US20020065428A1 - Manufacturing process for aminoalkyl silanes - Google Patents

Manufacturing process for aminoalkyl silanes Download PDF

Info

Publication number
US20020065428A1
US20020065428A1 US09/991,965 US99196501A US2002065428A1 US 20020065428 A1 US20020065428 A1 US 20020065428A1 US 99196501 A US99196501 A US 99196501A US 2002065428 A1 US2002065428 A1 US 2002065428A1
Authority
US
United States
Prior art keywords
pressure
product
ammonia
ammonium chloride
aminohydrochloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/991,965
Other versions
US6423858B1 (en
Inventor
Christoph Schwarz
Frank Kropfgans
Hartwig Rauleder
Hermann-Josef Korte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa GmbH filed Critical Degussa GmbH
Assigned to DEGUSSA AG reassignment DEGUSSA AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KORTE, HERMANN-JOSEF, KROPFGANS, FRANK, RAULEDER, HARTWIG, SCHWARZ, CHRISTOPH
Publication of US20020065428A1 publication Critical patent/US20020065428A1/en
Application granted granted Critical
Publication of US6423858B1 publication Critical patent/US6423858B1/en
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH CHANGE ADDRESS Assignors: EVONIK DEGUSSA GMBH
Assigned to DEGUSSA GMBH reassignment DEGUSSA GMBH CHANGE OF ENTITY Assignors: DEGUSSA AG
Assigned to EVONIK DEGUSSA GMBH reassignment EVONIK DEGUSSA GMBH CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DEGUSSA GMBH
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/20Purification, separation

Definitions

  • the present invention relates to a process for manufacturing aminoalkylsilanes.
  • the product is then evaporated or concentrated and the pressure is reduced, at which point excess arnmonia escapes and ammonium chloride is yielded in crystalline form.
  • the evaporation process generally requires a period of time of over 10 hours.
  • the ammonium chloride is usually separated from the crude product by filtration.
  • the crude product is then distilled (DE-OS 27 49 316, DE-OS 27 53 124).
  • a distinct disadvantage of this process is that, when the pressure is reduced over the product mixture, instances of caking occur, involving cakes of ammonium chloride or aminohydrochlorides. These cakes appear on the wall of the synthesis reactor, as well as on the stirring apparatus, and have a negative influence on heat transfer during the evaporation process.
  • the deposits and caking require the plant to be at a frequent standstill, in which case the synthesis reactor has to be shut down, emptied, opened, filled with water in order to dissolve the ammonium salt crust, or freed of the cakes by mechanical means, then dried and closed.
  • EP 0 849 271 A2 also discloses the manufacture of 3-aminopropyltrialkoxysilanes from 3-chloropropyltrialkoxysilanes and ammonia by continuous operation.
  • the disadvantage of this process is that even with a 100 fold excess of ammonia in relation to chloropropyltrialkoxysilane and an additional secondary reaction at 120° C., a 95% maximum yield of crude silane mixture is only obtained from primary, secondary and tertiary aminosilanes.
  • one object of the invention is to provide an improved and more efficient process for manufacturing aminoalkylsilanes, particularly for the manufacture of 3-aminopropylalkoxysilanes.
  • R 1 and R 2 are each independently, identical of different, hydrogen, aryl, arylalkyl or C 1-4 -alkyl; R 3 and R 4 are each independently, identical or different, C 1-8 -alkyl or aryl; y is 2, 3 or 4 and n is 0 or 1, 2 or 3, comprising:
  • R 1 and R 2 are each as defined above with at least one of R 1 and R 2 not being hydrogen in a liquid phase;
  • aminoalkylsilanes can be manufactured simply and economically by reacting an alkylhalosilane, such as 3-chloropropyltriethoxy silane (CPTEO), in a first process stage with an excess of ammonia or an organic amine used in excess in a liquid phase, and then evaporating ammonia or organic amine in a second process stage under reduced pressure, wherein a substantial portion of excess ammonia or organic amine escapes and ammonium chloride or predominantly aminohydrochloride remains, appropriately fully dissolved in a liquid phase.
  • an alkylhalosilane such as 3-chloropropyltriethoxy silane (CPTEO)
  • CPTEO 3-chloropropyltriethoxy silane
  • the product mixture from the second process stage is then transferred to a vessel, operated at a lower level of pressure than in the evaporation step, and ammonium chloride or aminohydrochloride crystallizes.
  • the crystalline ammonium chloride or aminohydrochloride is separated from the crude product and finally the crude product is processed by distillation to provide purified aminoalkylsilane product.
  • the present invention in particular, provides an effective method of producing
  • aminoalkylsilanes having formula I above by the reaction of an organosilane having formula II shown above with ammonia or a nitrogen compound having formula III shown above.
  • Preferred suitable 3-chloralkylalkoxysilanes include 3-chloropropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane and 3-chloropropylmethyldiethoxysilane as the organosilane of formula II.
  • other chloralkylalkoxysilanes such as, for example, 3-chloropropyldiethylmethoxysilane or 3-chloropropylethylpropylethoxysilane, can also be employed in the present process.
  • ammonia, methylamine, ethylamine or diethylamine is preferably used as nitrogen containing constituent having formula III.
  • Examples of products of the present invention which can be manufactured simply and economically include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldiethoxysilane and N-methyl-3-aminopropyltrimethoxysilane, to name but a few.
  • organosilanes of formula II and ammonia or an organic amine of formula III in liquid form are usually fed to a pressure reactor, in which case it is suitable to set the molar ratio of chloralkylalkoxysilane to ammonia or organic amine compound at 1:10 to 1:50.
  • first process stage conversion generally takes place at a pressure of 25 to ⁇ 100 bar abs. and at a temperature of 50 to ⁇ 110° C., wherein conversion is almost complete.
  • the ahnost complete portion of ammonium chloride or aminohydrochloride by-product remains dissolved in the liquid phase.
  • the ammonium chloride or aminohydrochloride resulting from the reaction remains dissolved in the liquid phase of the first stage.
  • the resulting product mixture is then transferred to the second process stage, in which case the second process stage is performed at a substantially lower pressure than the first process stage.
  • considerable quantities of ammonia are flashed removed, for example, 50% to 80% by weight of the excess ammonia or organic amine. This removal of excess reactant is effected by using an operating procedure in which the pressure transitions from 50 to 15 to 20 bar abs.
  • the second evaporative stage is normally performed at pressures of >10 to ⁇ 50 bar abs., preferably 11 to 35 bar abs., more preferably 13 to 25 bar abs., and most preferably 15 to 20 bar abs., and at a temperature of >10 to ⁇ 110° C., preferably 20° C. to 95° C., more preferably 30° C. to 85° C., and most preferably 35° C. to 80° C., so that ammonium chloride or aminohydrochloride remains almost completely dissolved in a liquid phase This procedure enables problems which arise from the accumulation of solids to be prevented as desired.
  • the evaporation times result from the excess quantities of ammonia and amine of the reaction and the available evaporation apparatus, evaporator surfaces and the like as well as the structure of the plant being used.
  • the product dwell time in the second evaporative stage ranges from 0.1 to 4 hours, preferably from 0.1 to 2 hours, in particular from 0.1 to 1 hour.
  • the crystallization of the ammonium chloride or aminohydrochloride by-product occurs in a the third step, which is conducted, for example, in a crystallizer equipped with an agitator. Crystallization is generally conducted at a pressure below the final pressure of the second evaporative stage, preferably at 1 to 6 bar abs., wherein the solubility limits of ammonium chloride or amine hydrochloride are not reached. These by-products are obtained particularly gently in crystalline form.
  • the operating temperature of the crystallization stage is as a rule in the range of 20° C. to 60° C.
  • the solids can be separated from the product in a know manner and then the crude product processed by distillation.
  • the process according to the present invention is generally carried out as follows: In a first process stage an organosilane of general formula II is caused to react with excess ammonia or organic amine in a liquid phase and the resulting product mixture is transferred to the second process stage, where ammonia or organic amine is evaporated under reduced pressure and resulting ammonium chloride or aminohydrochloride remains dissolved in the liquid phase. The product mixture from the second process stage is then transferred to a third process stage, operated at a lower level of pressure than the second stage, and ammonium chloride or aminohydrochloride is crystallized out and separated from the crude product. The mixture can be separated by filtering. The resulting crude aminoalkylsilane product can be processed by distillation.
  • the batch time in the present process can be at least halved, compared to that disclosed in DE-PS 27 49 316 or DE-OS 27 53 124, resulting in a doubling of the plant capacity.
  • the pressure graduation of the process stages of the present invention allows the use of more cost-effective apparatus for broad processing areas in process stages 2 or 3, in comparison to the respective preceding process steps.
  • the flash valve is closed and the pressure is relieved gradually in the autoclave by means of water-cooled or ⁇ 40° C.-cooled condensers and the autoclave is then replenished with the ducts and heated.
  • the contents of the first evaporation unit are heated to 50° C. to 60° C. by means of a circulatory evaporator and further ammonia is removed by distillation to a residual pressure of approximately 15 bar. After approx. 1 hour around 70% of the excess ammonia is removed from the crude aminosilane product mixture, without any dissolved ammonium chloride being precipitated from the crude product.
  • the remaining about 60° C. crude aminosilane product is again transferred to the third process step, the so-called crystallizer, without cooling and under pressure.
  • the flash process is performed in a similar fashion to the first evaporation unit. During the flash process in the crystallizer the residual pressure is regulated to 3 to 5 bar.
  • the flash process in the crystallizer is performed while the crude aminosilane product/salt mash formed in the container is stirred and heated.
  • the contents of the storage vessel are transferred to a filter dryer, the crude aminosilane product is separated from the ammonium chloride, the filter cake is washed in the usual manner with a washing fluid, such as toluene, gasoline, hexane or similar fluid, and the filtrates are separated into their individual constituents by means of vacuum distillation.
  • a washing fluid such as toluene, gasoline, hexane or similar fluid
  • the yield of 3-aminopropyltriethoxysilane following distillation amounts to about 88% to 92%.
  • the quantities of liquid ammonia or washing fluid recovered during the pressure or vacuum distillation are reused to manufacture 3-aminopropyltriethoxysilane.
  • Example 1 According to Example 1, 6.6 kg (31.1 mol) 3-chloropropylmethyldiethoxysilane are reacted with 24 kg (1412 mol) ammonia, excess ammonia is removed by pressure distillation and flash processes and the 3-aminopropyhnethyldiethoxysilane that is formed is isolated by filtration and vacuum distillation.
  • a 5.4 to 5.5 kg amount of 3-aminopropylmethyldiethoxysilane at a yield of 90% to 93% are obtained in a purity, determined by gas chromatography, of 98.7 to 99.3 GC-WLDFL % and a chloride content of 16 to 45 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Aminoalkylsilanes of formula I:
R1R2N—(CH2)—Si(OR3)3-nR4 n  (I),
wherein R1 and R2 are each independently, identical of different, hydrogen, aryl, arylalkyl or C1-4-alkyl; R3 and R4 are each independently, identical or different, C1-8-alkyl or aryl; y is 2, 3 or 4 and n is 0 or 1, 2 or 3, are prepared by a process comprising:
reacting an organosilane of formula II:
X—(CH2)y—Si(OR5)3-nR4 n  (II),
wherein X is Cl, Br, I or F; and R3, R4, y and n are each as defined above with ammonia or an organic amine compound of the formula:
HNR1R2  (III),
wherein R1 and R2 are each as defined above with at least one of R1 and R2 not being hydrogen in a liquid phase;
evaporating ammonia or organic amine under reduced pressure while ammonium chloride or aminohydrochloride by-products, produced in the reaction of the first step, remains dissolved in the liquid phase;
transferring the product mixture after said evaporation to another vessel operated at a lower pressure level of than the second stage, and allowing ammonium chloride or aminohydrochloride to crystallize;
separating the crystalline ammonium chloride or aminohydrochloride from the crude product; and
distilling the crude product to produce purified aminoalkylsilane product.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a process for manufacturing aminoalkylsilanes. [0002]
  • 2. Description of the Background [0003]
  • A method for manufacturing aminoalkylsilanes, of which 3-aminopropyltriethoxysilane (AMEO) is an example, is known, wherein a chloroalkylsilane, such as 3-chloropropyltriethoxysilane (CPTEO), reacts in batches with an excess of ammonia or an organic amine in liquid phase, for example, with ammonia at T=90° C., p=50 bar abs. and time=6h. The product is then evaporated or concentrated and the pressure is reduced, at which point excess arnmonia escapes and ammonium chloride is yielded in crystalline form. The evaporation process generally requires a period of time of over 10 hours. The ammonium chloride is usually separated from the crude product by filtration. The crude product is then distilled (DE-OS 27 49 316, DE-OS 27 53 124). However, a distinct disadvantage of this process is that, when the pressure is reduced over the product mixture, instances of caking occur, involving cakes of ammonium chloride or aminohydrochlorides. These cakes appear on the wall of the synthesis reactor, as well as on the stirring apparatus, and have a negative influence on heat transfer during the evaporation process. The deposits and caking require the plant to be at a frequent standstill, in which case the synthesis reactor has to be shut down, emptied, opened, filled with water in order to dissolve the ammonium salt crust, or freed of the cakes by mechanical means, then dried and closed. [0004]
  • EP 0 849 271 A2 also discloses the manufacture of 3-aminopropyltrialkoxysilanes from 3-chloropropyltrialkoxysilanes and ammonia by continuous operation. However, the disadvantage of this process is that even with a 100 fold excess of ammonia in relation to chloropropyltrialkoxysilane and an additional secondary reaction at 120° C., a 95% maximum yield of crude silane mixture is only obtained from primary, secondary and tertiary aminosilanes. [0005]
  • Apart from the distillation and separation of precipitated ammonium chloride, additional pressure extraction is required for product separation. A need, therefore, continues to exist for an improved process of manufacturing 3-aminopropylalkoxysilanes. [0006]
  • SUMMARY OF THE INVENTION
  • Accordingly, one object of the invention is to provide an improved and more efficient process for manufacturing aminoalkylsilanes, particularly for the manufacture of 3-aminopropylalkoxysilanes. [0007]
  • Briefly, this object and other objects of the present invention as hereinafter will become more readily apparent can be attained by a process for the manufacture of aminoalkylsilanes of formula I: [0008]
  • R1R2N—(CH2)y—Si(OR3)3-nR4 n  (I),
  • wherein R[0009] 1 and R2 are each independently, identical of different, hydrogen, aryl, arylalkyl or C1-4-alkyl; R3 and R4 are each independently, identical or different, C1-8-alkyl or aryl; y is 2, 3 or 4 and n is 0 or 1, 2 or 3, comprising:
  • reacting an organosilane of formula II: [0010]
  • X—(CH2)y—Si(OR3)3-nR4 n  (II),
  • wherein X is Cl, Br, I or F; and R[0011] 3, R4, y and n are each as defined above with ammonia or an organic amine compound of the formula:
  • HNR1R2  (II),
  • wherein R[0012] 1 and R2 are each as defined above with at least one of R1 and R2 not being hydrogen in a liquid phase;
  • evaporating ammonia or organic amine under reduced pressure while ammonium chloride or aminohydrochloride by-products, produced in the reaction of the first step, remains dissolved in the liquid phase; [0013]
  • transferring the product mixture after said evaporation to another vessel operated at a lower pressure level of than the second stage, and allowing ammonium chloride or aminohydrochloride to crystallize; [0014]
  • separating the crystalline ammonium chloride or aminohydrochloride from the crude product; and [0015]
  • distilling the crude product to produce purified aminoalkylsilane product.[0016]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • It has now been discovered, surprisingly, that aminoalkylsilanes can be manufactured simply and economically by reacting an alkylhalosilane, such as 3-chloropropyltriethoxy silane (CPTEO), in a first process stage with an excess of ammonia or an organic amine used in excess in a liquid phase, and then evaporating ammonia or organic amine in a second process stage under reduced pressure, wherein a substantial portion of excess ammonia or organic amine escapes and ammonium chloride or predominantly aminohydrochloride remains, appropriately fully dissolved in a liquid phase. The product mixture from the second process stage is then transferred to a vessel, operated at a lower level of pressure than in the evaporation step, and ammonium chloride or aminohydrochloride crystallizes. The crystalline ammonium chloride or aminohydrochloride is separated from the crude product and finally the crude product is processed by distillation to provide purified aminoalkylsilane product. [0017]
  • The present invention, in particular, provides an effective method of producing [0018]
  • aminoalkylsilanes having formula I above by the reaction of an organosilane having formula II shown above with ammonia or a nitrogen compound having formula III shown above. [0019]
  • Preferred suitable 3-chloralkylalkoxysilanes include 3-chloropropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane and 3-chloropropylmethyldiethoxysilane as the organosilane of formula II. However, other chloralkylalkoxysilanes, such as, for example, 3-chloropropyldiethylmethoxysilane or 3-chloropropylethylpropylethoxysilane, can also be employed in the present process. [0020]
  • In the process of the present invention ammonia, methylamine, ethylamine or diethylamine is preferably used as nitrogen containing constituent having formula III. [0021]
  • Examples of products of the present invention which can be manufactured simply and economically include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldiethoxysilane and N-methyl-3-aminopropyltrimethoxysilane, to name but a few. [0022]
  • In the process of the present invention organosilanes of formula II and ammonia or an organic amine of formula III in liquid form are usually fed to a pressure reactor, in which case it is suitable to set the molar ratio of chloralkylalkoxysilane to ammonia or organic amine compound at 1:10 to 1:50. In the first process stage conversion generally takes place at a pressure of 25 to <100 bar abs. and at a temperature of 50 to <110° C., wherein conversion is almost complete. In addition, the ahnost complete portion of ammonium chloride or aminohydrochloride by-product remains dissolved in the liquid phase. Preferably more than 99%, in particular preferably 99.9% to 100%, of the ammonium chloride or aminohydrochloride resulting from the reaction remains dissolved in the liquid phase of the first stage. The resulting product mixture is then transferred to the second process stage, in which case the second process stage is performed at a substantially lower pressure than the first process stage. In the process, considerable quantities of ammonia are flashed removed, for example, 50% to 80% by weight of the excess ammonia or organic amine. This removal of excess reactant is effected by using an operating procedure in which the pressure transitions from 50 to 15 to 20 bar abs. [0023]
  • The second evaporative stage is normally performed at pressures of >10 to <50 bar abs., preferably 11 to 35 bar abs., more preferably 13 to 25 bar abs., and most preferably 15 to 20 bar abs., and at a temperature of >10 to <110° C., preferably 20° C. to 95° C., more preferably 30° C. to 85° C., and most preferably 35° C. to 80° C., so that ammonium chloride or aminohydrochloride remains almost completely dissolved in a liquid phase This procedure enables problems which arise from the accumulation of solids to be prevented as desired. In general, the evaporation times result from the excess quantities of ammonia and amine of the reaction and the available evaporation apparatus, evaporator surfaces and the like as well as the structure of the plant being used. With the process of the present invention there is a large degree of freedom for selecting appropriate and cost-effective plant components for the above-mentioned evaporation processes because of the practically solids-free operation in the second evaporative stage. The product dwell time in the second evaporative stage ranges from 0.1 to 4 hours, preferably from 0.1 to 2 hours, in particular from 0.1 to 1 hour. [0024]
  • After the evaporation step, the crystallization of the ammonium chloride or aminohydrochloride by-product occurs in a the third step, which is conducted, for example, in a crystallizer equipped with an agitator. Crystallization is generally conducted at a pressure below the final pressure of the second evaporative stage, preferably at 1 to 6 bar abs., wherein the solubility limits of ammonium chloride or amine hydrochloride are not reached. These by-products are obtained particularly gently in crystalline form. The operating temperature of the crystallization stage is as a rule in the range of 20° C. to 60° C. The solids can be separated from the product in a know manner and then the crude product processed by distillation. [0025]
  • The process according to the present invention is generally carried out as follows: In a first process stage an organosilane of general formula II is caused to react with excess ammonia or organic amine in a liquid phase and the resulting product mixture is transferred to the second process stage, where ammonia or organic amine is evaporated under reduced pressure and resulting ammonium chloride or aminohydrochloride remains dissolved in the liquid phase. The product mixture from the second process stage is then transferred to a third process stage, operated at a lower level of pressure than the second stage, and ammonium chloride or aminohydrochloride is crystallized out and separated from the crude product. The mixture can be separated by filtering. The resulting crude aminoalkylsilane product can be processed by distillation. [0026]
  • The process of the present invention is distinguished by the following advantages: [0027]
  • The batch time in the present process can be at least halved, compared to that disclosed in DE-PS 27 49 316 or DE-OS 27 53 124, resulting in a doubling of the plant capacity. [0028]
  • Caking usually no longer appears in the synthesis reactors. [0029]
  • Almost no solids accumulate in the second evaporative step, which allows power to be introduced to the process at a favorable point to evaporate the majority of ammonia or organic amine. [0030]
  • The pressure graduation of the process stages of the present invention allows the use of more cost-effective apparatus for broad processing areas in process stages 2 or 3, in comparison to the respective preceding process steps. [0031]
  • Smaller apparatus can also be utilized in subsequent steps because of the reduced quantities of ammonia or organic amine, as compared to the preliminary step. [0032]
  • Having now generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified. [0033]
  • EXAMPLES
  • Example 1 [0034]
  • Manufacture of 3-aminopropyltriethoxy silane [0035]
  • In an autoclave fitted with an agitator 7.5 kg (31.1 mol) 3-chloropropyltriethoxysilane are reacted with 24 kg (1412 mol) ammonia at 48 to 50 bar and approximately 100° C. within 6 hours. After this period 3-chloropropyltriethoxy silane is detectable in the 3-aminopropyltriethoxysilane crude product which is formed by means of GC analysis in trace amounts only. The ammonium chloride formed is fully dissolved in excess ammonia or in the crude aminosilane product that is formed under these conditions. [0036]
  • The pressurized and not yet cooled contents of the autoclave are then transferred to another pressure vessel by way of a relief valve (flash process) and at the same time a large portion of the excess ammonia is removed by distillation under pressure with the pressure being regulated at approximately 18 to 20 bar in this evaporation unit. [0037]
  • After complete transposition of the reaction batch from the autoclave to the first evaporation unit, the flash valve is closed and the pressure is relieved gradually in the autoclave by means of water-cooled or −40° C.-cooled condensers and the autoclave is then replenished with the ducts and heated. [0038]
  • The contents of the first evaporation unit are heated to 50° C. to 60° C. by means of a circulatory evaporator and further ammonia is removed by distillation to a residual pressure of approximately 15 bar. After approx. 1 hour around 70% of the excess ammonia is removed from the crude aminosilane product mixture, without any dissolved ammonium chloride being precipitated from the crude product. The remaining about 60° C. crude aminosilane product is again transferred to the third process step, the so-called crystallizer, without cooling and under pressure. The flash process is performed in a similar fashion to the first evaporation unit. During the flash process in the crystallizer the residual pressure is regulated to 3 to 5 bar. The flash process in the crystallizer is performed while the crude aminosilane product/salt mash formed in the container is stirred and heated. [0039]
  • As opposed to the autoclave, there is no further pressure reduction in the empty first evaporator unit, rather, it is replenished with a residual pressure of approx. 12 to 15 bar. [0040]
  • After the entire crude aminosilane product is transferred to the crystallizer the remaining ammonia is removed by distillation under constant stirring and heating. The internal temperature of the crystallizer is lowered gradually to approx. 1 bar at 20° C. internal temperature. In this process residual ammonium chloride in crystalline form precipitates from the crude aminosilane product and is held in suspension by the agitation process. The pressure relief in the crystallizer is complete after some 3 to 4 hours. The crude product mash is then withdrawn into a storage vessel and the residual ammonia is pressure-relieved in the waste gas system. The contents of the storage vessel are transferred to a filter dryer, the crude aminosilane product is separated from the ammonium chloride, the filter cake is washed in the usual manner with a washing fluid, such as toluene, gasoline, hexane or similar fluid, and the filtrates are separated into their individual constituents by means of vacuum distillation. [0041]
  • On completion of distillation 6.05 to 6.4 kg of 3-aminopropyltriethoxy silane is obtained in a purity, determined by gas chromatography, of approximately 98.5 to 99.0 GC-WLDFL % and a chloride content of 20 to 50 ppm. [0042]
  • The yield of 3-aminopropyltriethoxysilane following distillation amounts to about 88% to 92%. The quantities of liquid ammonia or washing fluid recovered during the pressure or vacuum distillation are reused to manufacture 3-aminopropyltriethoxysilane. [0043]
  • EXAMPLE 2
  • Manufacture of 3-aminopropyltrimethoxy silane [0044]
  • In a similar fashion to Example 1, 6.2 kg (31.1 mol) 3-chloropropyltrimethoxysilane are reacted with 24 kg (1412 mol) ammonia at 48 to 50 bar and around 100° C. within 6 hours, after which excess ammonia is removed by two flash processes and pressure distillation, as per Example 1. After filtration and cleaning by distillation under vacuum, 4.8 to 5.1 kg of 3-aminopropyltrimethoxysilane are obtained in a purity, determined by gas chromatography, of approximately 98.4 to 99.0 WLDFL % and a chloride content of 20 to 65 ppm. The yield after distillation is 86% to 91%. [0045]
  • Example 3 [0046]
  • Manufacture of 3-aminopropylmethyldiethoxysilane. [0047]
  • According to Example 1, 6.6 kg (31.1 mol) 3-chloropropylmethyldiethoxysilane are reacted with 24 kg (1412 mol) ammonia, excess ammonia is removed by pressure distillation and flash processes and the 3-aminopropyhnethyldiethoxysilane that is formed is isolated by filtration and vacuum distillation. [0048]
  • A 5.4 to 5.5 kg amount of 3-aminopropylmethyldiethoxysilane at a yield of 90% to 93% are obtained in a purity, determined by gas chromatography, of 98.7 to 99.3 GC-WLDFL % and a chloride content of 16 to 45 ppm. [0049]
  • The disclosure of German priority Application Number 10058620.1 dated Nov. 25, 2000 is hereby incorporated by reference into the present application. [0050]
  • Obviously, numerous modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein [0051]

Claims (12)

What is claimed as new and is intended to be secured by letters patent is:
1. A process for the manufacture of aminoalkylsilanes of formula I:
R1R2N—(CH2)y—Si(OR3)3-nR4 n  (I)
wherein R1 and R2 are each independently, identical of different, hydrogen, aryl, arylalkyl or C1-4-alkyl; R3 and R4 are each independently, identical or different, C1-8-alkyl or aryl; y is 2, 3 or 4 and n is 0 or 1, 2 or 3, comprising:
reacting an organosilane of formula II:
X—(CH2)y—Si(OR3)3-nR4 n  (II),
wherein X is Cl, Br, I or F; and R3, R4, y and n are each as defined above with ammonia or an organic amine compound of the formula:
HNR1R2  (III)
wherein R1 and R2 are each as defined above with at least one of R1 and R2 not being hydrogen in a liquid phase;
evaporating ammonia or organic amine under reduced pressure while ammonium chloride or aminohydrochloride by-products, produced in the reaction of the first step, remains dissolved in the liquid phase;
transferring the product mixture after said evaporation to another vessel operated at a lower pressure level of than the second stage, and allowing ammonium chloride or aminohydrochloride to crystallize;
separating the crystalline ammonium chloride or aminohydrochloride from the crude product; and
distilling the crude product to produce purified aminoalkylsilane product.
2. The process as claimed in claim 1, wherein the reaction in the first process step occurs at a pressure of 25 to <100 bar abs. and at a temperature ranging from 50 to <110° C.
3. The process as claimed in claim 1, wherein the second evaporative step is performed at a pressure of >10 to <50 bar abs and at a temperature of 10 to <110° C.
4. The process as claimed in claim 3, wherein the second evaporative step is performed at a pressure of 11 to 35 bar abs and at a temperature of 20° C. to 95° C.
5. The process as claimed in claim 2, wherein the second evaporative step is performed at a pressure of 13 to 25 bar abs and at a temperature of 30° C. to 85° C.
6. The process as claimed in claim 3, wherein the average product dwell time in the second evaporative step is adjusted to 0.1 to 4 hours.
7. The process as claimed in claim 1, wherein the third step of crystallization is performed at a pressure below the final pressure of the second evaporative stage.
8. The process as claimed in claim 5, wherein the third process step of crystallization is performed at a pressure of 1 to 6 bar abs.
9. The process as claimed in claim 1, wherein the aminoalkylsilane is a 3-chloralkylalkoxysilane selected from the group consisting of 3-chloropropyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropylmethyldimethoxysilane, 3-chloropropylmethyldiethoxysilane, 3-chloropropyldiethylmethoxysilane and 3-chloropropylethylpropylethoxysilane.
10. The process as claimed in claim 1, wherein the organic amine compound is methylamine, ethylamine or diethylamine.
11. The process as claimed in claim 1, wherein the aminoalkylsilane product is a compound selected from the group consisting of 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldiethoxysilane and N-methyl-3-aminopropyltrimethoxysilane.
12. The process as claimed in claim 1, wherein the molar ratio of haloralkylalkoxysilane to ammonia or organic amine compound ranges from 1:10 to 1:50.
US09/991,965 2000-11-25 2001-11-26 Manufacturing process for aminoalkyl silanes Expired - Lifetime US6423858B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10058620A DE10058620A1 (en) 2000-11-25 2000-11-25 Process for the preparation of aminoalkylsilanes
DE10058620.1 2000-11-25
DE10058620 2000-11-25

Publications (2)

Publication Number Publication Date
US20020065428A1 true US20020065428A1 (en) 2002-05-30
US6423858B1 US6423858B1 (en) 2002-07-23

Family

ID=7664680

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/991,965 Expired - Lifetime US6423858B1 (en) 2000-11-25 2001-11-26 Manufacturing process for aminoalkyl silanes

Country Status (5)

Country Link
US (1) US6423858B1 (en)
EP (1) EP1209162B1 (en)
JP (1) JP2002173494A (en)
AT (1) ATE314380T1 (en)
DE (2) DE10058620A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090253925A1 (en) * 2004-12-16 2009-10-08 Wacker Chemie Ag Method for the continuous production of silicon compounds bearing amino groups
CN113501839A (en) * 2021-07-11 2021-10-15 浙江开化合成材料有限公司 Pipeline continuous synthesis method of gamma-aminopropyl triethoxysilane

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10126669A1 (en) 2001-06-01 2002-12-05 Degussa Process for the cleavage of cyclic organosilanes in the production of amino-functional organoalkoxysilanes
DE10200656A1 (en) 2002-01-10 2003-07-24 Consortium Elektrochem Ind Process for the preparation of alkyl amines
DE102004025766A1 (en) * 2004-05-26 2005-12-22 Degussa Ag Preparation of organosilane esters
DE102007050199A1 (en) * 2007-10-20 2009-04-23 Evonik Degussa Gmbh Removal of foreign metals from inorganic silanes
DE102008002183A1 (en) 2008-06-03 2009-12-10 Evonik Degussa Gmbh Process for the treatment of saline residues from the production of amino-functional organosilanes
DE102008002182A1 (en) * 2008-06-03 2009-12-10 Evonik Degussa Gmbh Process for the preparation of alkylaminoalkylalkoxysilanes
DE102008002181A1 (en) 2008-06-03 2009-12-10 Evonik Degussa Gmbh A process for the aqueous work-up of an ammonium halide and / or amino-functional organosilane containing organic amine hydrohalides
DE102009026755A1 (en) * 2009-06-04 2010-12-09 Wacker Chemie Ag Process for the preparation of aminoorganosilanes
DE102015225879A1 (en) 2015-12-18 2017-06-22 Evonik Degussa Gmbh Tris- (alkylalkoxysilyl) amine-rich compositions, their preparation and their use
DE102015225883A1 (en) 2015-12-18 2017-06-22 Evonik Degussa Gmbh Bis (alkylalkoxysilyl) amine-rich compositions, a process for their preparation and their use
DE102016215260A1 (en) 2016-08-16 2018-02-22 Evonik Degussa Gmbh Use of an (alkylalkoxysilyl) amine, bis (alkylalkoxysilyl) amine and / or tris (alkylalkoxysilyl) amine containing composition
DE102016215259A1 (en) 2016-08-16 2018-02-22 Evonik Degussa Gmbh Process for the preparation of mono- and oligo- (alkoxysilylalkyl) amine-containing compositions
DE102016215256A1 (en) 2016-08-16 2018-02-22 Evonik Degussa Gmbh Bis- and tris (organosilyl) amine containing compositions, their preparation and their use
DE102016215255A1 (en) 2016-08-16 2018-02-22 Evonik Degussa Gmbh Process for the preparation of bis- and tris (alkylalkoxysilyl) amine-containing compositions and their use
DE102016215257A1 (en) 2016-08-16 2018-02-22 Evonik Degussa Gmbh Mono- and bis (organosilyl) amine containing compositions, their preparation and their use
CA3119051A1 (en) * 2018-11-09 2020-05-14 Arbutus Biopharma Corporation Cationic lipids containing silicon
FR3115789B1 (en) 2020-11-03 2024-04-12 Bostik Sa HYDROCARBON polymer with POLYETHER AND POLYOLEFINE blocks COMPRISING AT LEAST ONE terminal alkoxysilane group

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2753124A1 (en) * 1977-11-29 1979-06-07 Dynamit Nobel Ag PROCESS FOR THE PRODUCTION OF AMINOALKYLSILANES
US4234503A (en) * 1978-12-21 1980-11-18 Dynamit Nobel Aktiengesellschaft Method of preparing gamma aminopropyl alkoxy silanes
DE19513976A1 (en) * 1994-09-14 1996-03-21 Huels Chemische Werke Ag Process for the production of low-chloride or chloride-free amino-functional organosilanes
EP0702017B1 (en) * 1994-09-14 2001-11-14 Degussa AG Process for the preparation of aminofunctional organosilanes with low chlorine contamination
DE19516386A1 (en) * 1995-05-04 1996-11-07 Huels Chemische Werke Ag Process for the preparation of chlorine-functional organosilanes poor or free amino-functional organosilanes
DE19652642A1 (en) * 1996-12-18 1998-06-25 Degussa Continuous process for the production of gamma-aminopropyltrialkoxysilanes
CA2205790A1 (en) * 1997-05-22 1998-11-22 Ahti August Koski Process for preparing amino-silane compounds, and novel amino-silane compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090253925A1 (en) * 2004-12-16 2009-10-08 Wacker Chemie Ag Method for the continuous production of silicon compounds bearing amino groups
US7842831B2 (en) 2004-12-16 2010-11-30 Wacker Chemie Ag Method for the continuous production of silicon compounds bearing amino groups
CN113501839A (en) * 2021-07-11 2021-10-15 浙江开化合成材料有限公司 Pipeline continuous synthesis method of gamma-aminopropyl triethoxysilane

Also Published As

Publication number Publication date
DE10058620A1 (en) 2002-05-29
DE50108530D1 (en) 2006-02-02
EP1209162B1 (en) 2005-12-28
EP1209162A3 (en) 2003-11-26
EP1209162A2 (en) 2002-05-29
US6423858B1 (en) 2002-07-23
ATE314380T1 (en) 2006-01-15
JP2002173494A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
US6423858B1 (en) Manufacturing process for aminoalkyl silanes
CN100384858C (en) Producing and purifying method of bi (Tert-butyl amino) silane
JPH0639478B2 (en) Method for producing alkoxy-oxyiminosilane
US4400527A (en) Producing oximinosilanes, oximinogermanes and oximinostannanes
US4234502A (en) Method of preparing aminoalkylsilanes
US7842831B2 (en) Method for the continuous production of silicon compounds bearing amino groups
US8314263B2 (en) Method for producing amino-organosilanes
US5106604A (en) Use of metal salts in the synthesis of oligomeric hydrogensilsesquioxanes via hydrolysis/condensation reactions
JPH10158280A (en) Removal of residual content of acidic chlorine in carbonoyloxysilane and carbonoyloxysilane obtained thereby
CN100516075C (en) Method for the production of silicon compounds carrying amino groups
KR101368101B1 (en) Method for producing aminoorganosilanes
US5939575A (en) Process for the continuous preparation of acyloxysilanes
IE862126L (en) Preparation of allyl amines
US4060536A (en) Method of preparing N,N&#39;-bis-trimethylsilylurea
US6114558A (en) Preparation of alkyl(amino)dialkoxysilanes
US5166453A (en) Method for purification of ethylene compounds having fluorine-containing organic group
US4876337A (en) Method and apparatus for the preparation of cyanoalkyl-alkoxysilanes
KR100521614B1 (en) Method for preparing 3-[N-(2-aminoethyl)]aminopropylalkoxysilane
CN113480574B (en) Recycling method of phosphorus-containing compound salt
GB1581856A (en) Process for the manufacture of alkoxymethylsilazanes
EP4048657A1 (en) Processes for making tetrazolinone compounds
JP3882859B2 (en) Method for producing hydrated hydrazine
EP1211256B1 (en) Method for purifying fluoroaryl metal compound
JP2001233885A (en) Method for producing tris[tris(dimethyl-amino) phosphoranylideneamino]phosphine oxide
JPH0637441B2 (en) Method for producing 3-halo-2-hydroxypropyltrialkylammonium halide aqueous solution

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEGUSSA AG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHWARZ, CHRISTOPH;KROPFGANS, FRANK;RAULEDER, HARTWIG;AND OTHERS;REEL/FRAME:012325/0319

Effective date: 20010917

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: EVONIK DEGUSSA GMBH,GERMANY

Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296

Effective date: 20071031

Owner name: DEGUSSA GMBH,GERMANY

Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937

Effective date: 20070102

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: CHANGE ADDRESS;ASSIGNOR:EVONIK DEGUSSA GMBH;REEL/FRAME:023985/0296

Effective date: 20071031

Owner name: DEGUSSA GMBH, GERMANY

Free format text: CHANGE OF ENTITY;ASSIGNOR:DEGUSSA AG;REEL/FRAME:023998/0937

Effective date: 20070102

AS Assignment

Owner name: EVONIK DEGUSSA GMBH,GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127

Effective date: 20070912

Owner name: EVONIK DEGUSSA GMBH, GERMANY

Free format text: CHANGE OF NAME;ASSIGNOR:DEGUSSA GMBH;REEL/FRAME:024006/0127

Effective date: 20070912

FPAY Fee payment

Year of fee payment: 12