CN113479864A - 一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法 - Google Patents

一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法 Download PDF

Info

Publication number
CN113479864A
CN113479864A CN202110892315.1A CN202110892315A CN113479864A CN 113479864 A CN113479864 A CN 113479864A CN 202110892315 A CN202110892315 A CN 202110892315A CN 113479864 A CN113479864 A CN 113479864A
Authority
CN
China
Prior art keywords
coal
hydrogen peroxide
preparation
based carbon
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110892315.1A
Other languages
English (en)
Inventor
陈攀
王影
陈振兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yueyang Zhenxing Zhongshun New Material Technology Co Ltd
Original Assignee
Yueyang Zhenxing Zhongshun New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yueyang Zhenxing Zhongshun New Material Technology Co Ltd filed Critical Yueyang Zhenxing Zhongshun New Material Technology Co Ltd
Priority to CN202110892315.1A priority Critical patent/CN113479864A/zh
Publication of CN113479864A publication Critical patent/CN113479864A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,属于双氧水废水处理及应用技术领域,该制备方法包括以下步骤:S1、将双氧水生产过程中产生的含有多环蒽醌类的有机废水进行粗过滤预处理,得到滤液;S2、调节滤液pH值,采用芬顿试剂处理,然后再加入聚醚改性有机硅型消泡剂,得到含Fe3+的废液;S3、在废液中加入稀硝酸,反应完成后静置,过滤后得到混合液;S4、取长焰煤,以使长焰煤和混合液进行等体积混合与浸渍,得到混合物;S5、将混合物移至马弗炉中,得到含有煤基碳纳米管的煤。本发明通过处理双氧水废水,然后利用双氧水废水中铁和有机物反应得到煤基碳基碳纳米管。

Description

一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法
技术领域
本发明涉及双氧水废水处理及应用技术领域,更具体地说,它涉及一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法。
背景技术
双氧水废水是化学工业中产生量非常大的废水之一,主要含蒽醌类的多环芳烃,因为他难以高效处理,因此吸引了大量研究人员关注,Fenton法处理工业废水也是国际上处理废水的主流方法,但处理过程中废水中所含的有机物和铁离子通常没有被很好地利用而直接排放,为了在一定程度上避免资源的浪费以及提倡绿色化学工艺,有必要设计更多回收并利用其中的铁元素,利用NaOH将Fe3+离子沉淀下来,并作为后续碳纳米管生长的催化剂使用。
碳纳米管因其独特的一维结构在力学、电学、热学及吸附方面具有优异的特性而被广泛使用,但是因为其价格昂贵,所以它的大规模应用市场也被限制。开发利用无法利用的废水制备碳纳米管的技术已成为碳纳米材料领域最具挑战性的方向之一。
中国专利CN202010448273.8(申请号)、CN202010132264.8(申请号)分别利用价格低廉的煤或者甲烷为碳源制备碳纳米管的工艺(或方法),前者利用煤热解产生的随热解气带出的硫氧化物被半焦吸收产生的噻吩类难降解气体参与碳纳米管生成,后者利用纯净的甲烷和CO2重整过程中积碳的生成制造碳纳米管,但是两者都没有对原料进行预处理。中国专利CN200710198794.7(申请号)直接在碳表面生长碳纳米管,再在碳纳米管的表面通过化学气相沉积法负载铂金纳米催化剂的碳纳米管电极的制造方法及碳纳米管电极,但其制造成本较高,工艺较为复杂,对生产环境和设备的要求较高。
中国专利CN201210361045.2(申请号)同样利用超临界水氧化处理方法,其中提到了有机废水依次经高压泵、预热器,同时利用压缩机分流通入氧气进入该氧化装置,本专利使用了合成气作为超临界的气源,但是超临界完成之后在进行氧化过程,依然把有机物彻底氧化了,对具有利用价值的有机物来说是一种资源的浪费。
《芬顿试剂在废水处理中的应用》(2006)一文中提到了使用不同的处理方法如UV-Fenton试剂法、破乳-Fenton试剂法和、电Fenton法等处理工业废水,使其COD大幅降解,但有机物完全矿化成CO2和水。
有鉴于此,本发明提供一种双氧水废水处理然后利用其中铁和有机物以及处理过程中反应得到煤基碳基碳纳米管的制备方法。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,通过处理双氧水废水,然后利用双氧水废水中铁和有机物反应得到煤基碳基碳纳米管。
为实现上述目的,本发明提供了如下技术方案:
一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,包括以下步骤:
S1、将双氧水生产过程中产生的含有多环蒽醌类的有机废水进行粗过滤预处理,得到滤液;
S2、调节步骤S1中的滤液pH值,采用芬顿试剂处理,然后再加入聚醚改性有机硅型消泡剂,反应完成后,得到含Fe3+的废液;
S3、在步骤S2中的废液中加入稀硝酸,反应完成后静置,过滤后得到混合液;
S4、取长焰煤,以使长焰煤和步骤S3中的混合液进行等体积混合与浸渍,得到混合物;
S5、将步骤S4中的混合物移至马弗炉中,以3-5℃/min的升温速率升温,升温终温在850-1000℃,在终温下停留反应,得到含有煤基碳纳米管的煤。
进一步优选为:在步骤S1中,粗过滤预处理过程为:将有机废水先通过格栅过滤,再通过筛网过滤,最后再通入沉砂池,以去除粒径大于1mm的固体颗粒。
进一步优选为:在步骤S2中,滤液的pH调节至2.3-4。
进一步优选为:在步骤S2中,芬顿试剂处理过程为:将FeSO4与废水混合,混合搅拌5min后,边搅拌边逐渐加入25wt%双氧水溶液,搅拌并反应,反应时间为1-5h。
进一步优选为:按照FeSO4与废水质量比为(1.5-3):100混合。
进一步优选为:按照双氧水与Fe3+摩尔比为(2-3):1添加双氧水。
进一步优选为:在步骤S2中,聚醚改性有机硅型消泡剂的加入量为芬顿试剂处理后的废液质量的0.1-0.8%。
进一步优选为:在步骤S3中,按照稀硝酸与废液中的Fe3+的摩尔比为(1-1.5):1添加稀硝酸。
进一步优选为:在步骤S4中,长焰煤与混合液质量比为2:1-3:2。
进一步优选为:在步骤S5中,在终温下停留反应时间为1-3h。
综上所述,本发明具有以下有益效果:本发明利用芬顿试剂产生的三价铁为催化剂,同时让硝酸氧化部分大分子有机物变成小分子有机物,同时,这些有机物可以作为碳纳米管的碳源进行反应,以煤为载体制备碳纳米管。该工艺利用的试剂简单,反应过程便于控制,将废水从大分子多环有机物变成小分子化合物,然后在Fe的催化作用下生长成为碳纳米管。总的来说整个过程使用了相对简单的工艺和极低的成本,该工艺极大地降低了成本,具有变废为宝的特性,也符合绿色化学的相关要求。本发明主要利用双氧水废水处理过程中的铁和有机物来制得得到煤基碳基碳纳米管,这种方法在处理工业废水的同时也极大地减小了制备炭基碳纳米管所需原料的成本。
具体实施方式
下面结实施例,对本发明进行详细描述。
实施例1:一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,包括以下步骤:
S1、取双氧水生产过程中产生的含有多环蒽醌类的有机废水100kg,将收集到的有机废水进行粗过滤过程的预处理,得到滤液。优选的,粗过滤预处理过程为:将有机废水先通过格栅过滤,再通过筛网过滤,最后再通入沉砂池中进行砂水分离,以去除粒径大于1mm的固体颗粒。
S2、调节步骤S1中的滤液pH值,以使滤液的pH值为3,然后采用芬顿试剂处理,优选的,芬顿试剂处理过程为:按照FeSO4与废水质量比为2:100,将FeSO4与废水混合,充分混合搅拌5min后,边搅拌边逐渐按照双氧水与Fe3+摩尔比为2:1加入25wt%双氧水溶液,搅拌并反应,反应时间为3h。芬顿试剂处理后,再加入聚醚改性有机硅型消泡剂,反应完成后,得到含Fe3+的废液。聚醚改性有机硅型消泡剂加入目的在于破坏和抑制薄膜的形成,起到消泡的作用,优选的,聚醚改性有机硅型消泡剂的加入量为芬顿试剂处理后的废液质量的0.5%。
S3、在步骤S2中的废液中加入稀硝酸,反应完成后静置,过滤后得到混合液。优选的,按照稀硝酸与废液中的Fe3+的摩尔比为1.2:1添加稀硝酸,稀硝酸的加入可以将部分大分子有机物降解成小分子有机物。
S4、按照长焰煤与混合液质量比为2:1,取来自于神府煤的长焰煤,然后将长焰煤和步骤S3中的混合液进行等体积混合与浸渍,得到混合物。
S5、将步骤S4中的混合物移至马弗炉中,以4℃/min的升温速率升温,升温终温在900℃,并在900℃的加热终温停留2h,得到含有煤基碳纳米管的煤。
在上述技术方案中,本发明利用芬顿试剂产生的三价铁为催化剂,同时让硝酸氧化部分大分子有机物变成小分子有机物,同时,这些有机物可以作为碳纳米管的碳源进行反应,以煤为载体制备碳纳米管。该工艺利用的试剂简单,反应过程便于控制,将废水从大分子多环有机物变成小分子化合物,然后在Fe的催化作用下生长成为碳纳米管。总的来说整个过程使用了相对简单的工艺和极低的成本,该工艺极大地降低了成本,具有变废为宝的特性,也符合绿色化学的相关要求。
本发明具有以下特点:
1、本发明先将废水的大分子有机物变为小分子有机物,再将其作为碳纳米管生长的碳源生长碳纳米管;
2、本发明巧妙的用硝酸将大分子有机物打碎并利用,同时将Fe3+实现变废为催化剂;
3、本发明可以重利用硝酸使废水中的大部分有机物转变成小分子的有机物,然后小分子有机物作为碳源在活性炭上生长碳纳米管。
4、本发明利用了废水中有机物作为碳源,利用了芬顿试剂中的产生的废弃物Fe,并将铁经过硝酸处理变为催化剂,最终得到催化煤基碳纳米管的催化剂,这种方法在处理工业废水的同时也极大地减小了制备炭基碳纳米管所需原料的成本。
实施例2:一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,包括以下步骤:
S1、取双氧水生产过程中产生的含有多环蒽醌类的有机废水100kg,将收集到的有机废水进行粗过滤过程的预处理,得到滤液。优选的,粗过滤预处理过程为:将有机废水先通过格栅过滤,再通过筛网过滤,最后再通入沉砂池中进行砂水分离,以去除粒径大于1mm的固体颗粒。
S2、调节步骤S1中的滤液pH值,以使滤液的pH值为2.3,然后采用芬顿试剂处理,优选的,芬顿试剂处理过程为:按照FeSO4与废水质量比为1.5:100,将FeSO4与废水混合,充分混合搅拌5min后,边搅拌边逐渐按照双氧水与Fe3+摩尔比为3:1加入25wt%双氧水溶液,搅拌并反应,反应时间为1h。芬顿试剂处理后,再加入聚醚改性有机硅型消泡剂,反应完成后,得到含Fe3+的废液。聚醚改性有机硅型消泡剂加入目的在于破坏和抑制薄膜的形成,起到消泡的作用,优选的,聚醚改性有机硅型消泡剂的加入量为芬顿试剂处理后的废液质量的0.1%。
S3、在步骤S2中的废液中加入稀硝酸,反应完成后静置,过滤后得到混合液。优选的,按照稀硝酸与废液中的Fe3+的摩尔比为1:1添加稀硝酸,稀硝酸的加入可以将部分大分子有机物降解成小分子有机物。
S4、按照长焰煤与混合液质量比为3:2,取来自于神府煤的长焰煤,然后将长焰煤和步骤S3中的混合液进行等体积混合与浸渍,得到混合物。
S5、将步骤S4中的混合物移至马弗炉中,以3℃/min的升温速率升温,升温终温在850℃,并在850℃的加热终温停留1h,得到含有煤基碳纳米管的煤。
实施例3:一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,包括以下步骤:
S1、取双氧水生产过程中产生的含有多环蒽醌类的有机废水100kg,将收集到的有机废水进行粗过滤过程的预处理,得到滤液。优选的,粗过滤预处理过程为:将有机废水先通过格栅过滤,再通过筛网过滤,最后再通入沉砂池中进行砂水分离,以去除粒径大于1mm的固体颗粒。
S2、调节步骤S1中的滤液pH值,以使滤液的pH值为4,然后采用芬顿试剂处理,优选的,芬顿试剂处理过程为:按照FeSO4与废水质量比为3:100,将FeSO4与废水混合,充分混合搅拌5min后,边搅拌边逐渐按照双氧水与Fe3+摩尔比为3:1加入25wt%双氧水溶液,搅拌并反应,反应时间为5h。芬顿试剂处理后,再加入聚醚改性有机硅型消泡剂,反应完成后,得到含Fe3+的废液。聚醚改性有机硅型消泡剂加入目的在于破坏和抑制薄膜的形成,起到消泡的作用,优选的,聚醚改性有机硅型消泡剂的加入量为芬顿试剂处理后的废液质量的0.8%。
S3、在步骤S2中的废液中加入稀硝酸,反应完成后静置,过滤后得到混合液。优选的,按照稀硝酸与废液中的Fe3+的摩尔比为1.5:1添加稀硝酸,稀硝酸的加入可以将部分大分子有机物降解成小分子有机物。
S4、按照长焰煤与混合液质量比为3:2,取来自于神府煤的长焰煤,然后将长焰煤和步骤S3中的混合液进行等体积混合与浸渍,得到混合物。
S5、将步骤S4中的混合物移至马弗炉中,以5℃/min的升温速率升温,升温终温在1000℃,并在1000℃的加热终温停留3h,得到含有煤基碳纳米管的煤。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和修饰,这些改进和修饰也应视为本发明的保护范围。

Claims (10)

1.一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:包括以下步骤:
S1、将双氧水生产过程中产生的含有多环蒽醌类的有机废水进行粗过滤预处理,得到滤液;
S2、调节步骤S1中的滤液pH值,采用芬顿试剂处理,然后再加入聚醚改性有机硅型消泡剂,反应完成后,得到含Fe3+的废液;
S3、在步骤S2中的废液中加入稀硝酸,反应完成后静置,过滤后得到混合液;
S4、取长焰煤,以使长焰煤和步骤S3中的混合液进行等体积混合与浸渍,得到混合物;
S5、将步骤S4中的混合物移至马弗炉中,以3-5℃/min的升温速率升温,升温终温在850-1000℃,在终温下停留反应,得到含有煤基碳纳米管的煤。
2.根据权利要求1所述的一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:在步骤S1中,粗过滤预处理过程为:将有机废水先通过格栅过滤,再通过筛网过滤,最后再通入沉砂池,以去除粒径大于1mm的固体颗粒。
3.根据权利要求1所述的一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:在步骤S2中,滤液的pH调节至2.3-4。
4.根据权利要求1所述的一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:在步骤S2中,芬顿试剂处理过程为:将FeSO4与废水混合,混合搅拌5min后,边搅拌边逐渐加入25wt%双氧水溶液,搅拌并反应,反应时间为1-5h。
5.根据权利要求4所述的一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:按照FeSO4与废水质量比为(1.5-3):100混合。
6.根据权利要求4所述的一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:按照双氧水与Fe3+摩尔比为(2-3):1添加双氧水。
7.根据权利要求4所述的一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:在步骤S2中,聚醚改性有机硅型消泡剂的加入量为芬顿试剂处理后的废液质量的0.1-0.8%。
8.根据权利要求1所述的一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:在步骤S3中,按照稀硝酸与废液中的Fe3+的摩尔比为(1-1.5):1添加稀硝酸。
9.根据权利要求1所述的一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:在步骤S4中,长焰煤与混合液质量比为2:1-3:2。
10.根据权利要求1所述的一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法,其特征在于:在步骤S5中,在终温下停留反应时间为1-3h。
CN202110892315.1A 2021-08-04 2021-08-04 一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法 Pending CN113479864A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110892315.1A CN113479864A (zh) 2021-08-04 2021-08-04 一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110892315.1A CN113479864A (zh) 2021-08-04 2021-08-04 一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法

Publications (1)

Publication Number Publication Date
CN113479864A true CN113479864A (zh) 2021-10-08

Family

ID=77945473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110892315.1A Pending CN113479864A (zh) 2021-08-04 2021-08-04 一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法

Country Status (1)

Country Link
CN (1) CN113479864A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050100499A1 (en) * 2001-06-25 2005-05-12 Asao Oya Carbon nanotube and process for producing the same
CN101164873A (zh) * 2007-10-10 2008-04-23 中国科学院上海硅酸盐研究所 采用Fenton反应截短碳纳米管的方法
JP4255033B2 (ja) * 2005-11-29 2009-04-15 学校法人 名城大学 カーボンナノチューブの製造方法および精製方法
CN101659483A (zh) * 2008-08-29 2010-03-03 中国石油化工股份有限公司 一种用含双氧水废水处理高浓度难降解废水的方法
CN101857220A (zh) * 2010-07-15 2010-10-13 山西大同大学 一种绳状纳米碳管的制备方法
CN102179229A (zh) * 2011-05-06 2011-09-14 同济大学 芬顿试剂法制备磁性碳纳米管吸附剂的方法
CN105540590A (zh) * 2015-12-17 2016-05-04 中北大学 Fe3C纳米线填充氮掺杂碳纳米管复合材料的制备方法
CN110562960A (zh) * 2019-09-05 2019-12-13 太原理工大学 一种煤基碳纳米管的制备和纯化方法
CN112811421A (zh) * 2021-01-15 2021-05-18 岳阳振兴中顺新材料科技有限公司 一种利用双氧水制备过程中的废水制备炭材料的工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050100499A1 (en) * 2001-06-25 2005-05-12 Asao Oya Carbon nanotube and process for producing the same
JP4255033B2 (ja) * 2005-11-29 2009-04-15 学校法人 名城大学 カーボンナノチューブの製造方法および精製方法
CN101164873A (zh) * 2007-10-10 2008-04-23 中国科学院上海硅酸盐研究所 采用Fenton反应截短碳纳米管的方法
CN101659483A (zh) * 2008-08-29 2010-03-03 中国石油化工股份有限公司 一种用含双氧水废水处理高浓度难降解废水的方法
CN101857220A (zh) * 2010-07-15 2010-10-13 山西大同大学 一种绳状纳米碳管的制备方法
CN102179229A (zh) * 2011-05-06 2011-09-14 同济大学 芬顿试剂法制备磁性碳纳米管吸附剂的方法
CN105540590A (zh) * 2015-12-17 2016-05-04 中北大学 Fe3C纳米线填充氮掺杂碳纳米管复合材料的制备方法
CN110562960A (zh) * 2019-09-05 2019-12-13 太原理工大学 一种煤基碳纳米管的制备和纯化方法
CN112811421A (zh) * 2021-01-15 2021-05-18 岳阳振兴中顺新材料科技有限公司 一种利用双氧水制备过程中的废水制备炭材料的工艺

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
李银峰 等: "《碳纳米材料制备及其应用研究》", 31 March 2019, 中国原子能出版社 *
杨成德: "《涂料开发与试验》", 28 February 2015, 科学技术文献出版社 *
舒诗湖 等: "《城乡一体化供水技术与管理》", 31 January 2019, 冶金工业出版社 *
邹小平 等, 上海交通大学出版社 *

Similar Documents

Publication Publication Date Title
WO2021258515A1 (zh) 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物
CN108906052A (zh) 零价铁/碳材料催化剂及其制备方法
CN112808233A (zh) 一种Fe3O4-生物炭复合纳米材料的制备方法及降解水体有机污染物的方法
CN114100634B (zh) 一种磁性多组分铁碳复合类芬顿催化剂的制备方法、产品及应用
CN111589465A (zh) 一种高分散性三维多孔碳基金属催化剂的制备方法及应用
CN109626677B (zh) 一种焦化废水深度处理工艺
CN107754789A (zh) 用于臭氧氧化法处理有机废水的催化剂及微孔曝气器
CN109395759B (zh) 一种具有核壳结构的Fe3C纳米粒子及其制备方法和应用
CN113501598A (zh) 一种基于双氧水废水处理的活性碳基碳纳米管的制备工艺
CN113479864A (zh) 一种基于双氧水废水处理的煤基碳基碳纳米管的制备方法
CN115814829B (zh) 一种Co与Mo2C共掺杂的生物炭基复合材料及其制备方法与应用
CN108940331B (zh) 一种有序纳米片层团簇无金属催化剂及其合成与用途
CN116655091A (zh) 一种利用Fe-N-C活化亚硫酸盐去除水体中有机污染物的方法
CN115193465B (zh) 一种氮掺杂碳二维介孔催化剂及其制备方法与应用
CN106587325B (zh) 一种利用CoxFe1-xP材料非均相活化单过硫酸氢盐处理难降解废水的方法
CN115715980A (zh) Mn3O4/CNTs类芬顿催化剂及其制备方法和应用
CN113171785A (zh) 一种氮硫共掺杂有序介孔碳材料及其制备方法与应用
CN113023823A (zh) 一种用于净化含砷重金属溶液的复合材料的制备方法
CN116459847A (zh) 一种介孔二氧化硅负载铁铜氯氧化合物芬顿催化剂及其制备方法
CN115779873B (zh) 一种磁性生物质炭材料和铜冶炼酸性废水处理方法
CN112357917B (zh) 一种高比表面积石墨及其制备方法
CN117399004A (zh) 一种铁负载煤气化细渣催化剂及其制备方法和应用
CN118289893A (zh) 一种用于高盐有机废水处理的二氧化硅包覆型催化剂的制备方法及应用
CN116983986A (zh) 铁铜掺杂改性生物炭以及其制备方法与应用
CN118253325A (zh) 一种硫化亚铁复合催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination