CN113462120A - 一种自清洁硅胶键盘按键及其制备方法 - Google Patents

一种自清洁硅胶键盘按键及其制备方法 Download PDF

Info

Publication number
CN113462120A
CN113462120A CN202110961289.3A CN202110961289A CN113462120A CN 113462120 A CN113462120 A CN 113462120A CN 202110961289 A CN202110961289 A CN 202110961289A CN 113462120 A CN113462120 A CN 113462120A
Authority
CN
China
Prior art keywords
silica gel
self
keyboard key
super
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110961289.3A
Other languages
English (en)
Inventor
尹俊杰
尹志权
尹俊昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Xinjuntong Technology Co ltd
Original Assignee
Shenzhen Xinjuntong Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Xinjuntong Technology Co ltd filed Critical Shenzhen Xinjuntong Technology Co ltd
Priority to CN202110961289.3A priority Critical patent/CN113462120A/zh
Publication of CN113462120A publication Critical patent/CN113462120A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/22Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供了一种自清洁硅胶键盘按键及其制备方法,属于键盘技术领域,所述的一种自清洁硅胶键盘按键,由超疏水改性硅胶颗粒通过在100‑120℃时以50MPa的压力下挤出至模具中一体成型后进行抛光和蚀刻得到的,所述超疏水改性硅胶颗粒是由原硅酸乙酯、聚六氢三嗪衍生物、硅烷偶联剂在羧基化纳米颗粒表面进行交联反应制得的,其制备方法包括以下步骤:(1)聚六氢三嗪衍生物的准备;(2)超疏水改性硅胶颗粒的制备;(3)自清洁硅胶键盘按键的成型;本发明采用了超疏水改性硅胶颗粒一体成型制成键盘按键并且通过抛光、蚀刻,使得其表面形成微纳米尺度的高度纹理结构和内部结构具有超疏水性能,能够长期保持键盘按键的自清洁性能。

Description

一种自清洁硅胶键盘按键及其制备方法
技术领域
本发明涉及键盘技术领域,具体涉及一种自清洁硅胶键盘按键及其制备方法。
背景技术
键盘是用于操作计算机设备运行的一种指令和数据输入装置,也指经过系统安排操作一台机器或设备的一组功能键(如打字机、电脑键盘)。传统的键盘按键制造时,需要在其表面涂覆一层自清洁膜便于日常清洁,而键盘在使用过程中经常对其进行按压、敲击,久而久之其表面的涂层容易被磨损掉后,自清洁性能下降甚至丧失,手指上的汗渍、油脂粘附在按键表面后难以清洁。
硅胶是一种高活性吸附材料,属非晶态物质,其主要成分是二氧化硅。它不光具有塑料、橡胶的优良特性,还比塑料更加的环保,它可以自然降解,无毒无味,耐温不易燃,使用寿命长。硅胶优越的性能,加上硅胶是非石油产品,不依赖日益紧缺的石油资源,使得硅胶制品成为同类塑料制品的代替品已经是大势所趋,因此,亟需开发一种自清洁能力耐久性好、环保、综合性能较好的键盘按键材料。
发明内容
(一)解决的技术问题
本发明的目的是提供一种自清洁硅胶键盘按键及其制备方法,解决了传统键盘按键长期使用后自清洁性能降低、难以清洁的问题。
(二)技术方案
为解决上述技术问题,本发明提供以下技术方案:
一种自清洁硅胶键盘按键,由超疏水改性硅胶颗粒通过在100-120℃时以50MPa的压力下挤出至模具中一体成型后进行抛光和蚀刻得到的,所述超疏水改性硅胶颗粒是由原硅酸乙酯、聚六氢三嗪衍生物、硅烷偶联剂在羧基化纳米颗粒表面进行交联反应制得的。
优选的,所述硅烷偶联剂为十八烷基三甲氧基硅烷、辛基三乙氧基硅烷、乙烯基三乙氧基硅烷中任意一种。
优选的,所述羧基化纳米颗粒为安必奇生物公司的型号为DNG-F047的羧基化二氧化硅,所述羧基化二氧化硅的直径为30nm。
上述的一种自清洁硅胶键盘按键的制备方法,包括以下步骤:
(1)聚六氢三嗪衍生物的准备:将甲醛溶解在去离子水中于70℃下搅拌30min形成甲醛溶液,再将多胺在搅拌下溶解在去离子水中形成多胺溶液,将多胺溶液在不断搅拌下滴加至甲醛溶液中,反应结束后进行离心,收集沉淀后进行干燥得到聚六氢三嗪衍生物;
(2)将羧基化纳米颗粒超声分散到去离子水中,再将聚六氢三嗪衍生物溶解在水中形成混合溶液,依次将原硅酸乙酯、硅烷偶联剂在不断搅拌下加入到混合溶液中进行反应后,将产物进行过滤、洗涤干净后,干燥得到超疏水改性硅胶颗粒;
(3)将步骤(2)得到的超疏水改性硅胶颗粒在100-120℃下加热后,在50MPa压力下挤入键盘按键模具中,继续加热30min,冷却固化后在抛光机中进行抛光,最后用盐酸蚀刻后得到自清洁硅胶键盘按键。
优选的,所述步骤(1)中的多胺为带有苯环的多胺,包括但不限于对苯二胺、3,3',4,4'-联苯四胺、1,5-萘二胺、1,3,5-三氨基苯中至少一种。
优选的,所述步骤(1)中的甲醛和多胺的摩尔比为12-14:5。
优选的,所述步骤(1)中的反应条件为在70-75℃下搅拌2-4h。
优选的,所述步骤(2)中羧基化纳米颗粒、聚六氢三嗪衍生物、原硅酸乙酯和硅烷偶联剂的质量比为3-5:10-20:5-8:1-3。
优选的,所述步骤(2)中的反应条件为在100-110℃下搅拌反应5-8h,所述步骤(1)和步骤(2)中的干燥条件为在60℃烘箱中烘干8-12h。
优选的,所述步骤(3)中抛光机的转速为100-200r/min,抛光时间为30-60s,抛光砂纸为600-800目,所述步骤(3)中的盐酸浓度为1mol/L,所述蚀刻时间为30-40s。
本发明的有益效果是:
(1)该一种自清洁硅胶键盘按键及其制备方法,首先通过甲醛与多胺发生醛胺缩合反应得到聚六氢三嗪衍生物,再通过原硅酸乙酯和硅烷偶联剂上的羟基与羧基化纳米颗粒反应,随后聚六氢三嗪衍生物的加入与原硅酸乙酯和硅烷偶联剂进行交联将纳米颗粒包裹,并且聚六氢三嗪衍生物相对于原硅酸乙酯和硅烷偶联剂过量,使得它们的羟基全部反应,从内部结构达到疏水效果,得到超疏水改性硅胶颗粒,最后将其在高温高压下挤压至键盘按键模具中后冷却一体成型,经过抛光后用盐酸短时间蚀刻其表面,使得表面形成微纳米尺度的高度纹理表面。
(2)该一种自清洁硅胶键盘按键,其表面的微纳米尺度的高度纹理结构,不仅能够增加按键表面的防滑性,还进一步提高键盘按键的疏水性能,使得水滴很容易从超疏水表面滚落,带走污垢颗粒和其他杂质,当键盘按键长时间使用导致磨损时,虽然其表面的高度纹理结构可能会被破坏,但其由于采用了超疏水改性硅胶颗粒一体成型制成,暴露出来的内部结构依旧具有超疏水性能,能够长期保持键盘按键的自清洁性能。
(3)该一种自清洁硅胶键盘按键,整体机械强度较高,耐磨性较好,制备工艺简单,原料来源丰富,且原料环保可降解,能够回收后重复利用,大大降低了生产成本。
具体实施方式
下面结合具体实施方式对本发明做进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。以下实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所有原料均为通用材料。
实施例1
一种自清洁硅胶键盘按键的制备方法,包括以下步骤:
(1)聚六氢三嗪衍生物的准备:将4.2g甲醛溶解在100ml去离子水中于70℃下搅拌30min形成甲醛溶液,再将10.7g3,3',4,4'-联苯四胺在搅拌下溶解在100ml去离子水中形成3,3',4,4'-联苯四胺溶液,将3,3',4,4'-联苯四胺溶液在70℃时在不断搅拌下滴加至甲醛溶液中,继续搅拌4h,反应结束后进行离心,收集沉淀后在60℃烘箱中烘干12h得到聚六氢三嗪衍生物;
(2)将2.5g羧基化二氧化硅超声分散到200ml去离子水中,再将10g聚六氢三嗪衍生物溶解在水中形成混合溶液,依次将4g原硅酸乙酯、1.5g十八烷基三甲氧基硅烷在不断搅拌下加入到混合溶液中,并在100℃下搅拌反应5h进行反应后,将产物进行过滤、洗涤干净后,在60℃烘箱中烘干12h得到超疏水改性硅胶颗粒;
(3)将步骤(2)得到的超疏水改性硅胶颗粒在100-120℃下加热后,在50MPa压力下挤入键盘按键模具中,继续加热30min,冷却固化后在抛光机中用800目的抛光砂纸以转速为100r/min抛光30s,最后用1mol/L盐酸蚀刻30s后取出得到自清洁硅胶键盘按键。
实施例2
一种自清洁硅胶键盘按键的制备方法,包括以下步骤:
(1)聚六氢三嗪衍生物的准备:将3.6g甲醛溶解在100ml去离子水中于70℃下搅拌30min形成甲醛溶液,再将5.4g对苯二胺在搅拌下溶解在100ml去离子水中形成对苯二胺溶液,将对苯二胺溶液在72℃时在不断搅拌下滴加至甲醛溶液中,继续搅拌3h,反应结束后进行离心,收集沉淀后在60℃烘箱中烘干8h得到聚六氢三嗪衍生物;
(2)将1.5g羧基化二氧化硅超声分散到200ml去离子水中,再将5g聚六氢三嗪衍生物溶解在水中形成混合溶液,依次将2.5g原硅酸乙酯、0.5g辛基三乙氧基硅烷在不断搅拌下加入到混合溶液中,并在105℃下搅拌反应8h进行反应后,将产物进行过滤、洗涤干净后,在60℃烘箱中烘干8h得到超疏水改性硅胶颗粒;
(3)将步骤(2)得到的超疏水改性硅胶颗粒在110℃下加热后,在50MPa压力下挤入键盘按键模具中,继续加热30min,冷却固化后在抛光机中用600目的抛光砂纸以转速为100r/min抛光40s,最后用1mol/L盐酸蚀刻32s后取出得到自清洁硅胶键盘按键。
实施例3
一种自清洁硅胶键盘按键的制备方法,包括以下步骤:
(1)聚六氢三嗪衍生物的准备:将3.9g甲醛溶解在100ml去离子水中于70℃下搅拌30min形成甲醛溶液,再将6.2g1,3,5-三氨基苯在搅拌下溶解在100ml去离子水中形成1,3,5-三氨基苯溶液,将1,3,5-三氨基苯溶液在75℃时在不断搅拌下滴加至甲醛溶液中,继续搅拌2h,反应结束后进行离心,收集沉淀后在60℃烘箱中烘干10h得到聚六氢三嗪衍生物;
(2)将2g羧基化二氧化硅超声分散到200ml去离子水中,再将7.5g聚六氢三嗪衍生物溶解在水中形成混合溶液,依次将3g原硅酸乙酯、1g乙烯基三乙氧基硅烷在不断搅拌下加入到混合溶液中,并在110℃下搅拌反应5h进行反应后,将产物进行过滤、洗涤干净后,在60℃烘箱中烘干10h得到超疏水改性硅胶颗粒;
(3)将步骤(2)得到的超疏水改性硅胶颗粒在120℃下加热后,在50MPa压力下挤入键盘按键模具中,继续加热30min,冷却固化后在抛光机中用700目的抛光砂纸以转速为150r/min抛光50s,最后用1mol/L盐酸蚀刻40s后取出得到自清洁硅胶键盘按键。
实施例4
一种自清洁硅胶键盘按键的制备方法,包括以下步骤:
(1)聚六氢三嗪衍生物的准备:将4g甲醛溶解在100ml去离子水中于70℃下搅拌30min形成甲醛溶液,再将8g1,5-萘二胺在搅拌下溶解在100ml去离子水中形成1,5-萘二胺溶液,将1,5-萘二胺溶液在74℃时在不断搅拌下滴加至甲醛溶液中,继续搅拌3.5h,反应结束后进行离心,收集沉淀后在60℃烘箱中烘干11h得到聚六氢三嗪衍生物;
(2)将1.8g羧基化二氧化硅超声分散到200ml去离子水中,再将9g聚六氢三嗪衍生物溶解在水中形成混合溶液,依次将3.5g原硅酸乙酯、1.2g辛基三乙氧基硅烷在不断搅拌下加入到混合溶液中,并在110℃下搅拌反应6h进行反应后,将产物进行过滤、洗涤干净后,在60℃烘箱中烘干11h得到超疏水改性硅胶颗粒;
(3)将步骤(2)得到的超疏水改性硅胶颗粒在100℃下加热后,在50MPa压力下挤入键盘按键模具中,继续加热30min,冷却固化后在抛光机中用800目的抛光砂纸以转速为200r/min抛光60s,最后用1mol/L盐酸蚀刻35s后取出得到自清洁硅胶键盘按键。
对比例1
(1)聚六氢三嗪衍生物的准备:将4g甲醛溶解在100ml去离子水中于70℃下搅拌30min形成甲醛溶液,再将8g1,5-萘二胺在搅拌下溶解在100ml去离子水中形成1,5-萘二胺溶液,将1,5-萘二胺溶液在74℃时在不断搅拌下滴加至甲醛溶液中,继续搅拌3.5h,反应结束后进行离心,收集沉淀后在60℃烘箱中烘干11h得到聚六氢三嗪衍生物;
(2)将1.8g羧基化二氧化硅超声分散到200ml去离子水中,再将4.5g聚六氢三嗪衍生物溶解在水中形成混合溶液,依次将3.5g原硅酸乙酯、1.2g辛基三乙氧基硅烷在不断搅拌下加入到混合溶液中,并在110℃下搅拌反应6h进行反应后,将产物进行过滤、洗涤干净后,在60℃烘箱中烘干11h得到超疏水改性硅胶颗粒;
(3)将步骤(2)得到的超疏水改性硅胶颗粒在100℃下加热后,在50MPa压力下挤入键盘按键模具中,继续加热30min,冷却固化后在抛光机中用800目的抛光砂纸以转速为200r/min抛光60s,最后用1mol/L盐酸蚀刻35s后取出得到自清洁硅胶键盘按键取出得到自清洁硅胶键盘按键。
对比例2
(1)聚六氢三嗪衍生物的准备:将4g甲醛溶解在100ml去离子水中于70℃下搅拌30min形成甲醛溶液,再将8g1,5-萘二胺在搅拌下溶解在100ml去离子水中形成1,5-萘二胺溶液,将1,5-萘二胺溶液在74℃时在不断搅拌下滴加至甲醛溶液中,继续搅拌3.5h,反应结束后进行离心,收集沉淀后在60℃烘箱中烘干11h得到聚六氢三嗪衍生物;
(2)将9g聚六氢三嗪衍生物溶解在水中形成混合溶液,依次将3.5g原硅酸乙酯、1.2g辛基三乙氧基硅烷在不断搅拌下加入到混合溶液中,并在110℃下搅拌反应6h进行反应后,将产物进行过滤、洗涤干净后,在60℃烘箱中烘干11h得到改性硅胶颗粒;
(3)将步骤(2)得到的改性硅胶颗粒在100℃下加热后,在50MPa压力下挤入键盘按键模具中,继续加热30min,冷却固化后在抛光机中用800目的抛光砂纸以转速为200r/min抛光60s,最后用1mol/L盐酸蚀刻35s后取出得到自清洁硅胶键盘按键。
1)疏水性能试验
将实施例1-4与对比例1-2的制备的键盘按键进行不同液滴如水、奶茶、咖啡、可乐、牛奶在键盘按键表面的水接触角试验(采用接触仪SL200B,美国,KINO),液滴体积为8μL并且在每个键盘按键的不同位置进行5次水接触角试验,取平均值,试验结果见表1。
表1:
Figure BDA0003222433910000091
结果分析:由实施例1-4可以得知,自清洁硅胶键盘按键的水接触角均能达到150°以上,具有超疏水性能,且对于奶茶、咖啡、可乐和牛奶也具有超疏水性,能够轻易地进行清理,达到自清洁的效果,而对比例1、2的水接触角小于150°大于120°,具有疏水性能,对于奶茶、咖啡、可乐和牛奶的疏水性能有所下降,表明本发明制备的自清洁橡胶键盘按键具有较为优秀的自清洁性能。
2)砂纸磨损试验
将对实施例1-4和对比例1-2制备的相同尺寸的键盘按键样品,以200g的载荷与1000目砂纸反复摩擦2cm距离,经过2000次磨损后测量测试样品的水接触角(方法同试验1))和磨损量,测量结果见表2。
表2:
Figure BDA0003222433910000092
Figure BDA0003222433910000101
结果分析:由实施例1-4可以得知,自清洁硅胶键盘按键在经过2000次磨损后其表面的水接触角均能达到150°以上,仍然具有超疏水性能,而对比例1和对比例2的键盘按键经过2000次磨损后其表面的水接触角下降严重,只有72.6°和95.2°,其疏水性能大大降低,且对比例2的耐磨性较差,表明本发明制备的自清洁橡胶键盘按键的耐磨性较好,虽然表面的高度纹理结构可能会被破坏,但其由于采用了超疏水改性硅胶颗粒一体成型制成,暴露出来的内部结构依旧具有超疏水性能。
3)机械性能试验
通过GB/T 2567-200和GB/T-1843-2008标准对用实施例1-4和对比例1-2方法制备样品进行机械性能测试,表1为实施例1-4和对比例1-2制备的样品的测试标准和条件,测试结果见表4。
表3:
Figure BDA0003222433910000102
Figure BDA0003222433910000111
表4:
Figure BDA0003222433910000112
结果分析:由表4测试结果可以得知,用实施例1-4的方法制备的样品的拉伸强度、断裂伸长率和冲击强度均优于用对比例1-2的方法制备的样品,而对比例2的冲击强度最差,表明本发明通过聚六氢三嗪衍生物的加入与原硅酸乙酯和硅烷偶联剂进行交联将纳米颗粒包裹的方式将纳米颗粒均匀分散在键盘按键中,不仅能够提高其机械性能还能提高其耐磨性。
最后应说明的是:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案;本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围中。

Claims (10)

1.一种自清洁硅胶键盘按键,其特征在于,由超疏水改性硅胶颗粒通过在100-120℃时以50MPa的压力下挤出至模具中一体成型后进行抛光和蚀刻得到的,所述超疏水改性硅胶颗粒是由原硅酸乙酯、聚六氢三嗪衍生物、硅烷偶联剂在羧基化纳米颗粒表面进行交联反应制得的。
2.根据权利要求1所述的一种自清洁硅胶键盘按键,其特征在于,述硅烷偶联剂为十八烷基三甲氧基硅烷、辛基三乙氧基硅烷、乙烯基三乙氧基硅烷中任意一种。
3.根据权利要求1所述的一种自清洁硅胶键盘按键,其特征在于,所述羧基化纳米颗粒为安必奇生物公司的型号为DNG-F047的羧基化二氧化硅,所述羧基化二氧化硅的直径为30nm。
4.根据权利要求1、2、3任意一项所述的一种自清洁硅胶键盘按键的制备方法,其特征在于,包括以下步骤:
(1)聚六氢三嗪衍生物的准备:将甲醛溶解在去离子水中于70℃下搅拌30min形成甲醛溶液,再将多胺在搅拌下溶解在去离子水中形成多胺溶液,将多胺溶液在不断搅拌下滴加至甲醛溶液中,反应结束后进行离心,收集沉淀后进行干燥得到聚六氢三嗪衍生物;
(2)将羧基化纳米颗粒超声分散到去离子水中,再将聚六氢三嗪衍生物溶解在水中形成混合溶液,依次将原硅酸乙酯、硅烷偶联剂在不断搅拌下加入到混合溶液中进行反应后,将产物进行过滤、洗涤干净后,干燥得到超疏水改性硅胶颗粒;
(3)将步骤(2)得到的超疏水改性硅胶颗粒在100-120℃下加热后,在50MPa压力下挤入键盘按键模具中,继续加热30min,冷却固化后在抛光机中进行抛光,最后用盐酸蚀刻后得到自清洁硅胶键盘按键。
5.根据权利要求4所述的一种自清洁硅胶键盘按键的制备方法,其特征在于,所述步骤(1)中的多胺为带有苯环的多胺,包括但不限于对苯二胺、3,3',4,4'-联苯四胺、1,5-萘二胺、1,3,5-三氨基苯中至少一种。
6.根据权利要求4所述的一种自清洁硅胶键盘按键的制备方法,其特征在于,所述步骤(1)中的甲醛和多胺的摩尔比为12-14:5。
7.根据权利要求4所述的一种自清洁硅胶键盘按键的制备方法,其特征在于,所述步骤(1)中的反应条件为在70-75℃下搅拌2-4h。
8.根据权利要求4所述的一种自清洁硅胶键盘按键的制备方法,其特征在于,所述步骤(2)中羧基化纳米颗粒、聚六氢三嗪衍生物、原硅酸乙酯和硅烷偶联剂的质量比为3-5:10-20:5-8:1-3。
9.根据权利要求4所述的一种自清洁硅胶键盘按键的制备方法,其特征在于,所述步骤(2)中的反应条件为在100-110℃下搅拌反应5-8h,所述步骤(1)和步骤(2)中的干燥条件为在60℃烘箱中烘干8-12h。
10.根据权利要求4所述的一种自清洁硅胶键盘按键的制备方法,其特征在于,所述步骤(3)中抛光机的转速为100-200r/min,抛光时间为30-60s,抛光砂纸为600-800目,所述步骤(3)中的盐酸浓度为1mol/L,所述蚀刻时间为30-40s。
CN202110961289.3A 2021-08-20 2021-08-20 一种自清洁硅胶键盘按键及其制备方法 Pending CN113462120A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110961289.3A CN113462120A (zh) 2021-08-20 2021-08-20 一种自清洁硅胶键盘按键及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110961289.3A CN113462120A (zh) 2021-08-20 2021-08-20 一种自清洁硅胶键盘按键及其制备方法

Publications (1)

Publication Number Publication Date
CN113462120A true CN113462120A (zh) 2021-10-01

Family

ID=77866869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110961289.3A Pending CN113462120A (zh) 2021-08-20 2021-08-20 一种自清洁硅胶键盘按键及其制备方法

Country Status (1)

Country Link
CN (1) CN113462120A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140309343A1 (en) * 2011-11-11 2014-10-16 United Protective Technologies Multifunctional superhydrophobic diatomaceous earth for chemical adhesion and color change
US20170260615A1 (en) * 2011-11-11 2017-09-14 Peter Craig Venema Multifunctional superhydrophobic diatomaceous earth for chemical adhesion and color change
CN108641050A (zh) * 2018-05-22 2018-10-12 河北工业大学 一种水性超疏水材料的制备方法
CN109575651A (zh) * 2018-11-20 2019-04-05 安徽伊法拉电气有限公司 一种超憎水超自洁防污闪涂料及其制备工艺
CN109627814A (zh) * 2018-12-24 2019-04-16 国家电投集团科学技术研究院有限公司 一种二氧化硅纳米复合材料及其制备方法和应用
CN110568940A (zh) * 2019-10-12 2019-12-13 苏州可川电子科技股份有限公司 一种替代传统笔记本键盘的材料及工艺
CN113072877A (zh) * 2021-03-24 2021-07-06 中国科学院青海盐湖研究所 棒点结构的超疏水微-纳粒子、超疏水涂层液及超疏水防腐涂层的制备方法
CN113248755A (zh) * 2021-05-18 2021-08-13 长春工业大学 一种纳米二氧化硅/羟基硅烷偶联剂复合改性聚氨酯超疏水膜的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140309343A1 (en) * 2011-11-11 2014-10-16 United Protective Technologies Multifunctional superhydrophobic diatomaceous earth for chemical adhesion and color change
US20170260615A1 (en) * 2011-11-11 2017-09-14 Peter Craig Venema Multifunctional superhydrophobic diatomaceous earth for chemical adhesion and color change
CN108641050A (zh) * 2018-05-22 2018-10-12 河北工业大学 一种水性超疏水材料的制备方法
CN109575651A (zh) * 2018-11-20 2019-04-05 安徽伊法拉电气有限公司 一种超憎水超自洁防污闪涂料及其制备工艺
CN109627814A (zh) * 2018-12-24 2019-04-16 国家电投集团科学技术研究院有限公司 一种二氧化硅纳米复合材料及其制备方法和应用
CN110568940A (zh) * 2019-10-12 2019-12-13 苏州可川电子科技股份有限公司 一种替代传统笔记本键盘的材料及工艺
CN113072877A (zh) * 2021-03-24 2021-07-06 中国科学院青海盐湖研究所 棒点结构的超疏水微-纳粒子、超疏水涂层液及超疏水防腐涂层的制备方法
CN113248755A (zh) * 2021-05-18 2021-08-13 长春工业大学 一种纳米二氧化硅/羟基硅烷偶联剂复合改性聚氨酯超疏水膜的制备方法

Similar Documents

Publication Publication Date Title
CN100595374C (zh) 仿超纤合成革的制造方法
CN101070409A (zh) 一种聚丙烯树脂组合物及其制备方法和风扇
CN111057369A (zh) 一种碳纤维增强聚酰胺复合材料预浸润玄武岩纤维布及其制备方法
CN109943902A (zh) 一种改性聚酯纤维及制备方法
CN113462120A (zh) 一种自清洁硅胶键盘按键及其制备方法
CN111977991A (zh) 一种表面处理剂及用其制备彩色玻璃纤维的方法
CN110017342B (zh) 一种利用表面改性玄武岩微纤维制备汽车刹车片方法
CN101891936B (zh) 基于环氧树脂和膦腈纳米管的复合材料的制备方法
Wang et al. Investigating the mechanical properties of epoxy resin composites modified by polyamide and nano‐Al2O3
CN101224564A (zh) 抛光轮基布及其抛光轮的制作方法
CN114211903B (zh) 一种高导热硅胶压花辊筒及其制备方法
CN115094627B (zh) 一种耐久疏水聚酯纤维制品的制备方法
CN102619914A (zh) 石油钻机盘式制动片及其制备方法
CN110656506A (zh) 一种无机粒子复合聚氨酯合成革及其制备方法和应用
CN111892725B (zh) 一种软包电池极耳用极耳胶带及其制备方法
CN210553436U (zh) 无指纹抗静电钢板
CN115321841A (zh) 一种水性酚醛树脂增强型玄武岩纤维浸润剂及其制备方法
CN106978761A (zh) 耐磨墙纸的制备方法
CN105713347A (zh) 一种汽车空调传动齿轮用改性材料及其制备方法
CN113136078A (zh) 一种耐磨pvc保温板及其制备方法
CN107955327B (zh) 一种以改性硅微粉为基料的酚醛树脂磨料
CN110964313A (zh) 一种具有高耐磨性的复合材料的制备方法
CN108659283A (zh) 一种耐磨抗疲劳热塑性弹性体的制备方法
CN115044173B (zh) 一种耐腐蚀的高弹复合纤维及其制备方法
CN108892397A (zh) 一种新型玻璃纤维浸润剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211001