CN113480994B - 一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离子的应用 - Google Patents

一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离子的应用 Download PDF

Info

Publication number
CN113480994B
CN113480994B CN202110851059.1A CN202110851059A CN113480994B CN 113480994 B CN113480994 B CN 113480994B CN 202110851059 A CN202110851059 A CN 202110851059A CN 113480994 B CN113480994 B CN 113480994B
Authority
CN
China
Prior art keywords
cadmium telluride
telluride quantum
quantum dot
emission
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110851059.1A
Other languages
English (en)
Other versions
CN113480994A (zh
Inventor
雷忠利
刘鑫
刘江涛
杨红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN202110851059.1A priority Critical patent/CN113480994B/zh
Publication of CN113480994A publication Critical patent/CN113480994A/zh
Application granted granted Critical
Publication of CN113480994B publication Critical patent/CN113480994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离子的应用,该量子点是碲粉在无氧条件下与硼氢化钠作用生成碲氢化钠,再与氯化镉、巯基丙酸反应生成巯基修饰的碲化镉量子点。通过控制反应时间和pH值,控制生成尺寸在2~4nm的绿色荧光碲化镉量子点和尺寸在4~7nm的红色荧光碲化镉量子点。通过二氧化硅包覆红色荧光碲化镉量子点使其不与砷离子作用,实现以红色为背景,利用绿色荧光强度变化,对金属砷离子的快速检测。该方法具有灵敏度高、特异性好、稳定性高、响应快、重复性好等优点,其中砷离子的检出限为0.12ppm,并且肉眼可观察明显变化趋势,具有广阔的应用前景。

Description

一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离 子的应用
技术领域
本发明属于纳米材料制备和化学分析检测技术领域,具体涉及一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离子的应用。
背景技术
砷在是常见的污染物之一,自然界中存在有机砷和无机砷,无机砷对人体的危害更大。砷侵入人体后,除由尿液、消化道排泄外,会积聚在肝、肾、脾、头发等处。砷可以诱导细胞癌变,引发肿瘤细胞恶性增殖。并且砷能够通过母体进入未出生婴儿的代谢系统,造成胎儿畸形和其他先天性疾病。无机砷主要以As(III)和As(V)存在,其中,As(III)的危害最大。具体存在形式取决于水体的氧化还原电位和pH。由于以上危害,世界卫生组织(WHO)规定,饮用水中As(III)离子浓度不能超过10ppb。目前,检测As(III)的方法有原子吸收光谱法(AAS)、电感耦合等离子体质谱仪(ICP-MS)、原子荧光光谱(AFS)等,这些检测方法需要借助大型设备,仪器造价昂贵,需要专人维护,检测成本较高,且样品预处理复杂,工作效率较低。因此,发展一种快速、灵敏且成本低廉的As(III)检测手段非常必要。
发明内容
本发明的目的是在于针对目前技术存有的不足,提供一种能够快速检测水中砷离子的双发射碲化镉量子点荧光传感器。利用巯基修饰的碲化镉量子点可与砷离子形成配位化合物导致荧光强度变化,从而达到检测砷离子的目的。并且以二氧化硅包覆的红色碲化镉量子点为背景,提高了肉眼观察荧光颜色变化的灵敏度。
为实现上述目的,本发明的双发射碲化镉量子点荧光传感器是由绿色荧光碲化镉量子点和包覆二氧化硅的红色荧光碲化镉量子点组成;其中,所述绿色荧光碲化镉量子点是尺寸介于2~4nm的黄色固体粉末,其最大激发波长为360nm、最大发射波长为540nm;所述红色荧光碲化镉量子点是尺寸介于4~7nm的褐色固体粉末,其最大激发波长为410nm、最大发射波长为695nm。
上述绿色荧光碲化镉量子点的制备方法为:在无氧条件下,将碲粉、硼氢化钠加入去离子水中,磁力搅拌至黑色碲粉消失,溶液呈透明状停止搅拌,得到碲氢化钠溶液;在无氧条件下,将氯化镉、巯基丙酸加入去离子水中,并加入氢氧化钠调节pH至7~8,然后加入碲氢化钠溶液,冷凝回流反应至溶液荧光呈绿色,停止反应,用无水乙醇洗涤离心,将沉淀烘干,得到黄色固体粉末。
上述红色荧光碲化镉量子点的制备方法为:在无氧条件下,将碲粉、硼氢化钠加入去离子水中,磁力搅拌至黑色碲粉消失,溶液呈透明状停止搅拌,得到碲氢化钠溶液;在无氧条件下,将氯化镉、巯基丙酸加入去离子水中,并加入氢氧化钠调节pH至12~13,然后加入碲氢化钠溶液,冷凝回流至反应溶液荧光呈红色,用无水乙醇洗涤离心,将沉淀烘干,得到褐色固体粉末。
上述制备方法中,所述碲粉与硼氢化钠的质量比为3:3~5,所述氯化镉与巯基丙酸、碲氢化钠的质量比为1:2~3:1~2。
上述包覆二氧化硅的红色荧光碲化镉量子点的制备方法为:将乙醇、红色荧光碲化镉量子点水溶液、3-巯基丙基三甲氧基硅烷混合,搅拌2~3h,先分批次加入正硅酸四乙酯,再分批次加入氨水,搅拌12~15h,加入3-氨丙基三乙氧基硅烷,搅拌12~15h;反应完成后超声分散,分别用乙醇和水洗涤离心至上清液无荧光,将沉淀烘干,得到白色粉末;将所得白色粉末、乙二酸、N-羟基琥珀酰亚胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐加入水中,震荡1~2h,离心,将沉淀烘干。,其中,所述乙醇、量子点水溶液、3-巯基丙基三甲氧基硅烷、正硅酸四乙酯、氨水、3-氨丙基三乙氧基硅烷的体积比为1400~1600:400~600:1~3:70~90:50~70:4~6,其中量子点水溶液的浓度为5mg/mL;所述白色粉末与乙二酸、N-羟基琥珀酰亚胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐的质量比为2~3:2~3:1~2:1~2。
本发明双发射碲化镉量子点荧光传感器可用于快速检测水中砷离子,具体检测方法为:
1、将双发射碲化镉量子点荧光传感器超声分散于去离子水中,使所得分散液中绿色荧光碲化镉量子点的浓度为0.1mg/mL,所述包覆二氧化硅的红色荧光碲化镉量子点的浓度为0.5mg/mL;采用荧光分光光度计检测所得分散液的荧光强度,记为F0;然后加入不同已知浓度的As3+离子标准溶液,再次检测所得分散液的荧光强度,记为F1;建立荧光强度变化F1-F0/F0与As3+离子浓度C之间的线性关系,得到关于As3+离子浓度的标准曲线及标准方程。
2、按照步骤1的方法,将双发射碲化镉量子点荧光传感器超声分散于去离子水中,然后加入含As3+离子的待测样品溶液,检测所得溶液的荧光强度,根据步骤(1)确定的标准方程即可确定待测样品溶液中As3+离子的浓度。
本发明的有益效果如下:
1、在无氧条件下以碲粉、硼氢化钠、氯化镉为原料,通过控制反应时间和pH生成绿色和红色荧光碲化镉量子点,将红色碲化镉量子点包覆在二氧化硅内部,阻断砷离子与碲化镉量子点的作用,又不影响量子点荧光颜色。利用二氧化硅包覆红色荧光碲化镉量子点为背景,发明了一种双发射碲化镉量子点荧光传感器。该传感器检出限低,肉眼可观察明显变化趋势,具有广阔的应用前景。
2、本发明双发射碲化镉量子点荧光传感器用于检测水溶液中As(III),随着待测样品中砷离子的浓度逐渐升高,混合溶液的荧光强度先增强后减弱。该方法与传统的检测方法相比,具有操作简单、灵敏度高、特异性好、稳定性高、响应快、重复性好等优点,其中砷离子的检出限为0.12ppm。
附图说明
图1是实施例1制备的绿色碲化镉量子点的TEM图。
图2是实施例1制备的绿色碲化镉量子点的FT-IR图。
图3是实施例1制备的红色碲化镉量子点的TEM图。
图4是实施例1制备的红色碲化镉量子点的FT-IR图。
图5是实施例1制备的二氧化硅包覆红色碲化镉量子点的TEM图。
图6是实施例1制备的二氧化硅包覆红色碲化镉量点的FT-IR图。
图7是实施例1制备的双发射碲化镉量子点荧光传感器与不同浓度砷离子作用的荧光谱图。
图8是实施例1制备的双发射碲化镉量子点荧光传感器与0~2×10-7g/L砷离子作用的荧光谱图。
图9是实施例1制备的双发射碲化镉量子点荧光传感器与2×10-7~2×10-6g/L砷离子作用的荧光谱图。
图10是实施例1制备的双发射碲化镉量子点荧光传感器与0~2×10-7g/L砷离子作用的荧光信号的标准曲线图。
图11是实施例1制备的双发射碲化镉量子点荧光传感器与2×10-7~8×10-7g/L砷离子作用的荧光信号的标准曲线图。
图12是实施例1制备的双发射碲化镉量子点荧光传感器与不同金属离子的选择性图。
具体实施方式
下面结合具体的实施例对本发明作进一步的详细说明,以使本领域的技术人员更加清楚地理解本发明。但以下内容不应理解为是对本发明的权利要求书请求保护范围的限制。
实施例1
本实施例的双发射碲化镉量子点荧光传感器由绿色荧光碲化镉量子点和包覆二氧化硅的红色荧光碲化镉量子点组成;其中,所述绿色荧光碲化镉量子点是尺寸介于2~4nm的黄色固体粉末,其最大激发波长为360nm、最大发射波长为540nm;所述红色荧光碲化镉量子点是尺寸介于4~7nm的褐色固体粉末,其最大激发波长为410nm、最大发射波长为695nm。该荧光传感器的制备方法如下:
1、制备绿色荧光碲化镉量子点
取三口瓶,第一个口与氮气瓶相连,第二个口用导气管连接硅油,用于排气。搭建好装置后,加入10mL去离子水,通入氮气10min,排除溶解氧,快速加入0.8g碲粉和0.6g硼氢化钠,快速封好瓶口,磁力搅拌,直至黑色碲粉消失,溶液澄清,底部有白色沉淀生成,上清液为碲氢化钠,反应完成。取另一个三口瓶按照上述反应搭建装置,在三口瓶中加入125mL去离子水,通入氮气10min,排除溶解氧,快速加入0.104g氯化镉封好瓶口,磁力搅拌至溶解,用注射器加入0.078mL巯基丙酸,此时溶液呈乳白色,用针头加入1mol/L的氢氧化钠溶液调节pH至7.5,用长针头抽取适量碲氢化钠上清液注入反应体系,100℃回流反应2h,监测溶液荧光颜色为绿色,停止反应,用无水乙醇洗涤离心3次,将沉淀烘干,得到黄色固体粉末,即绿色荧光碲化镉量子点。由图1可见,所得绿色荧光碲化镉量子点尺寸均一,约为2~4nm。图2中3500~3400cm-1处强而宽的吸收峰对应O-H的伸缩振动,2600~2500cm-1微弱的吸收峰是由于巯基中S-H的伸缩振动,靠近1700~1600cm-1处的吸收峰归属于C=O的伸缩振动。
2、制备包覆二氧化硅的红色荧光碲化镉量子点
取三口瓶,第一个口与氮气瓶相连,第二个口用导气管连接硅油,用于排气。搭建好装置后,加入10mL去离子水,通入氮气10min,排除溶解氧,快速加入0.8g碲粉和0.6g硼氢化钠,快速封好瓶口,磁力搅拌,直至黑色碲粉消失,溶液澄清,底部有白色沉淀生成,上清液为碲氢化钠,反应完成。取另一个三口瓶按照上述反应搭建装置,在三口瓶中加入125mL去离子水,通入氮气10min,排除溶解氧,快速加入0.104g氯化镉封好瓶口,磁力搅拌至溶解,用注射器加入0.078mL巯基丙酸,此时溶液呈乳白色,用针头加入1mol/L的氢氧化钠溶液调节pH至12.5,用长针头抽取适量碲氢化钠上清液注入反应体系,100℃反应6h,监测溶液荧光呈红色,停止反应,用无水乙醇洗涤离心3次,将沉淀烘干,得到褐色固体粉末,即红色荧光碲化镉量子点。由图3可见,所得红色荧光碲化镉量子点粒径为4~7nm。图4中3500~3400cm-1处强而宽的吸收峰对应O-H的伸缩振动,2600~2500cm-1微弱的吸收峰是由于巯基中S-H的伸缩振动,靠近1700~1600cm-1处的吸收峰归属于C=O的伸缩振动。
将15mL无水乙醇、5mL浓度为5mg/mL的红色荧光碲化镉量子点水溶液、20μL 3-巯基丙基三甲氧基硅烷,搅拌2h,然后先每30min添加100μL正硅酸四乙酯,共添加8次,再每30min添加150μL氨水,共添加4次。添加完后继续搅拌12h,加入50μL 3-氨丙基三乙氧基硅烷,搅拌12h。反应完成后超声分散15min,再用无水乙醇和去离子水洗涤至上清液无荧光,保留沉淀。将1g沉淀、0.5g乙二酸、0.5g N-羟基琥珀酰亚胺、0.5g 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐加入100mL水中,震荡2h,离心保留沉淀,得到包覆二氧化硅的红色荧光碲化镉量子点。由图5可以看出包覆二氧化硅的红色荧光碲化镉量子点的尺寸均一,分布均匀,粒径在20-40nm。图6中3500~3400cm-1处强儿宽的吸收峰对应O-H的伸缩振动,靠近1800~1650cm-1处的吸收峰归属于C=O的伸缩振动,1650~1560cm-1处的吸收峰为N-H的弯曲振动,1400cm-1处的吸收峰为亚甲基的弯曲振动,1100cm-1处的吸收峰归属于Si-O的伸缩振动。
实施例2
实施例1制备的双发射荧光传感器快速检测水中砷离子的应用,具体方法如下:
1、精确称取5mg包覆二氧化硅的红色荧光碲化镉量子点和1mg绿色荧光碲化镉量子点,超声分散于10mL去离子水中。取1mL混合溶液,采用荧光分光光度计检测所得分散液的荧光强度(设置激发波长为400nm,在450~780nm的波长范围内进行荧光光谱测定),记为F0;然后分别加入1μL浓度为5ppm、10ppm、15ppm、20ppm、20ppm、30ppm、35ppm、40ppm、45ppm、50ppm、55ppm、60ppm、70ppm、80ppm、90ppm、100ppm、110ppm、120ppm、130ppm、140ppm、150ppm、200ppm的As3+离子标准溶液,再次检测所得分散液的荧光强度,记为F1;建立荧光强度变化F1-F0/F0与As3+离子浓度C之间的线性关系,得到关于As3+离子浓度的标准曲线及方程。
如图7所示,随着As3+离子浓度的增加,荧光强度先增强后减弱,具有良好的线性。为便于区分,分别作砷离子浓度为0~2×10-7g/L和砷离子浓度为2×10-7~2×10-6g/L部分的荧光光谱图,见图8和图9。以As3+离子浓度C为横坐标,F1-F0/F0为纵坐标作图,获得标准曲线,图10是砷离子浓度为0~2×10-7g/L的标准曲线,标准方程为:Y=0.01966x-0.00471,相关性系数为R2=0.99805,检出限为0.12ppm;图11是砷离子浓度为2×10-7~2×10-6g/L时F1-F0/F0对C的关系图,其中浓度在2×10-7~8×10-7g/L的标准曲线的标准方程为:Y=-0.0153x+0.66388,相关系数为R2=0.99004。
2、精确称取5mg包覆二氧化硅的红色荧光碲化镉量子点和1mg绿色荧光碲化镉量子点,超声分散于10mL去离子水中,采用荧光分光光度计检测所得分散液的荧光强度(设置激发波长为400nm,在450~780nm的波长范围内进行荧光光谱测定),记作F0;然后加入10μL含As3+离子的待测样品溶液,采用荧光分光光度计检测溶液的荧光强度,记作F1。将测定的F1-F0/F0代入到上述已建立的F1-F0/F0与As3+浓度C的线性方程中,通过计算即可得到待测样品溶液中As3+的浓度。
为了进一步测试该荧光传感器对As3+识别能力的强弱,测试了荧光传感器与不同金属离子的混合溶液的荧光发射光谱,并计算了其F0/F1值,如图12所示。该值在一定程度上可以反应荧光传感器对金属离子的识别能力,其中F0为荧光传感器的荧光发射强度,F1为荧光传感器与浓度均为200ppm的金属离子混合溶液的荧光发射强度。从图12可以看出,荧光传感器对As3+的F0/F1约等于32,而对其他金属离子的F0/F1远小于该值,说明该荧光传感器可以特异性识别As3+

Claims (6)

1.双发射碲化镉量子点荧光传感器快速检测水中砷离子的应用,所述传感器由绿色荧光碲化镉量子点和包覆二氧化硅的红色荧光碲化镉量子点组成;其中,所述绿色荧光碲化镉量子点是尺寸介于2~4nm的黄色固体粉末,其最大激发波长为360nm、最大发射波长为540nm;所述红色荧光碲化镉量子点是尺寸介于4~7nm的褐色固体粉末,其最大激发波长为410nm、最大发射波长为695nm;
具体检测方法为:
(1)将双发射碲化镉量子点荧光传感器超声分散于去离子水中,使所得分散液中绿色荧光碲化镉量子点的浓度为0.1mg/mL,所述包覆二氧化硅的红色荧光碲化镉量子点的浓度为0.5mg/mL;采用荧光分光光度计检测所得分散液的荧光强度,记为F0;然后加入不同已知浓度的As3+离子标准溶液,再次检测所得分散液的荧光强度,记为F1;建立荧光强度变化F1-F0/F0与As3+离子浓度C之间的线性关系,得到关于As3+离子浓度的标准曲线及标准方程;
(2)按照步骤(1)的方法,将双发射碲化镉量子点荧光传感器超声分散于去离子水中,然后加入含As3+离子的待测样品溶液,检测所得溶液的荧光强度,根据步骤(1)确定的标准方程即可确定待测样品溶液中As3+离子的浓度。
2.根据权利要求1所述的双发射碲化镉量子点荧光传感器快速检测水中砷离子的应用,其特征在于:所述绿色荧光碲化镉量子点的制备方法为:在无氧条件下,将碲粉、硼氢化钠加入去离子水中,磁力搅拌至黑色碲粉消失,溶液呈透明状停止搅拌,得到碲氢化钠溶液;在无氧条件下,将氯化镉、巯基丙酸加入去离子水中,并加入氢氧化钠调节pH至7~8,然后加入碲氢化钠溶液,冷凝回流反应至溶液荧光呈绿色,停止反应,用无水乙醇洗涤离心,将沉淀烘干,得到黄色固体粉末。
3.根据权利要求1所述的双发射碲化镉量子点荧光传感器快速检测水中砷离子的应用,其特征在于:所述红色荧光碲化镉量子点的制备方法为:在无氧条件下,将碲粉、硼氢化钠加入去离子水中,磁力搅拌至黑色碲粉消失,溶液呈透明状停止搅拌,得到碲氢化钠溶液;在无氧条件下,将氯化镉、巯基丙酸加入去离子水中,并加入氢氧化钠调节pH至12~13,然后加入碲氢化钠溶液,冷凝回流至反应溶液荧光呈红色,用无水乙醇洗涤离心,将沉淀烘干,得到褐色固体粉末。
4.根据权利要求2或3所述的双发射碲化镉量子点荧光传感器快速检测水中砷离子的应用,其特征在于:所述碲粉与硼氢化钠的质量比为3:3~5,所述氯化镉与巯基丙酸、碲氢化钠的质量比为1:2~3:1~2。
5.根据权利要求3所述的双发射碲化镉量子点荧光传感器快速检测水中砷离子的应用,其特征在于:所述包覆二氧化硅的红色荧光碲化镉量子点的制备方法为:将乙醇、红色荧光碲化镉量子点水溶液、3-巯基丙基三甲氧基硅烷混合,搅拌2~3h,先分批次加入正硅酸四乙酯,再分批次加入氨水,搅拌12~15h,加入3-氨丙基三乙氧基硅烷,搅拌12~15h;反应完成后超声分散,分别用乙醇和水洗涤离心至上清液无荧光,将沉淀烘干,得到白色粉末;将所得白色粉末、乙二酸、N-羟基琥珀酰亚胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐加入水中,震荡1~2h,离心,将沉淀烘干。
6.根据权利要求5所述的双发射碲化镉量子点荧光传感器快速检测水中砷离子的应用,其特征在于:所述乙醇、量子点水溶液、3-巯基丙基三甲氧基硅烷、正硅酸四乙酯、氨水、3-氨丙基三乙氧基硅烷的体积比为1400~1600:400~600:1~3:70~90:50~70:4~6,其中量子点水溶液的浓度为5mg/mL;所述白色粉末与乙二酸、N-羟基琥珀酰亚胺、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐的质量比为2~3:2~3:1~2:1~2。
CN202110851059.1A 2021-07-27 2021-07-27 一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离子的应用 Active CN113480994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110851059.1A CN113480994B (zh) 2021-07-27 2021-07-27 一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离子的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110851059.1A CN113480994B (zh) 2021-07-27 2021-07-27 一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离子的应用

Publications (2)

Publication Number Publication Date
CN113480994A CN113480994A (zh) 2021-10-08
CN113480994B true CN113480994B (zh) 2022-12-27

Family

ID=77942868

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110851059.1A Active CN113480994B (zh) 2021-07-27 2021-07-27 一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离子的应用

Country Status (1)

Country Link
CN (1) CN113480994B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198447B (zh) * 2014-07-24 2017-06-27 江苏大学 一种双发射比率型量子点荧光探针及其制备方法和应用
CN107118763A (zh) * 2017-05-19 2017-09-01 浙江工业大学 一种双发射比率型荧光探针及其制备与应用
CN110835527A (zh) * 2019-10-24 2020-02-25 江苏大学 一种基于碲化镉荧光印迹材料的制备方法及其应用
CN113004894B (zh) * 2021-03-19 2022-11-29 陕西师范大学 一种巯基修饰的青色荧光碳量子点及其快速检测水中砷离子的应用

Also Published As

Publication number Publication date
CN113480994A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN104927867B (zh) 一种二价铜离子的比率荧光探针及其制备方法和应用
CN109181681B (zh) 一种检测次氯酸的有机硅高分子荧光探针及其制备方法
CN111208101B (zh) 一种基于黄酮苷及其衍生物合成的碳量子点便捷式检测铝离子的方法
CN110286224B (zh) 一种基于上转换-金纳米-磁性纳米特异性体系的茶叶中铅含量检测方法
CN111334293A (zh) 黄光发射荧光探针及其制备方法、选择性检测铁离子和PPi的方法以及细胞成像方法
CN108949171B (zh) 一种稀土碳纳米粒子及其制备方法和基于荧光色度测定pH值的应用
CN109777408A (zh) 一种高荧光量子产率氮掺杂碳点及其制备方法和应用
CN115825037B (zh) 一种水凝胶负载金纳米粒子sers基底的制备方法及应用
CN113758910B (zh) 一种测定醋醅中黄曲霉毒素b1的拉曼增强光谱方法
Zheng et al. A highly sensitive and selective fluorescent Cu2+ sensor synthesized with silica nanoparticles
CN109324029B (zh) 基于谷胱甘肽功能化的金纳米团簇探针检测三聚氰胺浓度的方法
CN113480994B (zh) 一种双发射碲化镉量子点荧光传感器及其快速检测水中砷离子的应用
CN109187454A (zh) 一种茶叶中风险物质氟的荧光检测方法
CN113960002A (zh) 一种铅离子的检测方法
Huang et al. Aqueous synthesis of CdTe quantum dots by hydride generation for visual detection of silver on quantum dot immobilized paper
CN113376129A (zh) 一种用于检测铁离子的碳点基纳米复合物的制备方法及应用
CN109705029B (zh) 羟基吡啶酮类化合物修饰的碳量子点及其制备和应用
Shahamirifard et al. Design and construction of a new optical solid-state mercury (II) sensor based on PVC membrane sensitized with colloidal carbon dots
CN107632000B (zh) 水杨酸掺杂二氧化硅铁离子荧光传感器、制备方法及应用
CN109971478B (zh) 铽离子掺杂的纳米颗粒用于荧光双波长检测多巴胺的方法
Sun et al. Inner filter effect-based upconversion fluorescence sensing of sulfide ions
CN114018878B (zh) 一种基于三通道荧光阵列传感检测汞离子、镉离子和/或铅离子的方法
CN113340862B (zh) 荧光分子传感器及制法、水中痕量铀酰离子的检测方法
CN112500847B (zh) 一种基于量子点荧光共振能量转移体系的镉离子探针及其制备方法
CN110530837B (zh) 一种利用拉曼光谱快速检测白酒中氰化物的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant