CN116178019B - 一种无压包裹煅烧制备多孔max相陶瓷材料的方法 - Google Patents

一种无压包裹煅烧制备多孔max相陶瓷材料的方法 Download PDF

Info

Publication number
CN116178019B
CN116178019B CN202211093199.8A CN202211093199A CN116178019B CN 116178019 B CN116178019 B CN 116178019B CN 202211093199 A CN202211093199 A CN 202211093199A CN 116178019 B CN116178019 B CN 116178019B
Authority
CN
China
Prior art keywords
ceramic material
powder
ball milling
sintering
max phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211093199.8A
Other languages
English (en)
Other versions
CN116178019A (zh
Inventor
王永红
赵维克
周浩
王秋生
姚磊
刘平莉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202211093199.8A priority Critical patent/CN116178019B/zh
Publication of CN116178019A publication Critical patent/CN116178019A/zh
Application granted granted Critical
Publication of CN116178019B publication Critical patent/CN116178019B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5618Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium aluminium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及陶瓷材料制备技术领域,具体涉及一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法。该MAX相陶瓷材料为Ti3AlC2,具体方法包括步骤1:以TiC粉体、TiH2粉体、Al粉体为原料,按TiC:TiH2:Al摩尔比2:1:(1~1.4)称取原料,以无水乙醇为助剂,通过球磨混料;步骤2:对球磨后的混料浆料进行真空干燥,然后单向压制成厚度为3mm的薄片;步骤3:将薄片用石墨纸包裹,再用碳粉包埋,最后烧结,冷却即得到Ti3AlC2陶瓷材料。本发明提供的制备方法能够制备出纯度高,且粉体反应活性高的Ti3AlC2陶瓷材料,且具有制备工艺简单、周期短、成本低、环境友好等的特点。

Description

一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法
技术领域
本发明涉及陶瓷材料制备技术领域,具体涉及一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法。
背景技术
近些年,三元层状Mn+1AXn化合物成为先进陶瓷材料领域研究热点之一,MAX相高熵陶瓷材料具有金属和陶瓷材料的特性,在高温、极端反应条件下具有广阔的应用前景。MAX相高熵陶瓷材料以整化学计量比Ti3AlC2最具代表性,这类陶瓷材料兼具金属和陶瓷的优良特性,其中Ti-C结合键属共价键,结合力很强,赋予Ti3AlC2高弹性模量、高熔点等性能。Ti-Ti键和Ti-Al键以金属键结合,赋予Ti3AlC2良好的导电和导热性能。Al原子间以相对较弱的金属键结合排列在层间,这种层间结构使Ti3AlC2兼备层状结构和良好的自润滑性。通过化学(酸刻蚀)和机械剥离MAX相中的A层可得到二维层状结构MXene,这种二维的纳米薄片具有优异的电学性能,被广泛应用于各种储能领域。
目前,制备Ti3AlC2方法主要包括热压烧结(HP),自蔓延烧结(SHS),放电等离子烧结(SPS),热等静压烧结(HIP)等技术。专利CN 113185295A公布了一种利用放电等离子烧结技术制备具有优异力学性能高熵MAX相陶瓷材料,由于Ti-Al-C的三元相图中,Ti3AlC2只占一个很小的温区,成分配比、烧结程序稍有偏差,就会产生TiCx、Ti2AlC等杂质相,且高于一定温度,Ti3AlC2就会分解(汤海.Ti3AlC2的制备及其烧结机理研究.合肥工业大学,2016.),因此制备高纯度的Ti3AlC2具有一定难度。专利CN102060535A以TiC、Ti、Al粉为原料,采用热压烧结制备出高纯的Ti3AlC2,但由于产品较为致密,活性较低,不利于刻蚀形成MXene纳米材料。Changan Wang等(Wenjuan,Wang,Cuiwei,et al.,Preparation of High-StrengthTi3AlC2 by Spark Plasma Sintering[J].International Journal of Applied CeramicTechnology,2015.)以3Ti-1Al-1.8C-0.2Sn原料组成配比,采用SPS快速烧结,在Ar保护气氛中制备了Ti3AlC2材料,由于升温速率较快,反应过程中一些中间相可能未来得及反应,导致产品中含有少量杂质,烧结设备复杂并且昂贵,难以广泛应用于实际生产中。专利CN102633505A公开了一种利用专业的微波加热技术并按照化学计量比进行原料配比技术制备高纯的MAX相材料的方法,该发明技术涉及到的加热技术复杂,设备投资大,原料组成的控制技术复杂等工艺技术问题,难以精确控制MAX材料的结构。专利CN107935596A公开了一种利用低熔点卤化物为助溶剂低温制备Ti3AlC2陶瓷材料的方法,但是其制备周期较长,尤其是粉碎、清洗等后处理技术将对于环境保护产生不利影响。专利CN101747075A公开了一种直接利用MAX相陶瓷粉体为原料,采用冷压和冷等静压成型和无压气氛保护烧结技术,制备了多孔导电相催化载体材料,该技术由于采用高纯的MAX相原料和复杂压制成型技术,克服了反应烧结过程中液相组成封堵陶瓷孔隙结构的障碍,但是,其原料和制备成本较高,难以从根本上提高MAX相陶瓷材料的性能及其应用水平。
因此可以看出,现有的各种MAX相陶瓷材料制备技术显示出诸如产物杂相含量高、Ti3AlC2结构难以控制、粉体反应活性低、工艺复杂、成本高且制备周期长、环境不友好等缺陷。
发明内容
为了解决上述技术问题,本发明提供一种无压包裹煅烧制备多孔Ti3AlC2MAX相陶瓷材料的方法,
本发明采用的技术方案为:
一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法,所述MAX相陶瓷材料为Ti3AlC2陶瓷材料,包括以下步骤:
步骤1:以TiC粉体、TiH2粉体、Al粉体为原料,按TiC:TiH2:Al摩尔比2:1:(1~1.4)称取原料,以无水乙醇为助剂,通过球磨混料;
步骤2:对步骤1中球磨后的混料浆料进行真空干燥,然后单向压制成厚度为3mm的薄片;
步骤3:将步骤2中的薄片用石墨纸包裹,再用碳粉包埋,最后烧结,冷却即得到Ti3AlC2陶瓷材料;所述烧结的方法为先以10℃/min升温速率升温至660℃保温30min,再以同样速率升温至1000℃,最后以5℃/min升温速率升温至1300~1450℃,保温1~2h。
优选的,所述原料中,TiC粉体粒径为3~5μm,TiH2粉体粒径为20~26μm,Al粉体粒径为45~50μm。
优选的,所述无水乙醇的用量比例为:1mol Ti3AlC2:(15~25ml)无水乙醇。
优选的,所述球磨以ZrO2球为研磨介质,ZrO2球和原料的质量比为5:1,球磨速度350rpm,球磨总时间为7~10h。
优选的,所述球磨采用间歇式球磨,每研磨1h,暂停10min。
优选的,所述真空干燥的温度为50℃,干燥时间10~12h。
优选的,所述压制条件为140MPa压力下保压1min,压制的薄片为直径26mm的圆形。
优选的,步骤3中,所述石墨纸单层厚度0.2mm,且仅在薄片表面包裹一层。
优选的,所述烧结时,将用石墨纸包裹的薄片埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)保护气氛下烧结。
优选的,所述烧结具体为,先以10℃/min升温速率升温至660℃保温30min,再以同样速率升温至1000℃,最后以5℃/min升温速率升温至1350℃,保温1h,完成后随炉冷却。
本发明的有益效果在于:
以TiC粉体、TiH2粉体、Al粉体为原料,TiC粉取代传统C粉,可避免烧结过程中的剧烈热爆副反应,保证样品结构尺寸完整性和均匀性;用TiH2粉取代Ti粉,TiH2能在高温下解离析出氢气,气氛烧结过程中的原料脱氢反应生成大量微气孔,促进样品内部原位产生大量微孔结构,从而增大样品的比表面积,为制备少层或单层纳米MXene,提供一种结构可控、高表面活性的Ti3AlC2陶瓷材料。
本发明将素坯薄片用石墨纸包覆,再用碳粉包埋样品进行无压气氛烧结。柔性石墨纸的包裹处理,可以有效隔离样品和烧结气氛之间的反应物质输运通道,特别是大大减少烧结时低熔点金属铝在高温下的气化挥发,并避免包埋碳粉等外来杂质的混杂干扰,从而保证样品组分Ti3AlC2在高温烧结反应中可按照理论配比组成进行。烧结时采用包埋碳粉的强还原性和H2(5%)/Ar(95%)混合气的联合保护气氛,可避免烧结过程中原料中的金属组成Ti、Al被氧化,有利于高温还原反应持续彻底进行;
本发明在煅烧过程中,利用铝的熔点温度下促进液-固相熔渗扩散传质,先使用在660℃保温30min热处理技术,促使液态铝浸润并填充陶瓷相粉末空隙,充分包裹TiC、TiH2颗粒,促进反应充分进行并减少铝原料的挥发。然后以同样的升温速率条件升温1000℃,最后以5℃/min升温速率升温至1300~1450℃,保温1~2h,完成后随炉冷却,这样的煅烧处理制度是为了调控合成产物的晶粒度大小、形貌结构和组成纯度的目的,其最优的工艺参数组合是基于实验的原料特点和产物性能要求而定。
附图说明
图1为本发明实施例1和实施例4~8分别制备的Ti3AlC2目标产物的X射线衍射图谱;
图2为本发明实施例6制备的Ti3AlC2的扫描电镜图片;
图3为本发明实施6和对比例中分别制备的Ti3AlC2材料的的X射线衍射对比图谱;
图4为本发明实施7制备的Ti3AlC2的扫描电镜低倍(×24)图像;
图5为本发明实施7制备的Ti3AlC2的扫描电镜高倍(×662)图像。
具体实施方式
下面结合实施例对本发明技术方案做出更为具体的说明。
实施例1
以合成0.2mol目标产物Ti3AlC2陶瓷材料,按TiC粉体:TiH2粉体:Al粉体摩尔比2:1:1.2比例分别称取原料倒入不锈钢球磨罐中,按5:1球料质量比将ZrO2球磨珠加入不锈钢球磨罐中,加入5ml无水乙醇作为球磨助剂,然后将球磨罐固定在行星式球磨机上,设置转速350rpm,采用间歇式球磨,球磨1h暂停10min,球磨时间总共7h。
球磨后分离出ZrO2球磨珠,剩余混料浆体置于真空干燥箱中50℃下干燥12h;按每份4g混料的量置于不锈钢模具中,缓慢加压至140MPa,保压1min,脱模得到直径26mm,厚3mm的薄片。
将薄片用0.2mm厚柔软石墨纸包覆一层,再埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)气氛下烧结,以10℃/min升温至660℃保温30min,接着以同样速率升温至1000℃,再以5℃/min升温至1300℃,保温1h,之后随炉冷却,得到目标产物。
实施例2
以合成0.2mol目标产物Ti3AlC2陶瓷材料,按TiC粉体:TiH2粉体:Al粉体摩尔比2:1:1.4比例分别称取原料倒入不锈钢球磨罐中,按5:1球料质量比将ZrO2球磨珠加入不锈钢球磨罐中,加入3.8ml无水乙醇作为球磨助剂,然后将球磨罐固定在行星式球磨机上,设置转速350rpm,采用间歇式球磨,球磨1h暂停10min,球磨时间总共8h。
球磨后分离出ZrO2球磨珠,剩余混料浆体置于真空干燥箱中50℃下干燥12h;按每份4g混料的量置于不锈钢模具中,缓慢加压至140MPa,保压1min,脱模得到直径26mm,厚3mm的薄片。
将薄片用0.2mm厚柔软石墨纸包覆一层,再埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)气氛下烧结,以10℃/min升温至660℃保温30min,接着以同样速率升温至1000℃,再以5℃/min升温至1300℃,保温1h,之后随炉冷却,得到目标产物。
实施例3
以合成0.2mol目标产物Ti3AlC2陶瓷材料,按TiC粉体:TiH2粉体:Al粉体摩尔比2:1:1.12比例分别称取原料倒入不锈钢球磨罐中,按5:1球料质量比将ZrO2球磨珠加入不锈钢球磨罐中,加入4.5ml无水乙醇作为球磨助剂,然后将球磨罐固定在行星式球磨机上,设置转速350rpm,采用间歇式球磨,球磨1h暂停10min,球磨时间总共9h。
球磨后分离出ZrO2球磨珠,剩余混料浆体置于真空干燥箱中50℃下干燥11h;按每份4g混料的量置于不锈钢模具中,缓慢加压至140MPa,保压1min,脱模得到直径26mm,厚3mm的薄片。
将薄片用0.2mm厚柔软石墨纸包覆一层,再埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)气氛下烧结,以10℃/min升温至660℃保温30min,接着以同样速率升温至1000℃,再以5℃/min升温至1300℃,保温1h,之后随炉冷却,得到目标产物。
在相同烧结条件下,实施例1-3的目标产物性质相差较小,说明在本发明限定的原料配比及条件范围内均能得到符合要求的目标产物。以实施例1中原料配比验证烧结条件。
实施例4
本实施例中烧结前步骤同实施例1,烧结工艺为:
将5g样品薄片用0.2mm厚柔软石墨纸包覆一层,再埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)气氛下烧结,以10℃/min升温至660℃保温30min,接着同样速率升温至1000℃,再以5℃/min升温至1300℃,保温2h,之后随炉冷却,得到目标产物。
实施例5
本实施例中烧结前步骤同实施例1,烧结工艺为:
将两份(每份4g)薄片分别用0.2mm厚柔软石墨纸包覆一层,再埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)气氛下烧结,以10℃/min升温至660℃保温30min,接着同样速率升温至1000℃,之后以5℃/min升温至1350℃,保温1h,之后随炉冷却,得到目标产物。
实施例6
本实施例中烧结前步骤同实施例1,烧结工艺为:
将两份(每份4g)薄片分别用0.2mm厚柔软石墨纸包覆一层,再埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)气氛下烧结,以10℃/min升温至660℃保温30min,接着同样速率升温至1000℃,再以5℃/min升温至1350℃,保温2h,之后随炉冷却,得到目标产物。
实施例7
本实施例中烧结前步骤同实施例1,烧结工艺为:
将三份(每份4g)薄片分别用0.2mm厚柔软石墨纸包覆一层,再埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)气氛下烧结,以10℃/min升温至660℃保温30min,接着同样速率升温至1000℃,再以5℃/min升温至1400℃,保温1h,之后随炉冷却,得到目标产物。
实施例8
本实施例中烧结前步骤同实施例1,烧结工艺为:
将三份(每份4g)薄片分别用0.2mm厚柔软石墨纸包覆一层,再埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)气氛下烧结,以10℃/min升温至660℃保温30min,接着同样速率升温至1000℃,之后以5℃/min升温至1400℃,保温2h,之后随炉冷却,得到目标产物。
对比例
对比例在烧结前步骤同实施例1,烧结工艺为:
将两份(每份4g)薄片直接埋置在盛放碳粉的烧舟中,在H2(5%)/Ar(95%)气氛下烧结,以10℃/min升温至660℃保温30min,接着同样速率升温至1000℃,再以5℃/min升温至1350℃,保温2h,之后随炉冷却,得到对比产物。
试验结果与分析
对实施例1和实施例4~8获得的目标产物以及对比例中的产物进行相关试验验证,结果如下:
图1为各实施例1和实施例4~8控制条件下目标产物的X射线衍射图谱,从图中可以看出,样品在1350℃保温2h煅烧条件下,获得的MAX相相对较纯,在实施例烧结温度和保温时间控制范围内,随着烧结温度提高和保温时间的延长,都有利于MAX相的合成。但是,图1的解析结果还表明高温长时间的保温,有可能使得新生成的MAX相发生分解副反应,所以,该烧结条件还能够进行进一步控制和优化。
实施例6制备的目标产物形貌扫描电镜图如图2所示,可以看出目标产物中TiC杂质较少,表明该条件下制备得到了较纯的Ti3AlC2
将实施例6制备的目标产物和对比例产物的X射线衍射图谱进行对比,如图3所示,从图上可以看出,与包裹了石墨纸的实施例相比,对比例由于烧结过程中铝液的挥发,产物中Al成分配比严重失衡,难以制备出高纯的Ti3AlC2制品。
图4和图5分别为实施例7中目标产物的扫描电镜低倍图像和扫描电镜高倍图像。图4低倍形貌样品显示,样品中原位产生的微气孔均匀分布于煅烧薄片中,样品中的颗粒大小均匀,无明显裂纹和液相成分区域。高倍下的电子显微镜图片表明MAX相组成结构呈疏松多孔状,晶粒大小均匀,气孔尺寸分布范围8-15μm,聚集体中的晶粒断面表现明显的层状堆叠结构特征。
从上述系列试验结果可以看出,本发明提供的制备方法能够制备出纯度高,样品结构呈微孔均匀分布,晶粒断面具有明显的层状堆叠特征,根据本领域所研究的MAX相陶瓷及其应用制备现有技术,本发明技术制备的MAX相陶瓷材料是一种易剥离、反应活性高的Ti3AlC2多孔陶瓷材料,且制备工艺简单,周期短,成本低,环境友好。
以上实施方式仅用以说明本发明的技术方案,而并非对本发明的限制;尽管参照前述实施方式对本发明进行了详细的说明,本领域的普通技术人员应当理解:凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。

Claims (8)

1.一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法,所述MAX相陶瓷材料为Ti3AlC2陶瓷材料,其特征在于,包括以下步骤:
步骤1:以TiC粉体、TiH2粉体、Al粉体为原料,按TiC : TiH2 : Al摩尔比2:1:(1~1.4)称取原料,以无水乙醇为助剂,通过球磨混料;
步骤2:对步骤1中球磨后的混料浆料进行真空干燥,然后单向压制成厚度为3 mm的薄片;
步骤3:将步骤2中的薄片用石墨纸包裹,再用碳粉包埋,最后烧结,冷却即得到Ti3AlC2陶瓷材料;所述烧结的方法为先以10℃/min升温速率升温至660℃保温30 min,再以同样速率升温至1000℃,最后以5℃/min升温速率升温至1300~1450℃,保温1~2 h;
所述石墨纸单层厚度0.2 mm,在所述薄片表面包裹一层;
所述烧结时,将用石墨纸包裹的薄片埋置在盛放碳粉的烧舟中,在5%H2和95%Ar保护气氛下烧结。
2.如权利要求1所述的一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法,其特征在于,所述原料中,TiC粉体粒径为3~5 μm,TiH2粉体粒径为20~26 μm,Al粉体粒径为45~50 μm。
3.如权利要求1所述的一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法,其特征在于,所述无水乙醇的用量为每1mol Ti3AlC2使用15~25ml无水乙醇。
4.如权利要求1所述的一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法,其特征在于,所述球磨以ZrO2球为研磨介质,ZrO2球和原料的质量比为5:1,球磨速度350 rpm,球磨总时间为7~10 h。
5.如权利要求4所述的一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法,其特征在于,所述球磨采用间歇式球磨,每研磨1h,暂停10 min。
6.如权利要求1所述的一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法,其特征在于,所述真空干燥的温度为50℃,干燥时间10~12 h。
7.如权利要求1所述的一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法,其特征在于,所述压制条件为140MPa压力下保压1 min,压制的薄片为直径26 mm的圆形。
8.如权利要求1所述的一种无压包裹煅烧制备多孔MAX相陶瓷材料的方法,其特征在于,所述烧结的方法为,先以10℃/min升温速率升温至660℃保温30 min,再以同样速率升温至1000℃,最后以5℃/min升温速率升温至1350℃,保温1 h,完成后随炉冷却。
CN202211093199.8A 2022-09-08 2022-09-08 一种无压包裹煅烧制备多孔max相陶瓷材料的方法 Active CN116178019B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211093199.8A CN116178019B (zh) 2022-09-08 2022-09-08 一种无压包裹煅烧制备多孔max相陶瓷材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211093199.8A CN116178019B (zh) 2022-09-08 2022-09-08 一种无压包裹煅烧制备多孔max相陶瓷材料的方法

Publications (2)

Publication Number Publication Date
CN116178019A CN116178019A (zh) 2023-05-30
CN116178019B true CN116178019B (zh) 2023-12-22

Family

ID=86431321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211093199.8A Active CN116178019B (zh) 2022-09-08 2022-09-08 一种无压包裹煅烧制备多孔max相陶瓷材料的方法

Country Status (1)

Country Link
CN (1) CN116178019B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117904699A (zh) * 2024-03-20 2024-04-19 中国科学院宁波材料技术与工程研究所 一种钛三铝碳二max相单晶材料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8408932D0 (en) * 1983-04-12 1984-05-16 Atomic Energy Authority Uk Joining silicon carbide bodies
CN101033141A (zh) * 2007-02-09 2007-09-12 上海大学 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN102060535A (zh) * 2010-04-02 2011-05-18 陕西理工学院 一种高纯Ti3AlC2陶瓷的制备方法
CN104058749A (zh) * 2013-03-21 2014-09-24 中国科学院宁波材料技术与工程研究所 一种无压烧结制备钛硅碳陶瓷块体材料的方法
CN107935596A (zh) * 2017-12-22 2018-04-20 中国科学院上海硅酸盐研究所 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法
CN108349736A (zh) * 2015-11-02 2018-07-31 住友电气工业株式会社 复合碳氮化物粉末及其制造方法
CN210030482U (zh) * 2019-04-16 2020-02-07 北京科技大学 基于凝胶注模成型的max相陶瓷零部件烧结装置
CN113185295A (zh) * 2021-06-04 2021-07-30 合肥工业大学 一种制备max相高熵陶瓷材料的方法
CN113247922A (zh) * 2021-05-21 2021-08-13 西安建筑科技大学 一种碳/氧化镁纳米复合粉、制备方法及应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8408932D0 (en) * 1983-04-12 1984-05-16 Atomic Energy Authority Uk Joining silicon carbide bodies
CN101033141A (zh) * 2007-02-09 2007-09-12 上海大学 低温无压烧结制备致密Ti3AlC2陶瓷的方法
CN102060535A (zh) * 2010-04-02 2011-05-18 陕西理工学院 一种高纯Ti3AlC2陶瓷的制备方法
CN104058749A (zh) * 2013-03-21 2014-09-24 中国科学院宁波材料技术与工程研究所 一种无压烧结制备钛硅碳陶瓷块体材料的方法
CN108349736A (zh) * 2015-11-02 2018-07-31 住友电气工业株式会社 复合碳氮化物粉末及其制造方法
CN107935596A (zh) * 2017-12-22 2018-04-20 中国科学院上海硅酸盐研究所 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法
CN210030482U (zh) * 2019-04-16 2020-02-07 北京科技大学 基于凝胶注模成型的max相陶瓷零部件烧结装置
CN113247922A (zh) * 2021-05-21 2021-08-13 西安建筑科技大学 一种碳/氧化镁纳米复合粉、制备方法及应用
CN113185295A (zh) * 2021-06-04 2021-07-30 合肥工业大学 一种制备max相高熵陶瓷材料的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ti_3AlC_2陶瓷材料的制备及性能研究;周卫兵, 梅炳初, 朱教群, 洪小林;山东陶瓷(04);3-5 *
WC-TiC-Al_2O_3复合粉的制备;谭京梅;李燕;;安徽建筑工业学院学报(自然科学版)(05);58-60 *
先进陶瓷MAX相作为超硬材料结合剂研究;李良;中国优秀硕士学位论文全文数据库 工程科技I辑;20、25 *

Also Published As

Publication number Publication date
CN116178019A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
US20210317045A1 (en) Highly oriented nanometer max phase ceramic and preparation method for max phase in-situ autogenous oxide nanocomposite ceramic
CN107935596A (zh) 一种利用熔盐法低温烧结制备MAX相陶瓷Ti3AlC2粉体的方法
CN111675541A (zh) 一种含碳max相材料的制备方法
CN109851367B (zh) 一种棒状(Zr,Hf,Ta,Nb)B2高熵纳米粉体及其制备方法
CN114956826B (zh) 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法
CN109666816B (zh) 碳纳米管增强镁基复合材料的制备方法
CN110590404B (zh) 一种碳基材料表面HfB2-SiC抗氧化涂层的制备方法
CN101817683A (zh) MgAlON透明陶瓷的无压烧结制备方法
CN111646799A (zh) 一种燃烧法制备Tin+1ACn材料的方法
CN116178019B (zh) 一种无压包裹煅烧制备多孔max相陶瓷材料的方法
CN113480315B (zh) 一种高熵低硼化物陶瓷及其制备方法
CN115677364B (zh) 一种多层次碳化锆增强碳基复合材料及其制备方法和应用
CN114455952B (zh) 一种AlON粉体及其直接氮化法高气压合成方法和应用
CN111320478A (zh) 一种碳硅陶瓷靶材的制备方法
CN110436928A (zh) 高性能纳米孪晶碳化硼陶瓷块体材料及其制备方法
CN112813397A (zh) 一种钼钠合金板状靶材的制备方法
CN110818432B (zh) 一种超细高熵硼化物纳米粉体及其制备方法
CN108178636B (zh) 一种Si3N4/SiC复合吸波陶瓷及其制备方法
CN112111663A (zh) 一种高强度mab陶瓷致密块体及其制备方法
CN108341670B (zh) 单相Ti3SiC2金属陶瓷的制备方法
CN116332183A (zh) 生产碳化硅粉料的方法、碳化硅粉料及其应用
CN105271140B (zh) 一种六方相铝碳氮化物的六边形纳米片及其制备方法
CN110405207B (zh) 一种pe-cvd辅助sps烧结制备石墨烯增强钛基复合材料的方法
CN113087530A (zh) 一种基于ZrB2非平衡态合金化修饰的高阻氧涂层及制备方法
CN109180209B (zh) 一种采用原位自生法制备碳化硅纳米线增强石墨-碳化硅复合材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant