CN113444959B - 一种沉淀硬化型高熵合金基钢结硬质合金及制备方法 - Google Patents

一种沉淀硬化型高熵合金基钢结硬质合金及制备方法 Download PDF

Info

Publication number
CN113444959B
CN113444959B CN202110730523.1A CN202110730523A CN113444959B CN 113444959 B CN113444959 B CN 113444959B CN 202110730523 A CN202110730523 A CN 202110730523A CN 113444959 B CN113444959 B CN 113444959B
Authority
CN
China
Prior art keywords
alloy
powder
ticn
hard
equal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110730523.1A
Other languages
English (en)
Other versions
CN113444959A (zh
Inventor
张乾坤
宋先猛
肖逸锋
吴靓
钱锦文
陈泽民
唐俊
李苏望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202110730523.1A priority Critical patent/CN113444959B/zh
Publication of CN113444959A publication Critical patent/CN113444959A/zh
Application granted granted Critical
Publication of CN113444959B publication Critical patent/CN113444959B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0089Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种沉淀硬化型高熵合金基钢结硬质合金及制备方法,属于工模具及耐磨材料领域。其特征在于所述合金的基体成分采用新型沉淀硬化型高熵合金的配比方案,基体化学成分为FeCoCrNiMoTa;硬质相为TiCN,成分占比为25~35wt.%;通过粉末冶金技术制造成型,制备工艺包括雾化制粉、高能球磨、冷压成型、真空/加压烧结、热处理等加工工艺。所述钢结硬质合金利用高熵合金基体中Mo、Ta元素改善硬质相与基体之间的润湿性及热稳定性,并利用高熵合金基体的高强度、高韧性以及良好的耐磨性等优异性能来提高以TiCN为硬质相的钢结硬质合金的强韧性。

Description

一种沉淀硬化型高熵合金基钢结硬质合金及制备方法
技术领域
本发明涉及一种沉淀硬化型高熵合金基钢结硬质合金及制备方法,属于工模具及耐磨材料领域。该材料在加工镍基高温合金、钛合金等难加工金属领域具有很大的性能优势及潜力。
背景技术
现阶段,钛合金以及镍基高温合金在整个合金领域占有特殊重要的地位,广泛应用于航空航天、医药、军工和海洋工程等领域。但是钛合金以及镍基高温合金是典型难加工材料。在钛合金与高温合金加工过程中,由于其低的导热系数,切削过程中产生大量的热无法被传导,致使切削温度过高,刀具硬度下降,碳化物聚集,刃口迅速磨损、崩缺;同时零件表面存在氧化硬化区域,也对刀具有着强烈的磨损作用;并且钛合金化学活性高,在切削状态下粘刀现象严重,易生成积屑瘤。钛合金与高温合金加工中的这些特点,大大增加了其加工难度,整个加工过程效率降低,被加工面光洁度低,刀具消耗量大。
TiCN基钢结硬质合金具有密度低,硬度高,耐磨损,抗高温氧化等优异的物理机械性能,且生产成本低,有着极高的性价比,能够替代传统硬质合金材料,在加工镍基高温合金、钛合金等难加工金属领域具有很大的性能优势及潜力。但普通钢结合金中粘结相与TiCN 之间的润湿性较差,烧结过程中会发生钛基硬质相向坯料内部以及粘结相向坯料表面迁移的现象,使其棒料内部孔隙以及微裂纹等缺陷增多,进而导致该合金韧性降低。因而,控制烧结液相的含量和增强TiCN与粘结相的润湿性是提高TiCN基钢结硬质合金强韧性的关键。
专利201110170310.4公开了一种TiC系钢结硬质合金材料的制备方法,其组成成分为(重量百分比):Ti40~56wt.%,C10~14wt.%, Mn4.2~7.2wt.%,Ni1.0~2.0wt.%,Mo0.5~1.0wt.%,Cr0.5~1.5wt.%,稀土元素0.05~0.15%,余量为Fe,该合金材料属于常规高锰钢钢结硬质合金,具有较高的硬度及其耐磨性,但是高锰钢基体的加入并未有效提高该合金材料的抗冲击性能;专利201810611621.1公开了一种超细高熵合金粘结相金属陶瓷及其制备方法,专利201811106938.6 公开了一种高熵合金粘结相Ti(C,N)基金属陶瓷的制备方法,这两篇专利以高熵合金作为粘结相,添加第二碳化物以及高含量的TiCN硬质相,其TiCN硬质相的成分占比超过50wt.%。TiCN硬质相含量的增加可提高合金的硬度,红硬性以及耐磨性,但过高的TiCN硬质相成分占比将会导致TiCN在基体当中的润湿性降低,进而对TiCN基金属陶瓷的强韧性产生一定的影响。
发明内容
综上所述,结合目前现有技术,本发明的目的在于针对高温合金与钛合金的加工特性,通过研究新的合金体系和制备工艺,进而得到致密度高、红硬性高、耐磨性强、强韧性好的TiCN基高温钢结硬质合金。
本发明是通过以下技术方案实现的:
一种沉淀硬化型高熵合金基钢结硬质合金,其中,所述合金以 TiCN作为硬质相,成分占比为25~35wt.%;粘结相为一种高熵合金,化学式为FeaCobCrcNidMoeTaf,其中a、b、c、d、e和f分别对应各自元素的摩尔配比,2.2≥a≥0.8,1.0≥b≥0.3,1.0≥c≥0.3,1.0≥d≥0.3,1.0≥e≥0.3,0.5≥f≥0。
一种沉淀硬化型高熵合金基钢结硬质合金,其中,所述粘结相粉末为单质球磨粉、气雾化合金粉末或水雾化合金粉末中的一种。
上述沉淀硬化型高熵合金基钢结硬质合金的制备方法,具体包括以下步骤:
步骤1、制备粘结相粉末:制备粉末单质球磨粉、气雾化合金粉末或水雾化合金粉末中的一种。
步骤2、球磨混粉:按比例称取权利要求1所述的TiCN硬质相及高熵合金粘结相粉末,以硬质合金球为磨球,以酒精或正己烷作为球磨介质,球料比为3:1~5:1,采用高能湿磨混合12~36h,然后干燥,过120目筛。
步骤3、冷压成型:将步骤2得到的混合粉末在50~150MPa的压力下采用浮动阴模双向压制。
步骤4、真空烧结:将步骤3得到的压坯置于真空度为1×10-2~1 ×10-3Pa的真空石墨烧结炉中烧结,最高温度为1325~1400℃,保温时间为120~180min,得到烧结坯。
本发明采用上述技术方案的优点和效果在于:
1.本发明采用雾化制粉法制备预合金粉末,该种预合金粉末的化学成分均匀,避免了采用元素粉末制备高熵粘结相工艺中难以均匀化的不足。
2.钽的添加可以降低系统的界面能,形成较强的硬质相骨架,从而提高材料的抗塑性变形能力;并且Ta与C和N的结合力强,形成的化合物热稳定性高,因此,高熵合金粘结相中添加高熔点Ta元素可提高TiCN基钢结硬质合金的力学性能及改善刀具的切削性能。
3.高熵合金粘结相中Mo的添加有利于改善硬质相与基体之间的润湿性从而提高合金材料的界面结合强度,并且Mo元素在烧结过程中会在TiCN硬质相颗粒附近聚集,因此可以减少烧结时TiCN颗粒之间的接触,避免TiCN颗粒的粗化。
4.高熵合金粘结相的高强度、高韧性以及良好的耐磨性等优异性能可提高以TiCN为硬质相的钢结硬质合金的强韧性。
5.本发明原材料易得,且对原料的约束较少,总体成本相对低廉,经济性好。
附图说明:
表1为实施例1-3中沉淀硬化型高熵合金基钢结硬质合金不同性能测试结果
图1为实施例1中沉淀硬化型高熵合金基钢结硬质合金显微组织 SEM照片
具体实施方式:
以下由特定的具体实施例说明本发明的制备方式及工艺性能,本领域技术人员可由本说明书所揭示的内容全面地了解本发明的优点及作用。
实施例1:
1)按照Fe:Co:Cr:Ni:Mo:Ta=2.0:0.3:0.4:0.5:0.5:0.3 摩尔配比称量超声处理的Fe材料、Co材料、Cr材料、Ni材料、Mo 材料、Ta材料。
2)将步骤1称量的材料放在中频感应熔炼炉内熔炼为金属液体;通过喷咀引入高速喷射的氩气流冲击并剪切金属流,喷咀缝隙尺寸 0.5~1.0mm,喷射角为30~60°;再使液滴在1.8~2.0MPa的纯氩气中极冷为预合金化的固体粉末颗粒;固体粉末颗粒经200目过筛后的筛下物即为所要的混合粉末。
3)将30wt.%TiCN粉,余量的步骤2所得混合粉末以及占总质量比5%的石蜡加入Fe-Cr不锈钢球磨罐中,无水乙醇为球磨介质,硬质合金球为磨球,球料比为3:1,球磨时间为24h,制备得到粉末混合物料浆。
4)将步骤3所得的混合粉末以负压干燥的方式在70~80℃的干燥箱中干燥,待粉料干燥完成后经120目过筛后获得混合粉末。
5)将步骤4所得的混合粉末在油压压力机上压制,压强为 100Mpa,慢速升压,保压时间为20s,得到压制坯体。
6)将步骤5所得到的坯体放在真空石墨烧结炉中进行真空烧结,真空度为1×10-2~1×10-3Pa,最终烧结温度为1380℃,保温时间为 120min,得到烧结坯。
将按照上述方法制得的TiCN基钢结硬质合金进行性能测试。
实施例2
1)按照Fe:Co:Cr:Ni:Mo:Ta=1.0:0.6:0.4:1.0:0.6:0.4 摩尔配比称量超声处理的Fe材料、Co材料、Cr材料、Ni材料、Mo 材料、Ta材料。
2)将35wt.%TiCN粉,余量的步骤1所得混合粉末以及占总质量比5%的石蜡加入Fe-Cr不锈钢球磨罐中,无水乙醇为球磨介质,硬质合金球为磨球,球料比为3:1,球磨时间为36h,制备得到粉末混合物料浆。
3)将步骤2所得的混合粉末以负压干燥的方式在70~80℃的干燥箱中干燥,待粉料干燥完成后经120目过筛后获得混合粉末。
4)将步骤3所得的混合粉末在油压压力机上压制,压强为 150Mpa,慢速升压,保压时间为20s,得到压制坯体。
5)将步骤4所得到的坯体放在真空石墨烧结炉中进行真空烧结,真空度为1×10-2~1×10-3Pa,最终烧结温度为1400℃,保温时间为 120min,得到烧结坯。
将按照上述方法制得的TiCN基钢结硬质合金进行性能测试。
实施例3
1)按照Fe:Co:Cr:Ni:Mo:Ta=2.0:0.5:0.4:0.5:0.4:0.4 摩尔配比称量超声处理的Fe材料、Co材料、Cr材料、Ni材料、Mo 材料、Ta材料。
2)将步骤1称量的材料放在中频感应熔炼炉内熔炼为金属液体;通过喷咀引入高速喷射的氩气流冲击并剪切金属流,喷咀缝隙尺寸 0.5~1.0mm,喷射角为30~60°;再使液滴在1.8~2.0MPa的纯氩气中极冷为预合金化的固体粉末颗粒;固体粉末颗粒经200目过筛后的筛下物即为所要的混合粉末。
3)将30wt.%TiCN粉,余量的步骤2所得混合粉末以及占总质量比5%的石蜡加入Fe-Cr不锈钢球磨罐中,无水乙醇为球磨介质,硬质合金球为磨球,球料比为5:1,球磨时间为12h,制备得到粉末混合物料浆。
4)将步骤3所得的混合粉末以负压干燥的方式在70~80℃的干燥箱中干燥,待粉料干燥完成后经120目过筛后获得混合粉末。
5)将步骤4所得的混合粉末在油压压力机上压制,压强为50Mpa,慢速升压,保压时间为20s,得到压制坯体。
6)将步骤5所得到的坯体放在真空石墨烧结炉中进行真空烧结,真空度为1×10-2~1×10-3Pa,最终烧结温度为1350℃,保温时间为 180min,得到烧结坯。
将按照上述方法制得的TiCN基钢结硬质合金进行性能测试。

Claims (4)

1.一种沉淀硬化型高熵合金基钢结硬质合金,其特征在于,所述合金以TiCN作为硬质相,成分占比为25~35wt.%;粘结相为一种高熵合金,化学式为FeaCobCrcNidMoeTaf,其中a、b、c、d、e和f分别对应各自元素的摩尔配比,2.2≥a≥0.8,0.6≥b≥0.3,0.4≥c≥0.3,1.0≥d≥0.5,0.6≥e≥0.3,0.5≥f≥0.3。
2.根据权利要求1所述的合金,其特征在于,所述粘结相FeaCobCrcNidMoeTaf粉末为单质球磨粉、气雾化合金粉末或水雾化合金粉末中的一种。
3.根据权利要求1所述的合金,其特征在于,所述合金的制备方法包括以下步骤:
步骤1、制备粘结相粉末:制备粉末单质球磨粉、气雾化合金粉末或水雾化合金粉末中的一种;
步骤2、球磨混粉:按比例称取权利要求1所述的TiCN硬质相及高熵合金粘结相粉末,以硬质合金球为磨球,以酒精或正己烷作为球磨介质,球料比为3:1~5:1,采用高能湿磨混合12~36h,然后干燥,过120目筛;
步骤3、冷压成型:将步骤2得到的混合粉末在50~150MPa的压力下采用浮动阴模双向压制;
步骤4、真空烧结:将步骤3得到的压坯置于真空度为1×10-2~1×10-3Pa的真空石墨烧结炉中烧结,最高温度为1325~1400℃,保温时间为120~180min,得到烧结坯。
4.根据权利要求1所述的合金,其特征在于,所制备的高熵合金TiCN硬质合金烧结坯具有可热处理强化的特点;热处理工艺为1200℃真空固溶20~60min,然后在600~650℃回火2~4小时;热处理后,其硬度由50~55HRC提高至67~69HRC。
CN202110730523.1A 2021-06-29 2021-06-29 一种沉淀硬化型高熵合金基钢结硬质合金及制备方法 Active CN113444959B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110730523.1A CN113444959B (zh) 2021-06-29 2021-06-29 一种沉淀硬化型高熵合金基钢结硬质合金及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110730523.1A CN113444959B (zh) 2021-06-29 2021-06-29 一种沉淀硬化型高熵合金基钢结硬质合金及制备方法

Publications (2)

Publication Number Publication Date
CN113444959A CN113444959A (zh) 2021-09-28
CN113444959B true CN113444959B (zh) 2022-08-16

Family

ID=77814161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110730523.1A Active CN113444959B (zh) 2021-06-29 2021-06-29 一种沉淀硬化型高熵合金基钢结硬质合金及制备方法

Country Status (1)

Country Link
CN (1) CN113444959B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190135318A (ko) * 2018-05-28 2019-12-06 부산대학교 산학협력단 크롬을 유효성분으로 포함하는 합금의 용접방법
CN110205533A (zh) * 2019-07-12 2019-09-06 南方科技大学 一种硬质合金及其制备方法与应用
DE102019127518A1 (de) * 2019-10-11 2021-04-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hartmetalle und verfahren zu ihrer herstellung
CN111575599B (zh) * 2020-05-19 2021-12-07 湘潭大学 一种沉淀强化型高温钢结硬质合金及制备方法
CN113444952A (zh) * 2021-06-30 2021-09-28 厦门理工学院 一种高强度高韧性的高熵金属陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ti(C,N)/AlCoCrFeNi基金属陶瓷烧结过程中的微观结构和相变;朱刚等;《材料科学与工程学报》;20160620(第03期);全文 *

Also Published As

Publication number Publication date
CN113444959A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN108823478B (zh) 超细高熵合金粘结相金属陶瓷及其制备方法
CN106985085B (zh) 一种金属结合剂金刚石砂轮
CN108637268B (zh) 一种微波碳热还原制备复合Ti(C,N)金属陶瓷粉体的方法
CN108642402B (zh) 氮化铝弥散强化粉末冶金铝高速钢及其制备方法
CN105950944B (zh) 一种高熔点高熵合金NbMoTaWVTi及其制备方法
CN105950935A (zh) 冷镦成形紧固件用硬质合金模具材料及其制备方法
CN108441664B (zh) 超高强度可涂层TiCN基含钴钢结硬质合金及制备方法
CN109338193B (zh) 一种无芯-环结构金属陶瓷合金及其制备方法
CN111793773A (zh) 一种通过Laves相及μ相复合强硬化的高速钢及其制备方法
CN105950936A (zh) 温锻成形钛合金紧固件用硬质合金模具材料及制备方法
CN107245628B (zh) 采用Ni-Cu连续固溶体作粘结相的硬质合金材料及其制备方法
CN106002131B (zh) 一种镶嵌合金高性能剪切圆刀及其加工方法
CN106811646A (zh) 一种高强韧高锰钢基TiC/TiN钢结硬质合金的制备方法
CN110229989B (zh) 一种多元硬质合金及其制备方法
CN112662930A (zh) 一种高熵模具钢材料及其制备方法
CN111575599B (zh) 一种沉淀强化型高温钢结硬质合金及制备方法
CN101885069B (zh) 一种粉末高速钢与结构钢双金属复合材料的制造方法
CN106399797B (zh) 一种以钴粘结碳化钛基耐磨耐腐蚀硬质合金及制备方法
CN113444959B (zh) 一种沉淀硬化型高熵合金基钢结硬质合金及制备方法
CN113088781B (zh) 一种高熵硬质合金及其制备方法和应用
CN104451217A (zh) 一种超细硬质合金的制备方法
CN114318163B (zh) 一种用于金刚石工具的超细多元预合金粉末及其制备方法
CN102766795B (zh) 无磁模具材料及其制备方法
CN110983152A (zh) 一种Fe-Mn-Si-Cr-Ni基形状记忆合金及其制备方法
CN106591674A (zh) 一种高强韧耐热TiN钢结硬质合金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant