CN113480315B - 一种高熵低硼化物陶瓷及其制备方法 - Google Patents

一种高熵低硼化物陶瓷及其制备方法 Download PDF

Info

Publication number
CN113480315B
CN113480315B CN202110710799.3A CN202110710799A CN113480315B CN 113480315 B CN113480315 B CN 113480315B CN 202110710799 A CN202110710799 A CN 202110710799A CN 113480315 B CN113480315 B CN 113480315B
Authority
CN
China
Prior art keywords
powder
entropy
boride
sintering
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110710799.3A
Other languages
English (en)
Other versions
CN113480315A (zh
Inventor
战再吉
秦启蒙
曹海要
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202110710799.3A priority Critical patent/CN113480315B/zh
Publication of CN113480315A publication Critical patent/CN113480315A/zh
Application granted granted Critical
Publication of CN113480315B publication Critical patent/CN113480315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种高熵低硼化物陶瓷及其制备方法,属于高熵陶瓷技术领域,所述高熵低硼化物陶瓷(NbCrMoWFe)B0.8为单相四方结构,其制备方法主要包括两个步骤:将各原料粉末混合均匀,制备得到混合粉末;采用热压烧结技术,将制备的混合粉末放入导热性能良好的石墨模具中进行固相反应烧结,烧结结束后,冷却至室温,得到高熵陶瓷(NbCrMoWFe)B0.8。本发明利用硼化物和纯金属粉末为原料制备了块状高熵低硼化物,可以有效便利的控制体系中硼元素的含量;采用了较低熔点的纯金属元素作为粘结相,有效降低烧结温度,利用硼化物在烧结过程中可以保持良好的热稳定性,得到的高熵陶瓷致密性好、硬度高。

Description

一种高熵低硼化物陶瓷及其制备方法
技术领域
本发明涉及一种高熵低硼化物陶瓷及其制备方法,属于高熵陶瓷技术领域。
背景技术
随着人们对材料性能要求的不断提高,单一组元陶瓷材料已经无法满足当前的使用需求。为了发展在极端条件下使用的新型陶瓷材料,在传统超高温复相陶瓷体系的基础之上,应用高熵合金设计思想制备的新型高熵陶瓷已成为近期的研究热点。按照化学成分分类,可以分为氧化物高熵陶瓷和非氧化物高熵陶瓷。氧化物高熵陶瓷可以按照晶体结构进行分类,如岩盐型结构、萤石型结构、钙钛矿型结构、尖晶石型结构高熵陶瓷等。非氧化物高熵陶瓷按照成分分类,包括碳化物、硼化物、氮化物和硅化物高熵陶瓷等,这些高熵陶瓷具有优异的性能包括:低的热传导率、高熔点、高硬度、较优异的力学性能和理化稳定性,在热电、航空航天、核能和高速切削加工等极端环境有着广阔的应用前景。
其中过渡族金属硼化物是目前研究较多的非氧化物高熵陶瓷之一,硼化物陶瓷及其复合材料作为一种重要的高新材料,具有极其优异的性能,包括:高熔点、高硬度、良好的抗氧化性和耐磨性,可以用于硬质工具材料、耐磨及耐腐蚀部件,并且硼化物陶瓷还具有优异的电性能,可以作为惰性电极和高温电极材料。现有的制备高熵硼化物的方式通常为纯的金属粉末和硼粉之间的固相扩散反应,或者是通过硼热或硼碳热还原预先制备前驱体,烧结所需要的驱动力较大,工艺步骤较复杂,尤其是对含有W、Mo、Nb等难熔金属元素的体系,通常在2000℃以上才能实现材料的致密化,形成单一的固溶体相。
发明内容
本发明的目的是提供一种高熵低硼化物陶瓷及其制备方法,制备单相四方结构的高熵低硼化物陶瓷(NbCrMoWFe)B0.8
为了实现上述目的,本发明采用的技术方案是:
一种高熵低硼化物陶瓷,所述高熵低硼化物陶瓷为单相四方结构,原子百分比表达式为(NbCrMoWFe)B0.8
一种制备所述高熵低硼化物陶瓷的方法,包括以下步骤:
S1:将各原料粉末混合均匀,制备得到混合粉末;
S2:采用热压烧结技术,将步骤S1制备的混合粉末放入导热性能良好的石墨模具中进行固相反应烧结,烧结结束后,冷却至室温,得到高熵陶瓷(NbCrMoWFe)B0.8
本发明技术方案的进一步改进在于:所述原料粉末分别Nb粉、Fe粉、MoB粉、WB粉和CrB2粉,各粉末纯度均高于99.5%。
本发明技术方案的进一步改进在于:所述Nb、Fe、MoB、WB和CrB2的摩尔比为1:1:1:1:1。
本发明技术方案的进一步改进在于:所述Fe粉的粒度为35~40μm,Nb粉的粒度为5~10μm,MoB粉的粒度为10~15μm,WB粉的粒度为10~15μm,CrB2粉的粒度为3~5μm。
本发明技术方案的进一步改进在于:所述步骤S1的具体制备步骤为:
S11:将各原料粉末按照等摩尔比例进行称量;
S12:将S11称量的粉末装入玛瑙球磨罐中,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气;
S13:采用行星式球磨机对原料混合粉末进行球磨,转速为220r/min,球磨时间为10h。
本发明技术方案的进一步改进在于:所述步骤S2中的热压烧结温度为1400~1600℃,升温速率为10℃/min,升到烧结温度后保温时间为2h。
本发明技术方案的进一步改进在于:所述步骤S2中,烧结的升温过程采用10MPa的预压力,升到温度后采用30MPa保压,在烧结过程中石墨模具中的真空度需保持低于1.8×10-2Pa
由于采用了上述技术方案,本发明取得的技术效果有:
本发明利用硼化物和纯金属粉末为原料制备了块状高熵低硼化物,采用了较低熔点的纯金属元素作为粘结相,纯金属在高温环境下为熔融状态,将固相硼化物粉末完全包围,增大了各组分之间的接触面积,更有利于元素之间的扩散,可以有效的降低烧结温度。
本发明采用CrB2、MoB和WB粉末作为高熵硼化物陶瓷中硼元素的来源,可以有效便利的控制体系中硼元素的含量。本发明利用硼化物熔点较高,在烧结过程中可以保持良好的热稳定性的特点,并通过加入熔点较低的纯金属降低烧结所需要的动力,可以使高熵陶瓷在较低温度下致密成型,且能获得单一的固溶体相。
本发明制备的高熵低硼化物陶瓷(NbCrMoWFe)B0.8为单相四方结构,高熵陶瓷致密性好、硬度高,具有极高的应用价值。
附图说明
图1是本发明的实例2制备的(NbCrMoWFe)B0.8陶瓷的XRD图;
图2是本发明的实例2制备的(NbCrMoWFe)B0.8陶瓷的SEM和EDS图;
图3是本本发明制备的(NbCrMoWFe)B0.8陶瓷的硬度随烧结温度变化曲线。
具体实施方式
下面结合附图及具体实施例对本发明做进一步详细说明:
一种高熵低硼化物陶瓷,所述高熵低硼化物陶瓷为单相四方结构,原子百分比表达式为(NbCrMoWFe)B0.8
一种制备所述高熵低硼化物陶瓷的方法,包括以下步骤:
S1:将各原料粉末混合均匀,制备得到混合粉末:
S11:将各原料粉末按照等摩尔比例进行称量,所述原料粉末分别Nb粉、Fe粉、MoB粉、WB粉和CrB2粉,各粉末纯度均高于99.5%,所述Fe粉的粒度为35~40μm,Nb粉的粒度为5~10μm,MoB粉的粒度为10~15μm,WB粉的粒度为10~15μm,CrB2粉的粒度为3~5μm;
S12:将S11称量的粉末装入玛瑙球磨罐中,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气;
S13:采用行星式球磨机对原料混合粉末进行球磨,转速为220r/min,球磨时间为10h。
S2:采用热压烧结技术,将步骤S13得到的混合粉末放入导热性能良好的石墨模具中进行固相反应烧结,用石墨纸包覆在石墨模具的内壁和与粉末接触的部位,在烧结过程中石墨模具中的真空度需保持低于1.8×10-2Pa;烧结温度为1400~1600℃,升温速率为10℃/min,升温过程采用10MPa的预压力,升到烧结温度后保温时间为2h,并采用30MPa保压。烧结结束后,冷却至室温,得到高熵陶瓷(NbCrMoWFe)B0.8
实施例1:
一种高熵低硼化物陶瓷(NbCrMoWFe)B0.8为单相四方结构。
制备所述高熵低硼化物陶瓷(NbCrMoWFe)B0.8的方法,包括以下步骤:
S1:制备所需混合粉末:
S11:准备原料粉末:Fe粉、Nb粉、MoB粉、WB粉和CrB2粉,原料粉末的摩尔比例为Nb:Fe:MoB:WB:CrB2=1:1:1:1:1,用天平分别称量4.4gCrB2粉,6.4MoB粉,11.7gWB粉,5.6gNb粉和3.4gFe粉;
S12:将S11称量的粉末置于玛瑙球磨罐中,加入157.5g玛瑙球,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气,防止粉末氧化;
S13:在行星式球磨机上混粉10h,转速为220r/min,制备得到混合粉末。
S2:热压烧结制备高熵硼化物陶瓷:
称取S13制备的15g混合粉末放入导热性能良好的石墨模具中,并用石墨纸包覆在石墨模具的内壁和与粉末接触的部位。将模具放入热压烧结炉中,抽真空为1.8×10-2Pa,烧结温度设置为1400℃,升温过程中分别在600℃、900℃和1200℃各保温10min,升温速度为10℃/min,升温过程采用10MPa的预压力;温度升至1400℃时,控制压力为30MPa,保温时间为2h。
烧结过程结束后,炉冷至室温时取出样品,然后使用线切割将圆饼状样品切割为所需尺寸大小进行后续测试。检测结果显示,材料的致密度为92.3%,在此工艺下(NbCrMoWFe)B0.8陶瓷的维氏硬度约为925HV0.5
实施例2:
一种高熵低硼化物陶瓷(NbCrMoWFe)B0.8为单相四方结构。
制备所述高熵低硼化物陶瓷(NbCrMoWFe)B0.8的方法,包括以下步骤:
S1:制备所需混合粉末:
S11:准备原料粉末:Fe粉、Nb粉、MoB粉、WB粉和CrB2粉,原料粉末的摩尔比例为Nb:Fe:MoB:WB:CrB2=1:1:1:1:1,用天平分别称量4.4gCrB2粉,6.4MoB粉,11.7gWB粉,5.6gNb粉和3.4gFe粉;
S12:将S11称量的粉末置于玛瑙球磨罐中,加入157.5g玛瑙球,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气,防止粉末氧化;
S13:在行星式球磨机上混粉10h,转速为220r/min,制备得到混合粉末。
S2:热压烧结制备高熵硼化物陶瓷:
称取S13制备的15g混合粉末放入导热性能良好的石墨模具中,并用石墨纸包覆在石墨模具的内壁和与粉末接触的部位。将模具放入热压烧结炉中,抽真空为1.8×10-2Pa,烧结温度设置为1500℃,升温过程中分别在600、900和1200℃各保温10min,升温速度为10℃/min,升温过程采用10MPa的预压力,温度升至1500℃时,控制压力为30MPa,保温时间为2h。
烧结过程结束后,炉冷至室温时取出样品,然后使用线切割将圆饼状样品切割为所需尺寸大小进行后续测试。检测结果显示,在此工艺下材料的致密度为95.8%,(NbCrMoWFe)B0.8陶瓷的维氏硬度约为1505HV0.5;图1为样品的XRD图,图谱中主要为单一四方结构相的衍射峰,无其他物质的衍射峰,说明制备的(NbCrMoWFe)B0.8硼化物高熵陶瓷纯度较高;图2为样品的SEM和EDS图,SEM图中可以看出材料的致密性较好,存在一些不可避免的气孔,EDS图中可以看出,各元素分布均匀,无偏聚现象的产生,而硼元素超出了测量范围,无法测得。
实施例3:
一种高熵低硼化物陶瓷(NbCrMoWFe)B0.8为单相四方结构。
制备所述高熵低硼化物陶瓷(NbCrMoWFe)B0.8的方法,包括以下步骤:
S1:制备所需混合粉末:
S11:准备原料粉末:Fe粉、Nb粉、MoB粉、WB粉和CrB2粉,原料粉末的摩尔比例为Nb:Fe:MoB:WB:CrB2=1:1:1:1:1。用天平分别称量4.4gCrB2粉,6.4MoB粉,11.7gWB粉,5.6gNb粉和3.4gFe粉;
S12:将S11称量的粉末置于玛瑙球磨罐中,加入157.5g玛瑙球,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气,防止粉末氧化;
S13:在行星式球磨机上混粉10h,转速为220r/min,制备得到混合粉末。
S2:热压烧结制备高熵硼化物陶瓷:
称取S13制备的15g混合粉末放入导热性能良好的石墨模具中,并用石墨纸包覆在石墨模具的内壁和与粉末接触的部位。将模具放入热压烧结炉中,抽真空为1.8×10-2Pa,烧结温度设置为1600℃,升温过程中分别在600、900和1200℃保温10min,升温速度为10℃/min。升温过程采用10MPa的预压力;温度升至1600℃时,控制压力为30MPa,保温时间为2h。
烧结过程结束后,炉冷至室温时取出样品,然后使用线切割将圆饼状样品切割成所需尺寸大小进行后续测试。检测结果显示,材料的致密度为96.5%,在此工艺下(NbCrMoWFe)B0.8陶瓷的维氏硬度约为1738HV0.5
对比例1:
一种高熵低硼化物陶瓷(NbCrMoWFe)B0.8为单相四方结构。
制备所述高熵低硼化物陶瓷(NbCrMoWFe)B0.8的方法,包括以下步骤:
S1:制备所需混合粉末:
S11:准备原料粉末:Fe粉、Nb粉、MoB粉、WB粉和CrB2粉,原料粉末的摩尔比例为Nb:Fe:MoB:WB:CrB2=1:1:1:1:1。用天平分别称量4.4gCrB2粉,6.4MoB粉,11.7gWB粉,5.6gNb粉和3.4gFe粉;
S12:将S11称量的粉末置于玛瑙球磨罐中,加入157.5g玛瑙球,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气,防止粉末氧化;
S13:在行星式球磨机上混粉10h,转速为220r/min,制备得到混合粉末。
S2:热压烧结制备高熵硼化物陶瓷:
称取S13制备的15g混合粉末放入导热性能良好的石墨模具中,并将石墨纸包覆在石墨模具的内壁和与粉末接触的部位。将模具放入热压烧结炉中,抽真空为1.8×10-2Pa,烧结温度设置为1650℃,升温过程中分别在600、900和1200℃各保温10min,升温速度为10℃/min,升温过程采用10MPa的预压力;温度升至1650℃时,控制压力为30MPa,保温时间为2h。
烧结过程结束后,炉冷至室温时取出样品,然后使用线切割将圆饼状样品切割为所需尺寸大小进行后续测试。检测结果显示,在此工艺下材料的致密度为97.3%,(NbCrMoWFe)B0.8陶瓷的维氏硬度约为1398HV0.5,并且检测结果显示除四方结构相外,还有高温WB相的析出。
图3为本发明三个实例和一个对照例对应的硬度变化,可以发现,当烧结温度在1400-1600℃范围内升高时,高熵陶瓷的硬度是逐渐增大的,在1400oC和1500℃之间硬度值有明显的变化,是因为在此温度范围内材料的致密化程度大幅度增加,但当温度进一步升高至1650℃,因为高温析出相的影响,高熵陶瓷的硬度下降。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (8)

1.一种高熵低硼化物陶瓷,其特征在于:所述高熵低硼化物陶瓷为单相四方结构,原子百分比表达式为(NbCrMoWFe)B0.8
2.一种制备权利要求1所述的高熵低硼化物陶瓷的方法,其特征在于:包括以下步骤:
S1:将各原料粉末混合均匀,制备得到混合粉末;
S2:采用热压烧结技术,将步骤S1制备的混合粉末放入导热性能良好的石墨模具中进行固相反应烧结,烧结结束后,冷却至室温,得到高熵陶瓷(NbCrMoWFe)B0.8
3.根据权利要求2所述的一种高熵低硼化物陶瓷的制备方法,其特征在于:所述原料粉末分别Nb粉、Fe粉、MoB粉、WB粉和CrB2粉,各粉末纯度均高于99.5%。
4.根据权利要求3所述的一种高熵低硼化物陶瓷的制备方法,其特征在于:所述Nb、Fe、MoB、WB和CrB2的摩尔比为1:1:1:1:1。
5.根据权利要求4所述的一种高熵低硼化物陶瓷的制备方法,其特征在于:所述Fe粉的粒度为35~40μm,Nb粉的粒度为5~10μm,MoB粉的粒度为10~15μm,WB粉的粒度为10~15μm,CrB2粉的粒度为3~5μm。
6.根据权利要求4或5所述的一种高熵低硼化物陶瓷的制备方法,其特征在于:所述步骤S1的具体制备步骤为:
S11:将各原料粉末按照等摩尔比例进行称量;
S12:将S11称量的粉末装入玛瑙球磨罐中,球粉比为5:1,大球与小球的质量比为1:1,采用真空硅脂密封球磨罐,并向球磨罐中充入氩气;
S13:采用行星式球磨机对原料混合粉末进行球磨,转速为220r/min,球磨时间为10h。
7.根据权利要求2所述的一种高熵低硼化物陶瓷的制备方法,其特征在于:所述步骤S2中的固相反应烧结温度为1400~1600℃,升温速率为10℃/min,升到烧结温度后保温时间为2h。
8.根据权利要求2或7所述的一种高熵低硼化物陶瓷的制备方法,其特征在于:所述步骤S2中,固相反应烧结的升温过程采用10MPa的预压力,升到温度后采用30MPa保压,在烧结过程中石墨模具中的真空度需保持低于1.8×10-2Pa。
CN202110710799.3A 2021-06-25 2021-06-25 一种高熵低硼化物陶瓷及其制备方法 Active CN113480315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110710799.3A CN113480315B (zh) 2021-06-25 2021-06-25 一种高熵低硼化物陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110710799.3A CN113480315B (zh) 2021-06-25 2021-06-25 一种高熵低硼化物陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN113480315A CN113480315A (zh) 2021-10-08
CN113480315B true CN113480315B (zh) 2022-08-30

Family

ID=77937085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110710799.3A Active CN113480315B (zh) 2021-06-25 2021-06-25 一种高熵低硼化物陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113480315B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507074B (zh) * 2022-03-14 2023-01-17 北京理工大学 一种高熵过渡-稀土金属二硼化物陶瓷材料及其制备方法
CN114956826B (zh) * 2022-06-28 2023-06-09 燕山大学 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法
CN117466649B (zh) * 2023-11-13 2024-04-09 中国科学院兰州化学物理研究所 一种多功能高熵硼化物的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2668955B2 (ja) * 1988-07-08 1997-10-27 旭硝子株式会社 複硼化物基焼結体及びその製造方法
EP3863990A4 (en) * 2018-10-09 2022-10-12 Oerlikon Metco (US) Inc. HIGHLY TROPICAL OXIDES FOR TOPCOATS WITH THERMAL INSULATION LAYER
CN110734289B (zh) * 2019-08-07 2022-04-08 郑州大学 一种一硼化物高熵陶瓷及其制备方法
CN110606749A (zh) * 2019-09-29 2019-12-24 石家庄铁道大学 一种高熵硼化物陶瓷材料及其制备方法
CN112830789B (zh) * 2020-12-31 2022-06-24 南京理工大学 一种高熵硼化物粉末及其制备方法

Also Published As

Publication number Publication date
CN113480315A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN113480315B (zh) 一种高熵低硼化物陶瓷及其制备方法
CN109678523B (zh) 一种具有高温强度和硬度的高熵陶瓷及其制备方法和应用
CN114956826B (zh) 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法
CN105695774A (zh) Mg3Sb2基热电材料的制备方法
CN103700759B (zh) 一种纳米复合结构Mg2Si基热电材料及其制备方法
US20210317045A1 (en) Highly oriented nanometer max phase ceramic and preparation method for max phase in-situ autogenous oxide nanocomposite ceramic
CN105838920B (zh) 一种Ti/AlN金属陶瓷复合材料及其制备方法
CN112830790B (zh) 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用
CN102659403A (zh) 一种耐高温热障涂层陶瓷材料及其制备方法
CN109608203A (zh) 高熵二硅化物及其制备方法
CN112028635A (zh) 一种超高温陶瓷复合材料及制备方法
CN105836717A (zh) 氮化铝电子陶瓷粉末的制备方法
CN112038473A (zh) 一种全温域高性能的n型Mg-Sb基热电材料及其制备方法
Li et al. Hf6Ta2O17/Ta2O5 composite ceramic: A new eutectic system
CN102659106A (zh) 一种无压烧结合成高纯度Ti3SiC2粉体的方法
Kang et al. Sintering behavior of Y‐doped BaZrO3 refractory with TiO2 additive and effects of its dissolution on titanium melts
Zhu et al. Effects of TaB2 and TiB2 on the grain growth behavior and kinetics of HfB2 ceramics during pressureless sintering
CN104178652A (zh) 镍钴合金/四方多晶氧化锆复合陶瓷材料及其制备方法
CN116178019B (zh) 一种无压包裹煅烧制备多孔max相陶瓷材料的方法
CN111162160B (zh) 一种p型立方相Ge-Se基热电材料及制备方法
CN115057709B (zh) 一种高熵过渡金属二硼化物及其制备方法
CN109087987B (zh) 一种α-MgAgSb基纳米复合热电材料及其制备方法
Mishra et al. Microstructure evolution during sintering of self-propagating high-temperature synthesis produced ZrB2 powder
CN112885947B (zh) 一种n型立方相Ge-Te基热电材料
Wang et al. Effect of Sintering Atmosphere on the Synthesis Process, Electrical and Mechanical Properties of NiFe 2 O 4/Nano-TiN Ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant