CN113481598B - 一种Zn-P-As晶体材料及其制备方法和应用 - Google Patents

一种Zn-P-As晶体材料及其制备方法和应用 Download PDF

Info

Publication number
CN113481598B
CN113481598B CN202110768899.1A CN202110768899A CN113481598B CN 113481598 B CN113481598 B CN 113481598B CN 202110768899 A CN202110768899 A CN 202110768899A CN 113481598 B CN113481598 B CN 113481598B
Authority
CN
China
Prior art keywords
simple substance
crystal material
temperature
crystalline
heat preservation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110768899.1A
Other languages
English (en)
Other versions
CN113481598A (zh
Inventor
梁彦杰
刘振兴
柴立元
邓方杰
彭聪
杨志辉
周元
丁风华
周艺伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110768899.1A priority Critical patent/CN113481598B/zh
Publication of CN113481598A publication Critical patent/CN113481598A/zh
Application granted granted Critical
Publication of CN113481598B publication Critical patent/CN113481598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种Zn‑P‑As晶体材料及其制备方法和应用,所述Zn‑P‑As晶体材料中Zn、P、As的原子比为3:5:2.6,正交晶系,空间群为Cmcm,晶胞参数为
Figure DDA0003151799120000011
α=β=γ=90°,保护性气氛或真空环境下,将单质As、单质P以及单质Zn球磨混合,升温至620℃~820℃下保温反应不低于6h即得。本发明所载的Zn‑P‑As晶体材料,其光学带隙约为1.2eV,与单晶Si(Eg:1.1~1.3eV)的带隙接近,作为半导体材料,在新型电子器件领域以及光伏领域具有潜在的应用前景。

Description

一种Zn-P-As晶体材料及其制备方法和应用
技术领域
本发明属于冶金技术及材料科学与工程技术领域,涉及一种新型半导体Zn-P-As晶体材料及其制备方法和应用。
背景技术
金属砷作为有色冶炼工业产出的副产品,全球年产量约为3万吨(以金属砷计),其在地幔中丰度处于47位,并不是一种丰富的矿产资源。由于其化合物的独特性能,如GaAs具有高载流子迁移率而应用于高速响应计算元器件和高频发射电子器件上,InAs具有优异的光电性能用来制作光电二极管,BAs具有超高热导率而有望成为新一代超高速计算电子器件的备选晶体、Cd3As2为一种新型的量子霍尔效应weyl半导体,CrAs具有压力诱导的超导性能等等,使得砷化物应用成为一种探索新型应用功能材料的重要途径。
本方法开发设计了一种新型半导体晶体材料,与单晶Si(Eg:1.1~1.3eV)的带隙接近,其可能在新型电子器件以及光伏领域具有潜在的应用前景。
发明内容
本发明提供了一种新型半导体Zn-P-As晶体材料,其光学带隙约为1.2eV,与单晶Si(Eg:1.1~1.3eV)的带隙接近,在新型电子器件以及光伏领域具有潜在的应用前景。
本发明采用如下技术方案:
一种Zn-P-As晶体材料,Zn、P、As的原子比为3:5:2.6,正交晶系,空间群为Cmcm,晶胞参数为
Figure BDA0003151799100000011
Figure BDA0003151799100000012
α=β=γ=90°。
本发明还提供了上述Zn-P-As晶体材料的制备方法,保护性气氛或真空环境下,将单质As、单质P以及单质Zn球磨混合,升温至620℃~820℃下保温反应不低于6h即得。
作为优选,所述保护性气氛为氩气或氦气气氛。
作为优选,所述单质As、单质P以及单质Zn的摩尔比为3:(4.8~5.1):(2.5~2.7);进一步优选为3:5:2.6。
作为优选,球磨混合后于30~40MPa压力下进行压片处理。
作为优选,升温速率不高于20℃/h;进一步优选为不高于10℃/h。本发明通过控制升温速率以确保固相反应充分,减少局部高温时气相挥发。
作为优选,保温反应不低于24h。
作为优选,保温反应后冷却,冷却过程中,以产物放置处为中心,维持中心比距中心5cm以外区域高30℃以上的温度差降至室温即可;进一步优选为温度差不低于50℃。本发明通过控制降温温度差使材料局部未参与反应残余原料挥发,确保整体上材料均匀、高纯。
本发明还提供了上述Zn-P-As晶体材料的应用,将其作为半导体,用于电子器件或光伏技术领域。
本发明通过将单质Zn、单质P和单质As球磨混合均匀,于620℃~820℃下进行充分反应结晶,高温保温去除可能的杂质,降温形成温度差确保可挥发杂质脱除,从而获得新型晶体结构的Zn-P-As晶体材料。
本发明的新型晶体结构的Zn-P-As晶体材料,为一种全新的半导体晶体材料,其结构信息通过单晶X射线衍射解析见图1,光学带隙见图4,约为1.2eV,与单晶Si(Eg:1.1~1.3eV)的带隙接近。
附图说明
图1为本发明实施例3的Zn-P-As晶体材料的晶体结构解析信息;
图2为本发明实施例3的Zn-P-As晶体材料的光学照片(a)和晶体结构(b);
图3为本发明实施例1-3的产物的物相鉴定数据图;图中杂质主要为金属As(箭头标出所在峰位置),实施例1-3均可获得新型晶体,其中实施例3获得晶体基本无杂质。
图4为本发明实施例3的Zn-P-As晶体材料的光学带隙测试图;晶体材料的光学带隙约为1.2eV。
具体实施方式
为阐述本发明的特征,结合实施例对本发明进行说明,本发明实施例均采用高纯石英管为容器,内径16mm,壁厚1.5mm,熔封后反应腔体长度约15cm,并在氩气保护的手套箱内(常压,含水率<1ppm,氧含量<1ppm)进行取样和配料准备,最后采用氢氧焰进行熔封。
实施例1
将1.745g单质Zn、1.330g单质P和1.320g单质As按照摩尔比Zn:P:As=3:5:2进行配料,将物料研磨混匀后使用30~40MPa压力进行压片,装入石英管后经过进行真空熔封。之后,将石英管置于反应炉中,按照10℃/h升温速率升温至820℃,保温48h后,降温至620℃,维持反应产物区域620℃温度30min后自然降温,其他区域(距产物中心5cm以外区域)则直接自然降温至室温,控制反应产物区域与其他区域的温度差为50℃。取出样品,进行物相鉴定测试,结果见图3。
实施例2
将1.817g单质Zn、1.003g单质P和0.740g单质As按照摩尔比Zn:P:As=3:9.5:6.5进行配料,将物料研磨混匀后使用30~40MPa压力进行压片,装入石英管后经过进行真空熔封。之后,将石英管置于反应炉中,按照10℃/h升温速率升温至820℃,保温48h后,降温至620℃,维持反应产物区域620℃温度30min后自然降温,其他区域(距产物中心5cm以外区域)则直接自然降温至室温,控制反应产物区域与其他区域的温度差为100℃。取出样品,进行物相鉴定测试,结果见图3。
实施例3
将1.077g单质Zn、0.851g单质P和1.071g单质As按照摩尔比Zn:P:As=3:5:2.6进行配料,将物料研磨混匀后使用30~40MPa压力进行压片,装入石英管后经过进行真空熔封。之后,将石英管置于反应炉中,按照10℃/h升温速率升温至820℃,保温48h后,降温至620℃,维持反应产物区域620℃温度30min后自然降温,其他区域(距产物中心5cm以外区域)则直接自然降温至室温,控制反应产物区域与其他区域的温度差为50℃。取出样品,进行物相鉴定测试,结果见图3。

Claims (10)

1.一种Zn-P-As晶体材料,其特征在于:所述Zn-P-As晶体材料中Zn、P、As的原子比为3:5:2.6,正交晶系,空间群为Cmcm,晶胞参数为
Figure FDA0003151799090000011
Figure FDA0003151799090000012
α=β=γ=90°。
2.权利要求1所述的Zn-P-As晶体材料的制备方法,其特征在于:保护性气氛或真空环境下,将单质As、单质P以及单质Zn球磨混合,升温至620℃~820℃下保温反应不低于6h即得。
3.根据权利要求2所述的制备方法,其特征在于:所述保护性气氛为氩气或氮气气氛。
4.根据权利要求2所述的制备方法,其特征在于:所述单质As、单质P以及单质Zn的摩尔比为3:(4.8~5.1):(2.5~2.7)。
5.根据权利要求4所述的制备方法,其特征在于:所述单质As、单质P以及单质Zn的摩尔比为3:5:2.6。
6.根据权利要求2所述的制备方法,其特征在于:球磨混合后于30~40MPa压力下进行压片处理。
7.根据权利要求2所述的制备方法,其特征在于:升温速率不高于20℃/h。
8.根据权利要求2所述的制备方法,其特征在于:保温反应不低于24h。
9.根据权利要求2所述的制备方法,其特征在于:保温反应后冷却,冷却过程中,以产物放置处为中心,维持中心比距中心5cm以外区域高30℃以上的温度差降至室温即可。
10.权利要求1所述的Zn-P-As晶体材料或权利要求2-9任一项所述的制备方法制得的Zn-P-As晶体材料的应用,其特征在于:将其作为半导体,用于电子器件或光伏技术领域。
CN202110768899.1A 2021-07-07 2021-07-07 一种Zn-P-As晶体材料及其制备方法和应用 Active CN113481598B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110768899.1A CN113481598B (zh) 2021-07-07 2021-07-07 一种Zn-P-As晶体材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110768899.1A CN113481598B (zh) 2021-07-07 2021-07-07 一种Zn-P-As晶体材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113481598A CN113481598A (zh) 2021-10-08
CN113481598B true CN113481598B (zh) 2022-03-25

Family

ID=77941836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110768899.1A Active CN113481598B (zh) 2021-07-07 2021-07-07 一种Zn-P-As晶体材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113481598B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115321552B (zh) * 2022-07-22 2023-07-14 中南大学 一种机械力化学法合成的砷化硼纳米晶体及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846428A (zh) * 2015-04-13 2015-08-19 山东大学 一种金属助熔剂法生长过渡金属硫属化合物晶体的方法
CN111455460A (zh) * 2020-04-13 2020-07-28 中南大学 一种金属砷单晶的制备方法
CN112064116A (zh) * 2020-09-14 2020-12-11 中国科学院上海硅酸盐研究所 一种制备InSeI单晶体的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846428A (zh) * 2015-04-13 2015-08-19 山东大学 一种金属助熔剂法生长过渡金属硫属化合物晶体的方法
CN111455460A (zh) * 2020-04-13 2020-07-28 中南大学 一种金属砷单晶的制备方法
CN112064116A (zh) * 2020-09-14 2020-12-11 中国科学院上海硅酸盐研究所 一种制备InSeI单晶体的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Characterization of Phosphorus Diffused ZnO Bulk Single Crystals;zhang rui et al.;《半导体学报》;20080930;第29卷(第9期);第1674-1678页 *
EXCITONS AND EXCITONIC MOLECULES IN MIXED Zn(P1-xAsx)2 CRYSTALS;O.A.Yeshchenko et al.;《Physics Faculty, Kyiv Taras Shevchenko University》;20110622;第1-10页 *
ZnGeAs2多晶合成与表征;钟义凯等;《人工晶体学报》;20170331;第46卷(第3期);第393-397页 *

Also Published As

Publication number Publication date
CN113481598A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN108557788B (zh) 一种低能耗的黑磷单晶制备方法
CN102674357A (zh) 用于碳化硅单晶生长的高纯碳化硅原料的合成方法
CN111285339B (zh) 一种Sn3P4诱导二维黑磷晶体的制备方法
CN112301239B (zh) 一种砷化镉的制备方法
CN110938867B (zh) 一种高效制备二维黑磷晶体的方法
CN102786089B (zh) 一种生产砷化锌的方法
CN109553105B (zh) 一种高纯碳化硅粉及其制备方法
CN110205674B (zh) 一种以白磷为原料制备二维黑磷晶体的方法
CN113481598B (zh) 一种Zn-P-As晶体材料及其制备方法和应用
CN102000815B (zh) 一种FeAs粉体的负压固相反应制备方法
CN113737279B (zh) 一种黑磷砷晶体的制备方法
CN111978086A (zh) 一种超导新材料的制备方法
CN113481597B (zh) 一种Zn-P-As单晶的制备方法
US11136692B2 (en) Plastic semiconductor material and preparation method thereof
Du et al. Single crystal growth of MgB2 by using Mg-self-flux method at ambient pressure
Zhao et al. A new route for the synthesis of boron-rich rare-earth boride NdB6 under high pressure and high temperature
CN112194105B (zh) 一种碲化镉的制备方法
CN114141427B (zh) 一种掺杂碳提高FeSeTe单晶超导性能的方法
US11629431B2 (en) P-type SnSe crystal capable of being used as thermoelectric refrigeration material and preparation method thereof
CN108425150B (zh) 新型P 基化合物Ag6Ge10P12高热电性能材料的制备方法
CN114094004A (zh) 一种高效率提高半导体载流子浓度的非常规掺杂方法
CN105483431B (zh) 一种高优值的高温热电材料的制备方法
CN114438599A (zh) Bi2Se3基拓扑新材料Ti0.1Bi2Se3单晶及其制备方法
CN116791236A (zh) 一种磷化硼纤维及其制备方法与应用
CN115417385A (zh) 掺杂碲化镉的生产工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant