硅烷(KH-550);减压蒸馏过程中回收的氨循环使用。
即,具体为:流出管道化反应器的反应液进入分离罐,分离罐内置筛网,并设置有多个分离罐可切换使用;从分离罐底部流出的液体经进一步减压蒸馏,即得到KH-550;过量的氨从顶部气相出口经过加压后重新循环使用。
作为本发明的γ-氨丙基三乙氧基硅烷的管道化连续合成方法的进一步改进:过滤所用筛网孔径为1~4mm。
作为本发明的γ-氨丙基三乙氧基硅烷的管道化连续合成方法的进一步改进:管道化反应器的内径20~40mm,反应管前段的管长为10~30m。
本发明的制备KH-550的方法,在管道化反应器内,将卤代丙基三乙氧基硅烷和超临界氨反应制备KH-550。利用超临界氨的溶解性溶解作为副产物的氯化铵固体,避免其堵塞管路。此外,超临界氨的反应活性高,因此本发明无需额外添加催化剂。
因此,采用本发明方法生产KH550具有如下技术优势:原料价格低,操作简单,便于连续化生产,过程安全可控,适合工业上放大生产。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为本发明所用的反应器装置示意图。
具体实施方式
下面对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
装置实例1、一种用于制备KH550的连续化管道化装置,如图1所示:
包括用于装液氨的原料罐1以及用于装卤代丙基三乙氧基硅烷的原料罐2,原料储罐2自带加热保温装置,从而实现对卤代丙基三乙氧基硅烷的预热。
管道化反应器包括反应管前段51和反应管后段53,反应管前段51和反应管后段53之间通过连接管52相连;整个管道化反应器(即,反应管前段51、连接管52、反应管后段53)均置于加热装置内,从而确保整个管道化反应器温度的一致性。
原料罐1的出口通过泵Ⅰ3与反应管前段51的入口相连,在原料罐1与泵Ⅰ3之间的管路上设置截止阀101、在泵Ⅰ3与反应管前段51之间的管路上设置截止阀102和压力表;原料罐1上设有压力表,原料罐1内的压力一般略大于室温下液氨的饱和蒸气压,当原料罐1压力表的压力迅速降低,说明液氨量快用完。
原料罐2的出口通过泵Ⅱ4与连接管52相连;在原料罐2与泵Ⅱ4之间的管路上设置截止阀103、在泵Ⅱ4与连接管52之间的管路上设置截止阀104;原料罐2上设有压力表,原料罐2内需要维持一定微正压,便于罐内物料进入泵Ⅱ4。
反应管后段53的出口通过背压阀6后与至少一套的后处理装置相连,如图1所述,为与2套后处理装置相连。
每套后处理装置包括一个分离罐7,背压阀6的出口通过截止阀105后与分离罐7相连,分离罐7内设有孔径为1~4mm的过滤用筛网;在分离罐7顶部的气相出口管上设有截止阀106,在分离罐7底部的液相出口管上设有截止阀107。当分离罐7底部液体间断流出,且流出量明显减小时,说明分离罐7中的筛网出现堵塞,此时可切换使用另一套后处理装置。
反应管前段51长度约为10~30m。反应管前段51、连接管52和反应管后段53这3者的内径相同,均为20~40mm。
实际使用方式如下:
1、原料罐1中的液氨依靠泵Ⅰ3被泵入反应管前段51,经过反应管前段51加热加压后达到超临界状态,反应管前段51的压力由背压阀6调节。
待泵Ⅰ3开启一段时间(约30min),反应管前段51已完全充满液氨时,可开始卤代丙基三乙氧基硅烷向管道化反应器的泵入。
2、预热后的卤代丙基三乙氧基硅烷依靠泵Ⅱ4被泵入连接管52后进入反应管后段53内,原料罐1中的液氨继续依靠泵Ⅰ3被泵入反应管前段51,反应管前段51内的超临界状态氨通过连接管52后被赶入反应管后段53内,在反应管后段53中,超临界状态的液氨与卤代丙基三乙氧基硅烷接触反应,反应管后段53内的压力=反应管前段51内的压力,此压力依靠背压阀6进行调节。
3、从反应管后段53出口流出的反应后所得物进入分离罐7内,由于压力降低,未反应的液氨气化,因此,在分离罐7中自动实现了气液分离,未反应的氨从气相出口排出后收集循环利用;
反应液经过筛网后,反应液中的反应副产物氯化铵被拦截,过滤后的滤液从液相出口排出,经过后续常规的减压蒸馏提纯,得到产品KH-550。
分离罐7上设有常规的清理窗口,可定期对反应副产物氯化铵进行清除处理。
说明:上述工作过程中,截止阀101~104均打开,选用一套后处理装置,打开截止阀105、107,截止阀106适度打开,用于排出其中的氨气。
以下实施例,均采用上述装置实例所述的用于制备KH550的连续化管道化装置,经过分离纯化后的所得产物经核磁检测,所得确为KH-550。
实施例1-1、一种KH-550的制备方法,包括如下步骤:
整个管道化反应器被浸没在油浴锅内,油温132.4℃,管道化反应器压力11.3MPa。
液氨以51g/min流速被泵入管道化反应器,预热后的γ-氯丙基三乙氧基硅烷以240g/min流速被泵入管道化反应器。在反应管后段53中,γ-氯丙基三乙氧基硅烷与超临界氨混合接触后反应,反应停留时间30min。最后反应液流入分离罐,未反应的氨从分离罐气相口排出后循环再用,粗产品从液相口排出通过减压(-100kPa的压力)蒸馏纯化后,收集140~142℃的馏分,得到KH-550产品,副产物氯化铵在分离罐被滤出。
实施例1-2~1-6
通过改变液氨和γ-氯丙基三乙氧基硅烷的流速,对产品收率进行检测,得到如下数据(表1)。
表1、液氨和氯丙基三乙氧基硅烷流速对KH-550产率的影响
Figure BDA0003157263460000041
Figure BDA0003157263460000051
实施例2、
相对比与实施例1-1而言,改变管道化反应器(反应管后段53)管长,从而改变反应的停留时间,其余等同于实施例1-1。对产品收率进行检测,得到如下数据(表2)。
表2、反应停留时间对KH-550产率的影响
Figure BDA0003157263460000052
实施例3
相对比与实施例1-1而言,通过调节管道化反应器后的背压阀,改变反应的压力,其余等同于实施例1-1。对产品收率进行检测,得到如下数据(表3)。
表3、反应压力对KH-550产率的影响
Figure BDA0003157263460000053
实施例4
相对比与实施例1-1而言,通过调节管道化反应器的温度,即,改变反应的温度,其余等同于实施例1-1。对产品收率进行检测,得到如下数据(表4)。
表4、反应温度对KH-550产率的影响
Figure BDA0003157263460000061
实施例5、将实施例1-1中的γ-氯丙基三乙氧基硅烷分别改成γ-溴丙基三乙氧基硅烷、γ-碘丙基三乙氧基硅烷,流速比保持不变,其余等同于实施例1-1。
所得结果如下表5
表5
Figure BDA0003157263460000062
实施例6、回收重复:
将实施例1-1中的新鲜的液氨改成从分离罐气相口排出的回收氨,其余等同于实施例1-1;反复5次后,KH-550产率保持为97%以上。
对比例1、将实施例1-1中的反应温度和管道化反应器压力改为下表6所示,其余等同于实施例1-1。
表6、对比例反应温度和管道化反应器压力
Figure BDA0003157263460000063
对比例2、取消管道化反应器中的反应管前段51和连接管52,即,管道化反应器仅仅由反应管后段53组成;原料罐1的出口通过泵Ⅰ3与反应管后段53相连,原料罐2的出口通过泵Ⅱ4与反应管后段53相连,其余等同于实施例1-1。
所得结果为:KH-550产率约为90%。
对比例3、取消实施例1-1中对卤代丙基三乙氧基硅烷的预热,其余等同于实施例1-1。
所得结果为:KH-550产率约为97%。
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (6)

1.γ-氨丙基三乙氧基硅烷的管道化连续合成方法,其特征是包括依次进行以下步骤:
1)、将液氨泵入管道化反应器的反应管前段内,加热加压,从而形成超临界状态氨;
2)、将预热过的卤代丙基三乙氧基硅烷泵入管道化反应器的反应管后段内,超临界状态氨与预热过的卤代丙基三乙氧基硅烷在反应管后段中进行反应,反应温度为120~135℃,反应压力为10.5~14Mpa,卤代丙基三乙氧基硅烷在反应管后段内的反应停留时间为20~40min;
卤代丙基三乙氧基硅烷泵:液氨的质量流速比=2.3~5:1;
3)、从管道化反应器流出的反应液经后处理,得γ-氨丙基三乙氧基硅烷。
2.根据权利要求1所述的γ-氨丙基三乙氧基硅烷的管道化连续合成方法,其特征是,卤代丙基三乙氧基硅烷为以下任一:γ-氯丙基三乙氧基硅烷、γ-溴丙基三乙氧基硅烷、γ-碘丙基三乙氧基硅烷。
3.根据权利要求2所述的γ-氨丙基三乙氧基硅烷的管道化连续合成方法,其特征是:卤代丙基三乙氧基硅烷的预热温度为80~100℃。
4.根据权利要求1~3任一所述的γ-氨丙基三乙氧基硅烷的管道化连续合成方法,其特征是,所述后处理为:从管道化反应器流出的反应液经过滤、减压蒸馏,得γ-氨丙基三乙氧基硅烷;减压蒸馏过程中回收的氨循环使用。
5.根据权利要求4所述的γ-氨丙基三乙氧基硅烷的管道化连续合成方法,其特征是:过滤所用筛网孔径为1~4mm。
6.根据权利要求1~5任一所述的γ-氨丙基三乙氧基硅烷的管道化连续合成方法,其特征是:管道化反应器的内径20~40mm,反应管前段的管长为10~30m。
CN202110781329.6A 2021-07-11 2021-07-11 γ-氨丙基三乙氧基硅烷的管道化连续合成方法 Active CN113501839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110781329.6A CN113501839B (zh) 2021-07-11 2021-07-11 γ-氨丙基三乙氧基硅烷的管道化连续合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110781329.6A CN113501839B (zh) 2021-07-11 2021-07-11 γ-氨丙基三乙氧基硅烷的管道化连续合成方法

Publications (2)

Publication Number Publication Date
CN113501839A true CN113501839A (zh) 2021-10-15
CN113501839B CN113501839B (zh) 2024-05-10

Family

ID=78012588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110781329.6A Active CN113501839B (zh) 2021-07-11 2021-07-11 γ-氨丙基三乙氧基硅烷的管道化连续合成方法

Country Status (1)

Country Link
CN (1) CN113501839B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853803A (zh) * 2022-05-26 2022-08-05 湖北华欣有机硅新材料有限公司 一种kh-540硅烷的生产工艺及其生产装置
CN114989210A (zh) * 2022-08-03 2022-09-02 淄博市临淄齐泉工贸有限公司 连续制备氨丙基烷氧基硅烷的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234502A (en) * 1977-11-29 1980-11-18 Dynamit Nobel Aktiengesellschaft Method of preparing aminoalkylsilanes
US5808123A (en) * 1996-12-18 1998-09-15 Degussa Aktiengesellschaft Continuous method of producing γ-aminopropyltrialkoxysilanes
US20020065428A1 (en) * 2000-11-25 2002-05-30 Degussa Ag Manufacturing process for aminoalkyl silanes
CN1431191A (zh) * 2002-01-10 2003-07-23 电化学工业有限公司(国际) 烷基胺的制备方法
CN103896977A (zh) * 2012-12-25 2014-07-02 浙江开化合成材料有限公司 一种生产乙烯基烷氧基硅烷的方法及其设备
CN109517005A (zh) * 2018-11-13 2019-03-26 江西宏柏新材料股份有限公司 低温低压法合成氨丙基三乙氧基硅烷的生产装置及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234502A (en) * 1977-11-29 1980-11-18 Dynamit Nobel Aktiengesellschaft Method of preparing aminoalkylsilanes
US5808123A (en) * 1996-12-18 1998-09-15 Degussa Aktiengesellschaft Continuous method of producing γ-aminopropyltrialkoxysilanes
US20020065428A1 (en) * 2000-11-25 2002-05-30 Degussa Ag Manufacturing process for aminoalkyl silanes
CN1431191A (zh) * 2002-01-10 2003-07-23 电化学工业有限公司(国际) 烷基胺的制备方法
CN103896977A (zh) * 2012-12-25 2014-07-02 浙江开化合成材料有限公司 一种生产乙烯基烷氧基硅烷的方法及其设备
CN109517005A (zh) * 2018-11-13 2019-03-26 江西宏柏新材料股份有限公司 低温低压法合成氨丙基三乙氧基硅烷的生产装置及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114853803A (zh) * 2022-05-26 2022-08-05 湖北华欣有机硅新材料有限公司 一种kh-540硅烷的生产工艺及其生产装置
CN114989210A (zh) * 2022-08-03 2022-09-02 淄博市临淄齐泉工贸有限公司 连续制备氨丙基烷氧基硅烷的方法

Also Published As

Publication number Publication date
CN113501839B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
CN113501839A (zh) γ-氨丙基三乙氧基硅烷的管道化连续合成方法
CN104176723A (zh) 小管径碳纳米管的纯化装置及方法
CN101691332A (zh) 一种催化加氢制备4-氨基二苯胺的方法
CN103130655B (zh) 一种串联釜式连续生产对硝基苯胺的方法
CN103304381B (zh) 2,6-二羟基甲苯的制备方法
CN113429295B (zh) 基于固定床微反应器连续催化加氢制备间苯二胺的方法
CN101811925B (zh) 对二甲苯环二聚体的制备方法
CN102304024B (zh) 一种二氟乙醇的合成方法
CN101450904A (zh) 一种2,5-二氨基甲苯及其硫酸盐的合成方法
CN105772080B (zh) 硅藻土负载钯催化剂、制备方法及其应用
CN110229073A (zh) 一种采用微通道连续流反应器制备4,4’-二氨基二苯醚的方法
CN101768085B (zh) 一种合成金刚烷胺的方法
CN103990291B (zh) 苯二亚甲基二异氰酸酯精馏装置及其精馏方法
CN109516921B (zh) 一种制备对硝基苯胺的方法
CN217699212U (zh) 一种高纯一氧化氮的制备装置
CN103864626A (zh) 一种4-氨基二苯胺的催化加氢的生产设备及工艺
CN105646261A (zh) 一种制备丁卡因的方法
CN101607946B (zh) 甲基苯骈三氮唑钠的提纯方法
CN102659698A (zh) 一种苯并三唑类化合物的合成方法
CN103396325B (zh) 一种氨基甘油提纯装置及其生产方法
CN105001096B (zh) 一种制备4‑氨基‑n‑烷基苄胺的方法
CN101544381B (zh) 甲萘酚生产中产生的废水生产硫酸铵的方法
CN115532301B (zh) 一种用于聚氨酯用叔胺类催化剂连续合成的改性usy分子筛组合物及其制备方法
CN209872387U (zh) 一种高纯氢氧化镁制备设备
CN201437527U (zh) 精对苯二甲酸装置精制单元氢气回收装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant