CN113960002A - 一种铅离子的检测方法 - Google Patents

一种铅离子的检测方法 Download PDF

Info

Publication number
CN113960002A
CN113960002A CN202111216748.1A CN202111216748A CN113960002A CN 113960002 A CN113960002 A CN 113960002A CN 202111216748 A CN202111216748 A CN 202111216748A CN 113960002 A CN113960002 A CN 113960002A
Authority
CN
China
Prior art keywords
manganese
detection method
sample
buffer solution
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111216748.1A
Other languages
English (en)
Other versions
CN113960002B (zh
Inventor
李德慧
林贺
林喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Chinese Medicine
Original Assignee
Changchun University of Chinese Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Chinese Medicine filed Critical Changchun University of Chinese Medicine
Priority to CN202111216748.1A priority Critical patent/CN113960002B/zh
Priority claimed from CN202111216748.1A external-priority patent/CN113960002B/zh
Publication of CN113960002A publication Critical patent/CN113960002A/zh
Application granted granted Critical
Publication of CN113960002B publication Critical patent/CN113960002B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • G01N2021/641Phosphorimetry, gated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及分析检测技术领域,特别涉及一种铅离子的检测方法。该检测方法包括如下步骤:将待检样品、硫代甘油修饰的锰掺杂硫化锌量子点水溶液与缓冲液混合,反应10~20min后,测定混合溶液的荧光强度比;通过磷光增强法得到待检样品中铅离子的浓度。本发明采用Mn:ZnS@TG量子点做为探针,对环境友好,Pb2+离子可以选择性的使该量子点的磷光增敏,且随着Pb2+离子浓度增大,荧光强度增强。利用这一光学性质对Pb2+离子进行检测,检测限17.3nM。该方法具有简便、快速和灵敏的优势。

Description

一种铅离子的检测方法
技术领域
本发明涉及分析检测技术领域,特别涉及一种铅离子的检测方法。
背景技术
铅是汽油、电池和工业色素等主要环境污染物之一,对人体健康造成严重危害,包括肌肉麻痹、记忆丧失、贫血、心血管功能障碍和精神疾病等。因此,定量、灵敏的检测非常重要,尤其是在水环境中。现今已经开发了许多检测铅离子(Pb2+)的技术,如原子吸收光谱(AAS)、高效液相色谱法、电感耦合等离子发射光谱-质谱联合法、等离子体原子发射光谱、表面增强拉曼光谱、阳极溶出伏安法、比色、生化和电化学技术。比色法优点是设备简单,容易推广,但精确度差。高效液相色谱法具有高选择性,高分离效能,高灵敏度等优点,但络合剂选择有限,限制此法广泛应用。其他的方法各有其优点,但仍存在着操作复杂,样品处理繁琐和仪器成本昂贵等局限,而且检测过程比较耗时,不能实现快速检测。因此,开发新的Pb2+实时检测方法是非常必要的。近年来,光谱法以其简单、低成本和高灵敏度、高选择性等优点引起了人们的广泛关注。裸眼荧光传感器检测Pb2+在临床毒理学、环境监测和工业过程监测等领域具有广阔的应用前景。
半导体量子点由于其独特的光学和电子特性,如荧光稳定性、宽激发光谱、窄对称和可调发射光谱等,可以替代有机分子染料作为荧光探针而广泛应用于金属离子检测。但多为含镉量子点。由于含镉量子点具有很强的毒性和环境问题,限制了其生物应用和大规模的工业应用,因此不含镉量子点(如锰掺杂硫化锌等)由于毒性低和自身卓越的光学性能成为科研工作者关注的重点。目前以锰掺杂硫化锌量子点为探针对Pb2+离子检测,多是通过荧光淬灭来识别、检测Pb2+离子。但荧光(磷光)淬灭模式容易产生假阳性信号,因为外界的其他因素也可能使探针荧光淬灭。
发明内容
有鉴于此,本发明提供了一种铅离子的检测方法。该方法采用环境友好的锰掺杂硫化锌为探针,通过磷光增强效应可以有效选择性识别、检测水溶液中的微量铅离子,具有高度的专一性以及稳定性。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种铅离子的检测方法,包括如下步骤:
将待检样品、硫代甘油修饰的锰掺杂硫化锌量子点水溶液与缓冲液混合,反应10~20min后,测定混合溶液的荧光强度比;
通过磷光增强法得到待检样品中铅离子的浓度。
在本发明中,缓冲液为Tris-HCl缓冲液、PBS缓冲液、柠檬酸盐缓冲液中的一种或几种。
作为优选,缓冲液的浓度为5~15mM。
在本发明提供的具体实施例中,缓冲液的浓度为10mM。
作为优选,缓冲液的pH为8.0~9.0。
优选地,缓冲液的pH为8.5。
作为优选,硫代甘油修饰的锰掺杂硫化锌量子点水溶液的浓度为5~9mmol/L。
作为优选,待检样品为水样,待检样品、硫代甘油修饰的锰掺杂硫化锌量子点水溶液与缓冲液的体积比为(1~100):(10~100):(500~1000)。
优选地,待检样品为水样,待检样品、硫代甘油修饰的锰掺杂硫化锌量子点水溶液与缓冲液的体积比为(10~60):(40~60):(800~1000)。
作为优选,反应的时间为15min。
作为优选,荧光强度比的检测波长为550~650nm。
优选地,荧光强度比的检测波长为590~600nm。
更优选地,荧光强度比的检测波长为596nm。
在本发明中,硫代甘油修饰的锰掺杂硫化锌量子点的制备方法为:
(1)将锌盐、锰盐和硫代甘油混合,调节pH值至10.0~11.0,通入氮气20~40min;
(2)将硫化钠与步骤(1)所得混合溶液混合,加热回流15~25h;
(3)待步骤(2)反应液冷却后,加入乙醇,离心,得到沉淀。
作为优选,锌盐选自醋酸锌、硫酸锌或硝酸锌,锰盐选自醋酸锰、硫酸锰或硝酸锰。
本发明提供了一种铅离子的检测方法。该检测方法包括如下步骤:将待检样品、硫代甘油修饰的锰掺杂硫化锌量子点水溶液与缓冲液混合,反应10~20min后,测定混合溶液的荧光强度比;通过磷光增强法得到待检样品中铅离子的浓度。本发明具有如下优点:
采用Mn:ZnS@TG量子点做为探针,对环境友好,Pb2+离子可以选择性的使该量子点的磷光增敏,且随着Pb2+离子浓度增大,荧光强度增强。利用这一光学性质对Pb2+离子进行检测,检测限17.3nM。该方法具有简便、快速和灵敏的优势。
附图说明
图1合成Mn:ZnS量子点的X射线衍射图;
图2Mn:ZnS量子点的透射电子显微镜图;
图3Mn:ZnS量子点的X射线能谱分析图;
图4Mn:ZnS量子点的吸收光谱和荧光光谱;
图5pH对体系荧光强度的影响;
图6在Pb2+存在下,不同时间对反应体系的影响;
图7不同金属离子存在时对Mn:ZnS量子点荧光强度的影响;
图8在不同Pb2+浓度下,Mn:ZnS量子点的荧光强度;
图9铅离子浓度和体系荧光强度的朗缪尔等温线。
具体实施方式
本发明公开了一种铅离子的检测方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及应用已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法和应用进行改动或适当变更与组合,来实现和应用本发明技术。
术语解释:
量子点:主要是粒径为2-10nm左右的无机半导体粒子,因其尺寸小于或接近其激子波尔半径而能够表现出异于体相材料的光、电、磁学性质。
磷光:是一种缓慢发光的光致冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度),然后缓慢地退激发并发出比入射光的波长长的出射光。
本发明中所用试剂或仪器均可由市场购得。试剂与仪器包括:
X射线衍射(XRD)表征在BrukerD8 X-rayXRD射线衍射仪上进行,CuKα射线
Figure BDA0003310957990000041
样品是空气中于载玻片上滴加浓度较高的CISe纳米晶胶体并静置挥发而得到的薄膜。紫外-可见吸收光谱通过Cary 50UV-vis分光光度计(Varian,美国)进行测定,荧光光谱由Perkin-Elmer LS-55荧光光谱仪(Perkin-Elmer,美国)测定。透射电子显微镜(TEM)图像在Tecnai G2 F20(FEI,美国)透射电子显微镜上获得,加速电压设为200kV。为了防止样品在干燥过程中出现团聚,制备样品时在碳膜覆盖的铜网下方接触一张干净的滤纸以吸走水分而使纳米粒子留在铜网表面。ICP-MS(ICPOES-MS,Thermo Jarrell-AshCorporation,Franklin,MA,USA)法分析消化处理后的组成。
下面结合实施例,进一步阐述本发明:
实施例1 Mn:ZnS@TG量子点的制备
1.硫代甘油修饰的锰掺杂硫化锌(Mn:ZnS@TG)量子点的合成
该量子点的制备采用了Kim等人提出的方法(M.Geszke-Moritz,H.Piotrowska,M.Murias,L.Balan,M.Moritz,J.Lulek,R.Schneider,Thioglycerol-capped Mn-dopedZnS quantum dot bioconjugates as efficient two-photon fluorescent nano-probesfor bioimaging,J.Mater.Chem.B,1(2013)698–706.),具体如下:
(1)配制浓度为1mol/L的醋酸锌水溶液5mL;
(2)配制浓度为1mol/L的醋酸锰水溶液1.5mL;
(3)配制浓度为1mol/L的硫代甘油溶液20mL;
(4)配制浓度为1mol/L的硫化钠水溶液4.5mL;
(5)将(1)、(2)、(3)三种溶液混合,并用2mol/L的NaOH溶液调其pH值至10.3,通入氮气30min;
(6)将步骤(4)得到的溶液快速注入步骤(5)中的混合溶液中,加热回流20h。
(7)待反应液冷却至室温后,加入乙醇30mL,离心分离。将沉淀再次溶于24mL超纯水中,即得到纯化后的量子点的水溶液。纯化后的Mn:ZnS@TG量子点用于各项表征和测试。
2.量子点表征及性能测试
(1)结构表征
为了得到样品的结构信息,使用X射线粉末衍射仪对样品进行了X射线衍射(XRD)分析,如图1所示(图中作为参考的是立方ZnS的标准衍射图JCPDS 65-0309)。从图中可以看出,所得样品的衍射峰均较宽,这是纳米晶体固有的特征。与ZnS材料的标准卡片(JCPDS65-0309)对照后,表明合成的Mn:ZnS量子点具有立方闪锌矿结构(F-43m(No.216)),晶格常数是
Figure BDA0003310957990000051
Figure BDA0003310957990000052
没有观察到任何其它的杂质峰,表明Mn2+掺杂进入到ZnS的主体中,而没有引起结构上的改变。
(2)Mn:ZnS量子点的形貌
使用透射电子显微镜(TEM)对所得的立方相Mn:ZnS量子点的形貌和分散情况进行了表征。从TEM图中可以看出合成的Mn:ZnS量子点呈球状,在水中分散性很好,粒径较为均一,平均粒径为2.12±0.350nm(图2)。
(3)Mn:ZnS量子点的成分分析
为验证Mn掺杂到ZnS量子点中,对样品还进行了EDX能谱的表征。图3是样品的EDX能谱,从谱中可以看出合成出的样品中,除了探测器和碳膜基底的信号,只含有这三种元素,说明Mn掺杂到ZnS量子点的主体晶格中。
(4)Mn:ZnS量子点的光学性质
图4为室温下Mn:ZnS量子点的吸收光谱和荧光光谱。从图中可以看出,该量子点在596nm处出现强发射峰,此发射来自杂质原子Mn的4T1→6A1跃迁。说明Mn2+的3d5电子与ZnS母体中的s-p电子发生了较强的耦合,使得能量有效地从ZnS母体转移到Mn2+离子上。
实施例2铅离子的检测步骤
向900μL tris缓冲液(10mM,pH 8.5)中加入50μL Mn:ZnS@TG量子点水溶液和50μL不同浓度的Pb2+溶液。混合均匀后加水使得最终体积为1mL,静置反应10~20分钟后,测定荧光光谱。
实施例3 Mn:ZnS量子点检测Pb2+离子
(一)实验条件优化
1.pH值对体系荧光强度的影响
量子点的发光性质依赖于其表面结构的性质,而环境中的酸碱性直接影响其表面结构。考察了pH值对体系荧光强度的影响,结果显示不同的pH值对Mn:ZnS量子点荧光强度的影响不同。图5为不同pH条件下体系荧光强度的变化。从图中可以看到,在pH=8.5时,体系的荧光强度比I/I0的上升是最高的(这里,I和I0分别表示在Pb2+共存与不共存时Mn:ZnS量子点的荧光强度)。虽然在pH=9时,荧光强度比I/I0也在上升,考虑到碱性条件下,金属离子易生成氢氧化物沉淀,所以在本实验中,选择pH=8.5的Tris-HCl缓冲溶液。
2.反应时间的影响
图6为Pb2+溶液加入Mn:ZnS量子点后反应时间对反应体系的影响。从图中可以看出,当加入Pb2+离子后,Mn:ZnS量子点的荧光强度在15min前上升的非常明显,但此后,荧光强度开始下降,因此,选择15min作为实验的最佳反应时间。
(二)Mn:ZnS量子点检测Pb2+离子
1.金属离子选择性测试
在相同实验条件下,考察了金属离子对体系发光性能的影响。在之前的以量子点作为金属离子的荧光探针研究中选择最多的干扰离子为Zn2+、K+、Na+、Ca2+、Mg2+、Cu2+、As3+、Fe3+、Ag+、Cd2+和Hg2+,因此该方法选择以上金属离子来研究量子点检测Pb2+的选择性。如图7所示,Zn2+、K+、Na+、Ca2+、Mg2+、As3+、Fe3+、Ag+、Cd2+和Hg2+对体系荧光强度影响不大。从图中还可以看出仅Cu2+加入产生与Pb2+相似的现象,但荧光增强幅度较低;从以上的结果可以看出用Mn:ZnS量子点作为荧光探针来检测Pb2+具有很好的选择性。
2.Pb2+对Mn:ZnS量子点的荧光增强效应
由图8可知,Pb2+对Mn:ZnS量子点有荧光增强效应,即随着Pb2+浓度的增大,Mn:ZnS量子点的荧光强度逐渐增强。在优化实验条件下,测定的工作曲线,如图9所示,其线性回归方程为c(Pb2+)/I=0.01959c(Pb2+)+0.02862,线性范围为5×10-6~100nmol/L,相关系数为0.99701,方法检测限为17.3nM。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种铅离子的检测方法,其特征在于,包括如下步骤:
将待检样品、硫代甘油修饰的锰掺杂硫化锌量子点水溶液与缓冲液混合,反应10~20min后,测定混合溶液的荧光强度比;
通过磷光增强法得到待检样品中铅离子的浓度。
2.根据权利要求1所述的检测方法,其特征在于,所述缓冲液为Tris-HCl缓冲液、PBS缓冲液、柠檬酸盐缓冲液中的一种或几种。
3.根据权利要求1所述的检测方法,其特征在于,所述缓冲液的浓度为5~15mM。
4.根据权利要求1所述的检测方法,其特征在于,所述缓冲液的pH为8.0~9.0。
5.根据权利要求1所述的检测方法,其特征在于,所述缓冲液的pH为8.5。
6.根据权利要求1所述的检测方法,其特征在于,所述硫代甘油修饰的锰掺杂硫化锌量子点水溶液的浓度为5~9mmol/L。
7.根据权利要求1所述的检测方法,其特征在于,所述待检样品为水样,待检样品、硫代甘油修饰的锰掺杂硫化锌量子点水溶液与缓冲液的体积比为(1~100):(10~100):(500~1000)。
8.根据权利要求1至7中任一项所述的检测方法,其特征在于,所述荧光强度比的检测波长为550~650nm。
9.根据权利要求1所述的检测方法,其特征在于,所述硫代甘油修饰的锰掺杂硫化锌量子点的制备方法为:
(1)将锌盐、锰盐和硫代甘油混合,调节pH值至10.0~11.0,通入氮气20~40min;
(2)将硫化钠与步骤(1)所得混合溶液混合,加热回流15~25h;
(3)待步骤(2)反应液冷却后,加入乙醇,离心,得到沉淀。
10.根据权利要求9所述的检测方法,其特征在于,所述锌盐选自醋酸锌、硫酸锌或硝酸锌,所述锰盐选自醋酸锰、硫酸锰或硝酸锰。
CN202111216748.1A 2021-10-19 一种铅离子的检测方法 Active CN113960002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111216748.1A CN113960002B (zh) 2021-10-19 一种铅离子的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111216748.1A CN113960002B (zh) 2021-10-19 一种铅离子的检测方法

Publications (2)

Publication Number Publication Date
CN113960002A true CN113960002A (zh) 2022-01-21
CN113960002B CN113960002B (zh) 2024-10-25

Family

ID=

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486832A (zh) * 2022-01-25 2022-05-13 福建师范大学 一种新型检测溶液体系中汞离子和镉离子含量的方法
CN116478685A (zh) * 2023-05-11 2023-07-25 安徽工业大学 一种多种含磷物质同步定量的荧光探针、制备方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520126A (zh) * 2016-10-31 2017-03-22 武汉大学 基于掺杂离子发光机制的汞离子探针及其合成方法与应用
CN106893580A (zh) * 2017-02-15 2017-06-27 西华师范大学 一种可检测重金属离子的聚合物量子点及其制备方法
CN107643271A (zh) * 2017-08-04 2018-01-30 华南师范大学 一种水杨酸‑Mn掺杂ZnS量子点复合纳米粒子比率型荧光探针及其制备方法和应用
CN108458998A (zh) * 2018-01-29 2018-08-28 山西大学 一种基于免标记荧光增强的适配体dna银纳米簇测定铅离子的方法
CN108593614A (zh) * 2018-04-28 2018-09-28 暨南大学 巯基丙酸修饰锰掺杂硫化锌量子点在铜离子检测中的应用
CN111100629A (zh) * 2019-12-20 2020-05-05 云南大学 一种氧化锌/硫化锌复合量子点荧光探针的制备方法和应用
CN111562246A (zh) * 2020-06-29 2020-08-21 中南林业科技大学 一种光辐照Mn:ZnSe@ZnS量子点光电传感器及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520126A (zh) * 2016-10-31 2017-03-22 武汉大学 基于掺杂离子发光机制的汞离子探针及其合成方法与应用
CN106893580A (zh) * 2017-02-15 2017-06-27 西华师范大学 一种可检测重金属离子的聚合物量子点及其制备方法
CN107643271A (zh) * 2017-08-04 2018-01-30 华南师范大学 一种水杨酸‑Mn掺杂ZnS量子点复合纳米粒子比率型荧光探针及其制备方法和应用
CN108458998A (zh) * 2018-01-29 2018-08-28 山西大学 一种基于免标记荧光增强的适配体dna银纳米簇测定铅离子的方法
CN108593614A (zh) * 2018-04-28 2018-09-28 暨南大学 巯基丙酸修饰锰掺杂硫化锌量子点在铜离子检测中的应用
CN111100629A (zh) * 2019-12-20 2020-05-05 云南大学 一种氧化锌/硫化锌复合量子点荧光探针的制备方法和应用
CN111562246A (zh) * 2020-06-29 2020-08-21 中南林业科技大学 一种光辐照Mn:ZnSe@ZnS量子点光电传感器及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MALGORZATA GESZKE-MORITZ;HANNA PIOTROWSKA;MAREK MURIAS: "Thioglycerol-capped Mn-doped ZnS quantum dot bioconjugates as efficient two-photon fluorescent nano-probes for bioimaging", vol. 1, no. 5 *
WENJIE JING;YUEXIANG LU;GUANGCAI YANG;FEIYANG WANG;LIUYING HE;YUEYING LIU: "Fluorescence sensor array based on amino acids-modulating quantum dots for the discrimination of metal ions", vol. 985, pages 1 - 7 *
李玉美;罗迎春;班睿;杜海军;: "Mn掺杂ZnS量子点的制备及其在生物传感中的应用研究进展", 化工新型材料, no. 02 *
陈娟;孙洁芳;郭磊;谢剑炜;孙国祥: "锰掺杂硫化锌量子点室温磷光检测铅离子", 分析化学, no. 011 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114486832A (zh) * 2022-01-25 2022-05-13 福建师范大学 一种新型检测溶液体系中汞离子和镉离子含量的方法
CN114486832B (zh) * 2022-01-25 2024-03-26 福建师范大学 一种检测溶液体系中汞离子和镉离子含量的方法
CN116478685A (zh) * 2023-05-11 2023-07-25 安徽工业大学 一种多种含磷物质同步定量的荧光探针、制备方法及装置
CN116478685B (zh) * 2023-05-11 2024-03-29 安徽工业大学 一种多种含磷物质同步定量的荧光探针、制备方法及装置

Similar Documents

Publication Publication Date Title
Liu et al. Hydrothermal synthesis of green fluorescent nitrogen doped carbon dots for the detection of nitrite and multicolor cellular imaging
Chen et al. A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters
Miao et al. Facile synthesis of carbon nanodots from ethanol and their application in ferric (III) ion assay
Chen et al. Synthesis of novel nanocrystals as fluorescent sensors for Hg2+ ions
Wang et al. Fabrication of an “ion-imprinting” dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions
Zhang et al. Copper nanoclusters with strong fluorescence emission as a sensing platform for sensitive and selective detection of picric acid
Dong et al. Synthesis and characterization of the water-soluble silica-coated ZnS: Mn nanoparticles as fluorescent sensor for Cu2+ ions
Chen et al. Development of a portable device for Ag+ sensing using CdTe QDs as fluorescence probe via an electron transfer process
CN110161009B (zh) 二氧化锡量子点检测污水中重金属离子的应用及检测方法
Dai et al. One-pot synthesis of bovine serum albumin protected gold/silver bimetallic nanoclusters for ratiometric and visual detection of mercury
Zhang et al. Fluorescent method for the determination of sulfide anion with ZnS: Mn quantum dots
Zhang et al. Highly selective and sensitive nanoprobes for cyanide based on gold nanoclusters with red fluorescence emission
Wang et al. Highly sensitive and selective cartap nanosensor based on luminescence resonance energy transfer between NaYF4: Yb, Ho nanocrystals and gold nanoparticles
Xu et al. A quantum dot-based “off–on” fluorescent probe for biological detection of zinc ions
Chen et al. Ultrasensitive mercury (II) ion detection by europium (III)-doped cadmium sulfide composite nanoparticles
Adinarayana et al. Facile green synthesis of silicon nanoparticles from Equisetum arvense for fluorescence based detection of Fe (III) ions
Long et al. A novel fluorescent biosensor for detection of silver ions based on upconversion nanoparticles
Chen et al. A ratiometric fluorescence nanosensor for highly selective and sensitive detection of selenite
Shang et al. Functionalized manganese-doped zinc sulfide quantum dot-based fluorescent probe for zinc ion
He et al. Ratiometric determination of copper (II) using dually emitting Mn (II)-doped ZnS quantum dots as a fluorescent probe
Xie et al. Silica-anchored cadmium sulfide nanocrystals for the optical detection of copper (II)
Ensafi et al. Label-free and turn-on fluorescent cyanide sensor based on CdTe quantum dots using silver nanoparticles
Li et al. Silver ion-doped CdTe quantum dots as fluorescent probe for Hg 2+ detection
Gan et al. Mercaptopropionic acid-capped Mn-doped ZnS quantum dots as a probe for selective room-temperature phosphorescence detection of Pb 2+ in water
Wang et al. Facile synthesis of fluorescent polyaniline microspheres and their use for the detection of mercury ions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant