CN113437271B - 一种均匀改性的硅基复合材料及其制备方法和应用 - Google Patents

一种均匀改性的硅基复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN113437271B
CN113437271B CN202110668605.8A CN202110668605A CN113437271B CN 113437271 B CN113437271 B CN 113437271B CN 202110668605 A CN202110668605 A CN 202110668605A CN 113437271 B CN113437271 B CN 113437271B
Authority
CN
China
Prior art keywords
silicon
carbon
based composite
composite material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110668605.8A
Other languages
English (en)
Other versions
CN113437271A (zh
Inventor
罗飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianmulake Excellent Anode Materials Co Ltd
Original Assignee
Tianmulake Excellent Anode Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianmulake Excellent Anode Materials Co Ltd filed Critical Tianmulake Excellent Anode Materials Co Ltd
Priority to CN202110668605.8A priority Critical patent/CN113437271B/zh
Priority to PCT/CN2021/111677 priority patent/WO2022262096A1/zh
Priority to EP21945677.9A priority patent/EP4358181A1/en
Priority to KR1020237043936A priority patent/KR20240010040A/ko
Publication of CN113437271A publication Critical patent/CN113437271A/zh
Application granted granted Critical
Publication of CN113437271B publication Critical patent/CN113437271B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种均匀改性的硅基复合材料及其制备方法和应用,硅基复合材料的通式为S i CxAyOz;0<x<20;0<y<10;0<z<10;其中,A为B、A l、Mg、Ca、Fe、Co、N i、Cu、Zn、Ge、Sn、L i中的一种或多种,C以原子尺度均匀弥散分布在硅基复合材料的颗粒内部,且无20nm以上的碳元素团聚;部分或所有碳原子与硅原子结合形成无序的S i‑C键;在硅基复合材料的聚焦离子束‑透射电镜F I B‑TEM测试中,颗粒切面的能谱面扫显示颗粒内部硅元素、碳元素、A元素、氧元素均匀分布;所述硅基复合材料的微观结构为多相弥散结构;所述硅基复合材料颗粒的平均粒径D50为1nm‑100μm,比表面积为0.5m2/g‑40m2/g;所述碳原子的质量占硅基复合材料质量的0.1%‑40%;所述A元素的质量占复合颗粒质量的3%‑40%。

Description

一种均匀改性的硅基复合材料及其制备方法和应用
技术领域
本发明涉及材料技术领域,尤其涉及一种均匀改性的硅基复合材料及其制备方法和应用。
背景技术
随着锂离子电池应用的快速发展,以及对高能量密度需求的不断增加,开发具有高比容量的电极材料成为目前锂电池领域的研究重点。负极材料作为锂离子电池四大主材之一,其容量的高低在很大程度上影响着锂离子电池能量密度的高低。硅与锂在较低的电位下形成合金,反应生成Li3.75Si,此时比容量可达3975mAh/g。然而,硅在脱嵌锂过程中高达300%的巨大体积变化,严重限制了该材料的应用。
相比于硅的巨大体积变化,氧化亚硅(SiOx)在嵌锂状态下的体积膨胀在150%左右,其比容量(~1700mAh/g)虽然低于硅材料,但仍然远高于目前商业化的石墨(372mAh/g),因此成为负极材料的研究热点之一。然而氧化亚硅的首圈效率低(~78%),且150%的体积变化仍然面临材料粉化的问题。
碳包覆是一种比较常见的改性方式,一方面可以避免电解液与SiOx的直接接触,减少固态电解质界面(SEI)膜的生成,提升材料的可逆容量;并且表面碳的力学作用还可缓冲SiOx颗粒在脱嵌锂过程中的体积变化,从而提升该材料的循环性能;还可以提高材料表面的电子电导率,从而提升材料的倍率性能。但是碳包覆只能改变表面导电性,为了实现快充性能,颗粒内部的导电性也需要改善。
发明内容
本发明实施例提供了一种均匀改性的硅基复合材料及其制备方法和应用。通过碳元素和A元素的体相掺杂分布,改善了材料的导电性和锂离子电池的循环稳定性。
第一方面,本发明实施例提供了一种均匀改性的硅基复合材料,硅基复合材料的通式为SiCxAyOz;0<x<20;0<y<10;0<z<10;
其中,A为B、Al、Mg、Ca、Fe、Co、Ni、Cu、Zn、Ge、Sn、Li中的一种或多种,C以原子尺度均匀弥散分布在硅基复合材料的颗粒内部,且无20nm以上的碳元素团聚;部分或所有碳原子与硅原子结合形成无序的Si-C键;在硅基复合材料的聚焦离子束-透射电镜FIB-TEM测试中,颗粒切面的能谱面扫显示颗粒内部硅元素、碳元素、A元素、氧元素均匀分布;
所述硅基复合材料的微观结构为多相弥散结构;
所述硅基复合材料颗粒的平均粒径D50为1nm-100μm,比表面积为0.5m2/g-40m2/g;所述碳原子的质量占硅基复合材料质质量的0.1%-40%;所述A元素的质量占复合颗粒质量的3%-40%。
优选的,硅基复合材料的外部还具有碳包覆层;所述碳包覆层的质量占所述硅基复合材料质量的0-20%。
进一步优选的,所述碳原子的质量占所述硅基复合材料质量的0.5%-10%;所述碳包覆层的质量占所述硅基复合材料质量的0-10%。
第二方面,本发明实施例提供了上述第一方面所述的均匀改性的硅基复合材料的制备方法,制备方法包括一步气相沉积法或两步气相沉积法。
优选的,所述一步气相沉积法具体包括:
按所需用量将硅粉末、二氧化硅粉末、单质A粉末和/或A的氧化物粉末混合均匀,并置于真空炉中;
真空炉减压后,加热至1200℃-1700℃,得到含硅元素、氧元素、A元素的混合蒸气;
在保护气氛下,向真空炉中通入含碳气源,与所述混合蒸气进行气相混合反应1-24小时;
将所述气相混合反应得到的物料冷却至室温,并出料粉碎筛分,即得到碳元素以原子尺度均匀弥散分布的SiCxAyOz硅基复合材料。
优选的,所述两步气相沉积法具体包括:
按所需用量将硅粉末、二氧化硅粉末混合均匀,并置于真空炉中;
真空炉减压后,加热至1200℃-1700℃,得到含硅元素、氧元素的混合蒸气;
在保护气氛下,向真空炉中通入含碳气源,与所述混合蒸气进行气相混合反应1-24小时;
将所述气相混合反应得到的物料冷却至室温,并出料粉碎筛分,即得到碳元素以原子尺度均匀弥散分布的SiCxOz复合材料;
将SiCxOz与单质A粉末和/或A的氧化物粉末混合均匀,置于高温炉中,在600℃-1500℃热处理2-24小时,即得到碳元素以原子尺度均匀弥散分布的SiCxAyOz硅基复合材料。
进一步优选的,含碳气源包括:甲烷、丙烷、丁烷、乙炔、乙烯、丙烯、丁二烯或一氧化碳中的一种或多种。
优选的,在将所述物料冷却至室温并出料粉碎筛分之后,所述制备方法还包括:对所述筛分后的物料进行碳包覆,分级后即得所述负极材料。
进一步优选的,在将所述物料冷却至室温,并出料粉碎筛分之后,所述制备方法还包括:对所述筛分后的物料进行碳包覆;其中,所述碳包覆包括:气相包覆、液相包覆、固相包覆中的至少一种。
第三方面,本发明实施例提供了一种包括上述第一方面所述的均匀改性的硅基复合材料的负极片。
第四方面,本发明实施例提供了一种包括上述第三方面所述的负极片的锂电池。
本发明提供的均匀改性的硅基复合材料SiCxAyOz,通过C元素与A元素的体相掺杂分布,改善了硅基材料的体相导电性,为硅基材料的体积膨胀提供了体相均匀分布的缓冲空间,提高了材料的快充性能、首次库伦效率和循环稳定性。
附图说明
下面通过附图和实施例,对本发明实施例的技术方案做进一步详细描述。
图1为本发明实施例提供的一种硅基复合材料的制备方法的流程图;
图2为本发明实施例的硅基复合材料的制备方法的流程图;
图3为本发明实施例1提供的内部碳原子以原子级均匀弥散分布的硅基负极材料的FIB-TEM能谱面扫图。
具体实施方式
下面通过附图和具体的实施例,对本发明进行进一步的说明,但应当理解为这些实施例仅仅是用于更详细说明之用,而不应理解为用以任何形式限制本发明,即并不意于限制本发明的保护范围。
本发明提出的均匀改性的硅基复合材料,通式为SiCxAyOz,其中0<x<20;0<y<10;0<z<10;
A为B、Al、Mg、Ca、Fe、Co、Ni、Cu、Zn、Ge、Sn、Li中的一种或多种,C以原子尺度均匀弥散分布在硅基复合材料的颗粒内部,且无20nm以上的碳元素团聚;部分或所有碳原子与硅原子结合形成无序的Si-C键;在硅基复合材料的聚焦离子束-透射电镜(FIB-TEM)测试中,颗粒切面的能谱面扫显示颗粒内部硅元素、碳元素、A元素、氧元素均匀分布;
硅基复合材料的微观结构为多相弥散结构;
硅基复合材料颗粒的平均粒径D50为1nm-100μm,比表面积为0.5m2/g-40m2/g;所述碳原子的质量占硅基复合材料质量的0.1%-40%,优选为0.5%-10%;A元素的质量占复合颗粒质量的3%-40%。
在以上材料的外层还可以包覆有碳包覆层,碳包覆层的质量占硅基复合材料质量的0-20%,优选的,碳包覆层的质量占硅基复合材料质量的0-10%。
本发明上述均匀改性的硅基复合材料,可以通过一步气相沉积法或两步气相沉积法获得。
一步气相沉积法的步骤如图1所示,包括:
步骤110,按所需用量将硅粉末、二氧化硅粉末、单质A粉末和/或A的氧化物粉末混合均匀,并置于真空炉中;
步骤120,真空炉减压后,加热至1200℃-1700℃,得到含硅元素、氧元素、A元素的混合蒸气;
其中,真空炉减压至300Pa以下。
步骤130,在保护气氛下,向真空炉中通入含碳气源,与所述混合蒸气进行气相混合反应1-24小时;
其中,保护气氛可以为N2或Ar气氛。含碳气源包括:甲烷、丙烷、丁烷、乙炔、乙烯、丙烯、丁二烯或一氧化碳中的一种或多种。
步骤140,将气相混合反应得到的物料冷却至室温,并出料粉碎筛分,即得到碳元素以原子尺度均匀弥散分布的SiCxAyOz硅基复合材料。
两步气相沉积法的步骤如图2所示,包括:
步骤210,按所需用量将硅粉末、二氧化硅粉末混合均匀,并置于真空炉中;
步骤220,真空炉减压后,加热至1200℃-1700℃,得到含硅元素、氧元素的混合蒸气;
其中,真空炉减压至300Pa以下。
步骤230,在保护气氛下,向真空炉中通入含碳气源,与所述混合蒸气进行气相混合反应1-24小时;
其中,保护气氛可以为N2或Ar气氛。含碳气源包括:甲烷、丙烷、丁烷、乙炔、乙烯、丙烯、丁二烯或一氧化碳中的一种或多种。
步骤240,将气相混合反应得到的物料冷却至室温,并出料粉碎筛分,即得到碳元素以原子尺度均匀弥散分布的SiCxOz复合材料;
步骤250,将SiCxOz与单质A粉末和/或A的氧化物粉末混合均匀,置于高温炉中,在600℃-1500℃热处理2-24小时,即得到碳元素以原子尺度均匀弥散分布的SiCxAyOz硅基复合材料。
在以上两种方法的基础上,进一步的,如果是制备外部还具有碳包覆层的硅基复合材料,则还可通过对粉碎后的物料进行碳包覆、分级,得到硅基复合材料。碳包覆的具体方法可以包括气相包覆、液相包覆、固相包覆中的至少一种。以上方法为制备电池材料过程中常用的包覆方法,在此不再展开说明。
本发明提供的具有碳元素以原子尺度均匀弥散分布在颗粒内部的硅基复合材料,通过C元素与A元素的体相掺杂分布,改善了硅基材料的体相导电性,为硅基材料的体积膨胀提供了体相均匀分布的缓冲空间,提高了材料的快充性能、首次库伦效率和循环稳定性。
本发明提出的硅基复合材料可用于制备负极片应用在锂电池中。
为更好的理解本发明提供的技术方案,下述以多个具体实例分别说明应用本发明上述实施例提供的方法制备硅基复合材料的具体过程,以及将其应用于锂二次电池的方法和特性。
实施例1
将1kg硅粉、1kg二氧化硅和0.3kg氧化铜的混合粉末置于高温反应炉内,抽真空至50Pa,加热升温至1500℃变为蒸气。在氩气气流下同时缓慢通入1.6L甲烷进行反应3小时,冷却至室温。出料粉碎后即得到内部碳元素、铜元素以原子级均匀弥散分布的硅基复合材料。用碳硫分析仪测试其中碳含量为1.5%。
将得到的硅基复合材料进行FIB-TEM测试,通过能谱检测观察颗粒内部元素分布情况。图3为FIB-TEM能谱面扫图。从图2能谱元素面扫可知,Si、C、Cu、O四种元素在颗粒中均匀分布。
之后对硅基复合材料进行碳包覆,将2kg物料置于回转炉在保护气氩围下升温至1000℃,按体积比1:1通入氩气和丙烯进行气相包覆,保温2小时关闭有机气源,降温出料分级后,即得到含碳包覆层的硅基复合材料,其中总含碳量为4.5%。
将上述的含碳包覆层的硅基复合材料作为负极材料,与导电添加剂导电炭黑(SP),粘接剂聚偏氟乙烯(PVDF)按照比例95%:2%:3%称量好,在室温下,打浆机中进行浆料制备。将制备好的浆料均匀涂布于铜箔上。50℃下在鼓风干燥箱中烘干2小时后,裁剪为8×8mm的极片,在真空干燥箱中100℃下抽真空烘干10个小时。将烘干后的极片,随即转移入手套箱中备用用以组装电池。
模拟电池的装配是在含有高纯Ar气氛的手套箱内进行,用金属锂作为对电极,1摩尔的LiPF6在碳酸乙烯酯/碳酸二甲酯(EC/DMCv:v=1:1)中的溶液作为电解液,装配成电池。使用充放电仪进行恒流充放电模式测试,放电截至电压为0.005V,充电截至电压为1.5V,第一周充放电测试C/10电流密度下进行,第二周放电测试在C/10电流密度下进行。
实施例2
将1kg硅粉和1kg二氧化硅混合粉末置于真空炉中,抽真空至50Pa,加热升温至1500℃变为蒸气。随后在氩气气流下同时缓慢通入1.6L甲烷进行反应3小时,冷却至室温。出料粉碎后即得到内部碳元素以原子级均匀弥散分布的硅基材料粉末。用碳硫分析仪测试其中碳含量为1.8%。
将得到的内部碳元素以原子级均匀弥散分布的硅基材料粉末和氧化铜按照摩尔比1:0.4混合均匀,之后在1000℃下热处理4小时,得到内部含碳元素、铜元素的硅基复合材料。
之后对上述材料进行碳包覆。将2kg硅基复合材料置于回转炉在保护气氩围下升温至1000℃,按体积比1:1通入氩气和丙烯进行气相包覆,保温2小时关闭有机气源。降温出料分级后,即得到含碳包覆层的硅基复合材料,其中总含碳量为4.6%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例3
将3kg硅粉、3kg二氧化硅、1kg氧化硼的混合粉末置于真空炉中,抽真空至100Pa,加热升温至1350℃变为蒸气,在氩气流下同时缓慢通入23.4L丙烷进行反应8小时,冷却至室温。出料粉碎后即得到内部碳元素、硼元素以原子级均匀弥散分布的硅基复合材料。用碳硫分析仪测试其中碳含量为2.0%。
之后对其进行碳包覆,将2kg物料置于回转炉中,在保护气氩围下升温至900℃,按体积比1:1通入氩气和与氩气等量的丙烯和甲烷混合气体进行气相包覆,其中丙烯和甲烷体积比为2:3。保温3小时关闭有机气源,降温出料分级后,即得到含碳包覆层的硅基复合材料,其中总含碳量为4.7%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例4
将2kg硅粉和2kg二氧化硅混合粉末置于真空炉内,抽真空至150Pa,加热升温至1400℃变为蒸气。在氩气流下同时缓慢通入1L丙烯进行反应5小时,冷却至室温。出料粉碎后即得到内部碳元素以原子级均匀弥散分布的硅基复合材料。用碳硫分析仪测试其中碳含量为2.0%。
将得到的内部碳元素以原子级均匀弥散分布的硅基复合材料和金属铝按照摩尔比2:1混合均匀,之后在1200℃下热处理4小时,得到内部含碳元素、铜元素的硅基复合材料。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例5
将3kg硅、3kg二氧化硅、1kg金属镁的混合粉末置于真空炉中,抽真空至150Pa,加热升温至1400℃变为蒸气,在氩气流下同时缓慢11.7L乙炔和5L甲烷的混合气进行反应4小时,冷却至室温。出料粉碎后即得到内部碳元素、镁元素以原子级均匀弥散分布的硅基复合材料。用碳硫分析仪测试其中碳含量为1.8%。
之后对其进行碳包覆,将2kg物料置于回转炉在保护气氩围下升温至1100℃,按体积比1:1通入氩气和与氩气等量的丙烯和甲烷混合气体进行气相包覆,其中丙烯和甲烷体积比为2:3。保温3小时关闭有机气源,降温出料分级后,即得到含碳包覆层的硅基复合材料,其中总含碳量为6.5%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例6
将5kg硅粉和5kg二氧化硅混合粉末置于真空炉内,抽真空至150Pa,加热升温至1400℃变为蒸气。在氩气流下同时缓慢通入1L的乙炔气体进行反应5小时,冷却至室温。出料粉碎后即得到内部碳元素以原子级均匀弥散分布的硅基材料粉末。用碳硫分析仪测试其中碳含量为0.8%。
将得到的内部碳元素以原子级均匀弥散分布的硅基材料粉末和氧化钙按照摩尔比3:1混合均匀,之后在1200℃下热处理4小时,得到内部含碳元素、钙元素的硅基复合材料。
之后对其进行碳包覆,将1.5kg物料置于回转炉在保护气氩围下升温至850℃,按体积比1:1通入氩气和与氩气等量的丙烷进行气相包覆,保温1.5小时关闭有机气源,降温出料分级后,即得到含碳包覆层的硅基复合材料,其中总含碳量为5.5%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例7
将2kg硅、3kg二氧化硅、0.5kg金属铁的混合粉末置于真空炉中,抽真空至100Pa,加热升温至1600℃变为蒸气,在氩气流下同时缓慢通入1L的丁烷气体进行反应3小时,冷却至室温。出料粉碎后即得到内部碳元素、铁元素以原子级均匀弥散分布的硅基复合材料。用碳硫分析仪测试其中碳含量为2%。
之后对其进行碳包覆,将2kg物料置于回转炉在保护气氩围下升温至700℃,按体积比1:2通入氩气和乙炔进行气相包覆。保温2小时关闭有机气源,降温出料分级后,即得到含碳包覆层的硅基复合材料,其中总含碳量为4.5%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例8
将3kg硅粉和5kg二氧化硅混合粉末置于真空炉内,抽真空至150Pa,加热升温至1400℃变为蒸气。在氩气流下同时缓慢通入1.5L的丁二烯气体进行反应6小时,冷却至室温。出料粉碎后即得到内部碳元素以原子级均匀弥散分布的硅基材料粉末。用碳硫分析仪测试其中碳含量为1.3%。
将得到的内部碳元素以原子级均匀弥散分布的硅基材料粉末和金属钴按照摩尔比5:1混合均匀,之后在1200℃下热处理4小时,得到内部含碳元素、钴元素的硅基复合材料。
之后对其进行碳包覆,将1.5kg物料置于回转炉在保护气氩围下升温至850℃,按体积比1:1通入氩气和与氩气等量的乙炔丙烷进行气相包覆。其中乙炔和丙烷体积比为3:1,保温3小时关闭有机气源,降温出料分级后,即得到含碳包覆层的硅基复合材料,其中总含碳量为5.5%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例9
将5kg硅、4kg二氧化硅、1kg金属镍的混合粉末置于真空炉中,抽真空至100Pa,加热升温至1700℃变为蒸气,在氩气流下同时缓慢通入1.4L的一氧化碳气体进行反应12小时,冷却至室温。出料粉碎后即得到内部碳元素、铁元素以原子级均匀弥散分布的硅基复合材料。用碳硫分析仪测试其中碳含量为0.6%。
之后对其进行碳包覆,将2kg物料置于回转炉在保护气氩围下升温至600℃,按体积比1:3通入氩气和乙炔进行气相包覆。保温2小时关闭有机气源,降温出料分级后,即得到含碳包覆层的硅基复合材料,其中总含碳量为3.5%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例10
将5kg硅粉和5kg二氧化硅混合粉末置于真空炉内,抽真空至150Pa,加热升温至1400℃变为蒸气。在氩气流下同时缓慢通入2.0L的一氧化碳和1.2L的乙炔混合气体进行反应10小时,冷却至室温。出料粉碎后即得到内部碳元素以原子级均匀弥散分布的硅基材料粉末。用碳硫分析仪测试其中碳含量为3%。
将得到的内部碳元素以原子级均匀弥散分布的硅基材料粉末和金属锌按照摩尔比2:1混合均匀,之后在1200℃下热处理4小时,得到内部含碳元素、锌元素的硅基负极材料。
之后对其进行碳包覆,将2kg物料与石油沥青按照10:1的质量比进行混合,置于高温炉中,氮气氛围900℃热处理2小时,降温出料分级后,即得到含碳包覆层的硅基复合材料,其中总含碳量为4.2%。
将上述的含碳包覆层的硅基复合材料作为负极材料,与导电添加剂导电炭黑(SP),粘接剂聚偏氟乙烯(PVDF)按照比例95%:2%:3%称量好。在室温下,打浆机中进行浆料制备。将制备好的浆料均匀涂布于铜箔上。50℃下在鼓风干燥箱中烘干2小时后,裁剪为8×8mm的极片,在真空干燥箱中100℃下抽真空烘干10个小时。将烘干后的极片,随即转移入手套箱中备用用以组装电池。
模拟电池的装配是在含有高纯Ar气氛的手套箱内进行,以上述电极作为负极,三元正极材料NCM811为对电极,以石榴石型Li7La3Zr2O12(LLZO)作为固态电解质,在手套箱中组装成全固态纽扣电池,对其进行充电,评价电化学性能。使用充放电仪进行恒流充放电模式测试,放电截至电压为0.005V,充电截至电压为1.5V,第一周充放电测试C/10电流密度下进行,第二周放电测试在C/10电流密度下进行。
实施例11
将4kg硅、4kg二氧化硅、2kg氧化铜的混合粉末置于真空炉中,抽真空至100Pa,加热升温至1700℃变为蒸气,在氩气流下同时缓慢通入0.9L的甲烷、1.2L的丙烯、1.7L的丙烷混合气体进行反应6小时,冷却至室温。出料粉碎后即得到内部碳元素、铜元素以原子级均匀弥散分布的硅基复合材料。用碳硫分析仪测试其中碳含量为3.6%。
之后对其进行碳包覆,将粉碎后的3kg样品与酚醛树脂按照20:1的比例溶于酒精溶剂,搅拌6小时形成均匀浆料。之后将浆料直接烘干,并置于高温炉中,在900℃,氮气保护气氛下将混合料烧结2小时,冷却后,进行分级、筛分,即得到含碳包覆层的硅基复合材料,其中总含碳量为6.5%。
将上述的含碳包覆层的硅基复合材料作为负极材料,与导电添加剂导电炭黑(SP),粘接剂聚偏氟乙烯(PVDF)按照比例95%:2%:3%称量好。在室温下,打浆机中进行浆料制备。将制备好的浆料均匀涂布于铜箔上。50摄氏度温度下在鼓风干燥箱中烘干2小时后,裁剪为8×8mm的极片,在真空干燥箱中100摄氏度温度下抽真空烘干10个小时。将烘干后的极片,随即转移入手套箱中备用用以组装电池。
模拟电池的装配是在含有高纯Ar气氛的手套箱内进行,以上述电极作为负极,三元正极材料NCM811为对电极,以聚烯烃基凝胶聚合物电解质膜作为半固态电解质,在手套箱中组装成半固态纽扣电池,对其进行充电,评价电化学性能。使用充放电仪进行恒流充放电模式测试,放电截至电压为0.005V,充电截至电压为1.5V,第一周充放电测试C/10电流密度下进行,第二周放电测试在C/10电流密度下进行。
实施例12
将3kg硅粉和5kg二氧化硅混合粉末置于真空炉内,抽真空至150Pa,加热升温至1500℃变为蒸气。在氩气流下同时缓慢通入1.7L的甲烷、1.5L的丙烯混合气体进行反应3小时,冷却至室温。出料粉碎后即得到内部碳元素以原子级均匀弥散分布的硅基材料粉末。用碳硫分析仪测试其中碳含量为1.5%。
将得到的内部碳元素以原子级均匀弥散分布的硅基材料粉末和金属锗按照摩尔比5:1混合均匀,之后在1200℃下热处理4小时,得到内部含碳元素、锌元素的硅基复合材料。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例13
将4kg硅、4kg二氧化硅、2kg氧化锡的混合粉末置于真空炉中,抽真空至100Pa,加热升温至1700℃变为蒸气,在氩气流下缓慢通入5L乙炔和5L乙烯的混合气,混合反应6小时后冷却至室温。出料粉碎后即得到内部碳元素、锡元素以原子级均匀弥散分布的硅基复合材料。用碳硫分析仪测试其中碳含量为3%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
实施例14
将5kg硅粉和5kg二氧化硅混合粉末置于真空炉内,抽真空至150Pa,加热升温至1500℃变为蒸气。在氩气流下同时缓慢通入2L丁二烯气体进行反应4小时,冷却至室温。出料粉碎后即得到内部碳元素以原子级均匀弥散分布的硅基材料粉末。用碳硫分析仪测试其中碳含量为0.5%。
将得到的内部碳元素以原子级均匀弥散分布的硅基材料粉末和氧化锂按照摩尔比5:1混合均匀,之后在1000℃下热处理2小时,得到内部含碳元素、锂元素的硅基复合材料。
负极极片的制备过程,电池装配以及电池测试同实施例1。
对比例1
将1kg硅粉和1kg二氧化硅混合粉末置于真空炉中,抽真空至50Pa,加热升温至1500℃变为蒸气。出料粉碎后即得氧化亚硅负极材料。之后对其进行碳包覆。将2kg物料置于回转炉在保护气氩围下升温至1000℃,按体积比1:1通入氩气和丙烯进行气相包覆,保温2小时关闭有机气源。降温出料分级后,即得到含碳包覆层的硅基负极材料,其中碳含量为3%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
对比例2
将1kg硅粉、1kg二氧化硅和0.3kg氧化铜的混合粉末置于真空炉中,抽真空至50Pa,加热升温至1500℃变为蒸气,反应3小时后,冷却至室温。出料粉碎后即得到内部铜元素以原子级均匀弥散分布的氧化亚硅负极材料。之后对其进行碳包覆。将2kg物料置于回转炉在保护气氩围下升温至1000℃,按体积比1:1通入氩气和丙烯进行气相包覆,保温2小时关闭有机气源。降温出料分级后,即得到含碳包覆层的氧化亚硅负极材料,其中总含碳量为3%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
对比例3
将1kg硅粉和1kg二氧化硅的混合粉末置于真空炉中,抽真空至50Pa,加热升温至1500℃变为蒸气。随后在氩气气流下同时缓慢通入1.6L甲烷进行反应3小时,冷却至室温。出料粉碎后即得到内部碳元素以原子级均匀弥散分布的氧化亚硅负极材料。用碳硫分析仪测试其中碳含量为1.7%。之后对其进行碳包覆。将2kg物料置于回转炉在保护气氩围下升温至1000℃,按体积比1:1通入氩气和丙烯进行气相包覆,保温2小时关闭有机气源。降温出料分级后,即得到含碳包覆层的氧化亚硅负极材料,其中总含碳量为4.7%。
负极极片的制备过程,电池装配以及电池测试同实施例1。
将实施例1-14以及对比例1-3中的负极材料分别进行初始效率、0.1C可逆容量,0.1C倍率下循环性等性能测试,结果列于表1中。
Figure BDA0003117924550000151
表1
由表中对比例1-3的数据可以看出,对比例2对氧化亚硅进行了铜元素掺杂,相较于对比例1明显提升了首次效率,但是循环性能出现了劣势。对比例3对氧化亚硅进行了碳元素的掺杂,相较于对比例1明显提升了循环容量保持率,但是首次首次效率出现了略微的劣势。实施例1-14通过对材料进行碳元素、A元素的体相掺杂,增加了颗粒内部的导电性,为材料的膨胀提供了缓冲空间,同时提升了材料的首次效率和循环寿命。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种均匀改性的硅基复合材料,其特征在于,所述硅基复合材料的通式为SiCxAyOz;0<x<20;0<y<10;0<z<10;
其中,A为B、Al、Mg、Ca、Fe、Co、Ni、Cu、Zn、Ge、Sn、Li中的一种或多种,C以原子尺度均匀弥散分布在硅基复合材料的颗粒内部,且无20nm以上的碳粒子团聚;部分或所有碳原子与硅原子结合形成无序的Si-C键;在硅基复合材料的聚焦离子束-透射电镜FIB-TEM测试中,颗粒切面的能谱面扫显示颗粒内部硅元素、碳元素、A元素、氧元素均匀分布;
所述硅基复合材料的微观结构为多相弥散结构;
所述硅基复合材料颗粒的平均粒径D50为1nm-100μm,比表面积为0.5m2/g-40m2/g;所述碳原子的质量占硅基复合材料质量的0.1%-40%;所述A元素的质量占复合颗粒质量的3%-40%。
2.根据权利要求1所述的硅基复合材料,其特征在于,所述硅基复合材料的外部还具有碳包覆层;所述碳包覆层的质量占所述硅基复合材料质量的0-20%。
3.根据权利要求2所述的硅基复合材料,其特征在于,所述碳原子的质量占所述硅基复合材料质量的0.5%-10%;所述碳包覆层的质量占所述硅基复合材料质量的0-10%。
4.一种上述权利要求1-3任一所述的均匀改性的硅基复合材料的制备方法,其特征在于,所述制备方法包括一步气相沉积法或两步气相沉积法。
5.根据权利要求4所述的制备方法,其特征在于,所述一步气相沉积法具体包括:
按所需用量将硅粉末、二氧化硅粉末、单质A粉末和/或A的氧化物粉末混合均匀,并置于真空炉中;
真空炉减压后,加热至1200℃-1700℃,得到含硅元素、氧元素、A元素的混合蒸气;
在保护气氛下,向真空炉中通入含碳气源,与所述混合蒸气进行气相混合反应1-24小时;
将所述气相混合反应得到的物料冷却至室温,并出料粉碎筛分,即得到碳元素以原子尺度均匀弥散分布的SiCxAyOz硅基复合材料。
6.根据权利要求4所述的制备方法,其特征在于,所述两步气相沉积法具体包括:
按所需用量将硅粉末、二氧化硅粉末混合均匀,并置于真空炉中;
真空炉减压后,加热至1200℃-1700℃,得到含硅元素、氧元素的混合蒸气;
在保护气氛下,向真空炉中通入含碳气源,与所述混合蒸气进行气相混合反应1-24小时;
将所述气相混合反应得到的物料冷却至室温,并出料粉碎筛分,即得到碳元素以原子尺度均匀弥散分布的SiCxOz复合材料;
将S iCxOz与单质A粉末和/或A的氧化物粉末混合均匀,置于高温炉中,在600℃-1500℃热处理2-24小时,即得到碳元素以原子尺度均匀弥散分布的SiCxAyOz硅基复合材料。
7.根据权利要求5或6所述的制备方法,其特征在于,所述含碳气源包括:甲烷、丙烷、丁烷、乙炔、乙烯、丙烯、丁二烯或一氧化碳中的一种或多种。
8.根据权利要求5或6所述的制备方法,其特征在于,在将所述物料冷却至室温,并出料粉碎筛分之后,所述制备方法还包括:对所述筛分后的物料进行碳包覆;其中,所述碳包覆包括:气相包覆、液相包覆、固相包覆中的至少一种。
9.一种包括上述权利要求1-3任一所述的均匀改性的硅基复合材料的负极片。
10.一种包括上述权利要求9所述的负极片的锂电池。
CN202110668605.8A 2021-06-16 2021-06-16 一种均匀改性的硅基复合材料及其制备方法和应用 Active CN113437271B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110668605.8A CN113437271B (zh) 2021-06-16 2021-06-16 一种均匀改性的硅基复合材料及其制备方法和应用
PCT/CN2021/111677 WO2022262096A1 (zh) 2021-06-16 2021-08-10 一种均匀改性的硅基复合材料及其制备方法和应用
EP21945677.9A EP4358181A1 (en) 2021-06-16 2021-08-10 Uniformly modified silicon-based composite material, preparation method therefor and application thereof
KR1020237043936A KR20240010040A (ko) 2021-06-16 2021-08-10 균일하게 개질된 실리콘계 복합 재료 및 이의 제조 방법과 응용

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110668605.8A CN113437271B (zh) 2021-06-16 2021-06-16 一种均匀改性的硅基复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113437271A CN113437271A (zh) 2021-09-24
CN113437271B true CN113437271B (zh) 2022-04-12

Family

ID=77756244

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110668605.8A Active CN113437271B (zh) 2021-06-16 2021-06-16 一种均匀改性的硅基复合材料及其制备方法和应用

Country Status (4)

Country Link
EP (1) EP4358181A1 (zh)
KR (1) KR20240010040A (zh)
CN (1) CN113437271B (zh)
WO (1) WO2022262096A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116941060A (zh) * 2022-01-21 2023-10-24 宁德新能源科技有限公司 电化学装置
CN115385342A (zh) * 2022-07-20 2022-11-25 长沙矿冶研究院有限责任公司 一种氧化亚硅材料及其制备方法和应用、装置
CN116504984B (zh) * 2023-06-28 2023-09-12 北京壹金新能源科技有限公司 一种改进的硅基复合负极材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356508B (zh) * 2016-09-29 2020-07-31 贝特瑞新材料集团股份有限公司 一种复合物、其制备方法及采用该复合物制备的负极和锂离子电池
CN109802120A (zh) * 2019-01-24 2019-05-24 广东凯金新能源科技股份有限公司 一种硅碳复合材料及其制法
KR102374350B1 (ko) * 2019-06-19 2022-03-16 대주전자재료 주식회사 리튬 이차전지 음극재용 탄소-규소복합산화물 복합체 및 이의 제조방법
CN110615423B (zh) * 2019-09-24 2020-12-25 中国科学院化学研究所 一种锂电池硅基复合负极材料的制备方法
CN112563476A (zh) * 2019-09-26 2021-03-26 贝特瑞新材料集团股份有限公司 一种硅复合物负极材料及其制备方法和锂离子电池
CN112151760A (zh) * 2020-09-27 2020-12-29 溧阳天目先导电池材料科技有限公司 一种硅基负极复合材料和锂二次电池

Also Published As

Publication number Publication date
KR20240010040A (ko) 2024-01-23
WO2022262096A1 (zh) 2022-12-22
CN113437271A (zh) 2021-09-24
EP4358181A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
CN113437271B (zh) 一种均匀改性的硅基复合材料及其制备方法和应用
Sun et al. Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium–sulfur battery application
JP2004063433A (ja) 導電性酸化珪素粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材
EP4020636B1 (en) Negative electrode active material
Huang et al. Linking particle size to improved electrochemical performance of SiO anodes for Li-ion batteries
WO2022236985A9 (zh) 一种均匀改性的氧化亚硅负极材料及其制备方法和应用
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
CN108172791B (zh) 复合物负极材料及其制备方法、锂离子电池
Huang et al. A Low‐Cost and Scalable Carbon Coated SiO‐Based Anode Material for Lithium‐Ion Batteries
WO2022236984A1 (zh) 均匀改性的硅基锂离子电池负极材料及其制备方法和应用
CN115207329A (zh) 一种高能量密度硅碳/中间相碳微球复合材料的制备方法
CN113809312A (zh) 氮掺杂软碳包覆硅基锂离子负极材料及其制备方法和应用
CN113258053B (zh) 一种硅基负极材料及其制备方法和应用
Zhang et al. Large-scale synthesis of Li 3 V 2 (PO 4) 3@ C composites by a modified carbothermal reduction method as cathode material for lithium-ion batteries
JP6264299B2 (ja) リチウムイオン二次電池用負極材及びその評価方法
CN115036511B (zh) 一种低膨胀的硅基负极材料及其制备方法和应用
WO2024098198A1 (zh) 包覆型富锂金属氧化物材料及制备方法、测定包覆型富锂金属氧化物材料中包覆层的方法、正极极片、电池及用电装置
Xiao et al. Stable cycling and low-temperature operation utilizing amorphous carbon-coated graphite anodes for lithium-ion batteries
CN116031374A (zh) 锑基合金负极材料及其制备方法以及负极极片和锂离子电池
KR20220120742A (ko) 리튬이차전지용 규소산화물계 복합체 음극 활물질 및 이의 제조방법
CN115692634A (zh) 双掺杂硅基锂离子负极材料及其制备方法和应用
CN116364849A (zh) 硅基复合材料及其制备方法和应用
KR20210109692A (ko) 신규한 복합 음극활물질, 이를 포함하는 리튬 전지, 및 상기 복합 음극활물질의 제조방법
CN115818648A (zh) 一种硅碳复合材料及其制备方法和应用
CN117012905A (zh) 一种改性硅基负极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant