CN113416935B - 一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法 - Google Patents

一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法 Download PDF

Info

Publication number
CN113416935B
CN113416935B CN202110642910.XA CN202110642910A CN113416935B CN 113416935 B CN113416935 B CN 113416935B CN 202110642910 A CN202110642910 A CN 202110642910A CN 113416935 B CN113416935 B CN 113416935B
Authority
CN
China
Prior art keywords
target
film
mnbi
substrate
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110642910.XA
Other languages
English (en)
Other versions
CN113416935A (zh
Inventor
黄意雅
郭奇勋
滕蛟
徐秀兰
张辉
于广华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ji Hua Laboratory
Original Assignee
Ji Hua Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ji Hua Laboratory filed Critical Ji Hua Laboratory
Priority to CN202110642910.XA priority Critical patent/CN113416935B/zh
Publication of CN113416935A publication Critical patent/CN113416935A/zh
Application granted granted Critical
Publication of CN113416935B publication Critical patent/CN113416935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明提供了一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,属于发光材料制备及应用技术领域,包括如下步骤:S1.清洁并干燥基片后,将其置于磁控溅射镀膜仪的真空腔内;S2.室温下,利用磁控多靶共溅射法,将Mn源、Bi源和Te源共溅射在所述基片上制备非晶态的薄膜;S3.共溅射结束后,原位溅射生长一层Al膜作为保护层;S4.将所述非晶态的薄膜移入真空退火炉中,退火保温一段时间后制得。本发明的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,仅需在目标温度下进行一轮退火便可得到,工艺简单,可操作性更强;能够最大限度地节约时间成本,使效率最大化,适用于大批量生产;无需进行任何人工转移操作可避免污染、损坏;降低了设备成本,有利于工业化生产。

Description

一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法
技术领域
本发明属于磁性拓扑材料领域技术领域,涉及一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法。
背景技术
MnBi2Te4材料是一种磁性本征拓扑绝缘体材料,被认为是三维拓扑绝缘体材料Bi2Se3家族材料(包括Bi2Se3、Bi2Te3和Sb2Te3等)的变种,在低温下表现为反铁磁性。与Bi2Se3家族拓扑绝缘体材料相似,MnBi2Te4也是一种层状材料,每七层(Septuple Layer,SL)为一个结构单元,每个SL内原子以Te-Bi-Te-Mn-Te-Bi-Te的顺序以六角结构的方式堆叠,属于R3m空间群,具有c轴取向。每个SL亦可看作是一个Mn-Te结构完全插入一个Bi2Te3的五层结构(Te-Bi-Te-Bi-Te)中(出自文献Science Advances,2019,5(6):eaaw5685)。材料的磁性完全由其中固有且有序排列的Mn原子层提供,每个SL内部,Mn原子呈Mn2+的价态,为铁磁耦合,而在相邻的SL之间,Mn2+则提供完全相反的磁矩,呈A-type反铁磁耦合(出自文献Science Review Research,2019,1(1):012011)。正因为具有确定的化学计量比和均匀有序的结构排布,这种材料被认为具有更有序的电性能和磁性能。作为一种磁性本征拓扑绝缘体材料,人们认为其能在更高的温度下实现量子反常霍尔效应,有望实现“电子信息高速公路”从而应用到新型电脑芯片上。
目前主流制备MnBi2Te4薄膜材料的方法有两种:分子束外延生长(Molecular BeamEpitaxy,MBE)和高温烧结固相熔融法,这两种方法均无法在常温下进行。
MBE适用于制备多种异质结和超晶格结构材料,能够精细控制MnBi2Te4薄膜样品的层数与厚度,例如在文献Chinese Physics Letters,2019,36(7):076801和公告号为CN111304737的专利中有记载。然而其本身造价昂贵,难以生长制备大片的样品,不利于该种薄膜材料的大规模制备与未来在集成方面的应用;且使用MBE制备MnBi2Te4材料时,往往要将基片衬底及各蒸发源分别升温到各自的预设温度,整个生长过程必须在高温下进行,工艺较为繁琐,制备效率低。
高温烧结固相熔融生长MnBi2Te4单晶也是一种比较成熟的方法,例如在公告号为CN111979581A和CN110699754A的专利中有记载。用该种方法制备出来的样品具有很好的单晶性,但是其过程要对Mn、Bi和Te的粉末或块体进行高温(1000℃左右)烧结,再经过多次退火保温和逐级降温方可得到成品单晶,尤其是等待降温的过程会造成时间成本的巨大浪费,工艺复杂。且制备出来的晶体往往是毫米级的,需要经过单晶解理、减薄等手段才能将其转移到硅衬底上得到薄膜样品,这个过程繁琐且难以保障成品率。
因此,急需研究一种新的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,以部分或全部解决现有MBE和高温烧结固相熔融法制备MnBi2Te4薄膜材料时存在的问题。
发明内容
有鉴于此,本发明的目的是提供一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,以部分或全部解决现有MBE和高温烧结固相熔融法制备MnBi2Te4薄膜材料时存在的问题,降低制备成本,提高生产效率,简化制备过程的同时保证成品率。
为实现上述目的,本发明提供一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,包括如下步骤:
S1.清洁并干燥基片后,将其置于磁控溅射镀膜仪的真空腔内;
S2.室温下,利用磁控多靶共溅射法,将Mn源、Bi源和Te源共溅射在所述基片上制备非晶态的薄膜;
S3.共溅射结束后,原位溅射生长一层Al膜作为保护层;
S4.将所述非晶态的薄膜移入真空退火炉中,退火保温一段时间后,所述得到磁性本征拓扑绝缘体MnBi2Te4薄膜。
进一步地,所述基片为Si基片或者Al基片。
进一步地,所述基片为带热氧化SiO2层的Si基片,Si基片取向为(100)。
进一步地,清洁并干燥所述基片的具体步骤为:
先使用酒精或丙酮对所述基片的表面进行超声清洗,再通过氮气吹干或烘箱烘干。
进一步地,步骤S1还包括控制磁控溅射镀膜仪的真空腔内的真空度优于4×10-5Pa后,通入氩气,使氩气压强稳定为0.3Pa。
进一步地,Mn源、Bi源和Te源采用Mn靶、Bi2Te3靶和Te靶,或者采用Mn靶、Bi靶和Te靶,或者采用Mn靶和Bi2Te3靶,或者采用MnTe靶和Bi2Te3靶,或者采用MnTe靶、Bi2Te3靶和Te靶,或者采用MnBi2Te4靶和Te靶。
进一步地,通过控制各靶的溅射功率实现Mn、Bi和Te元素的化学计量比为1:2:4;通过控制共溅射时间控制所述非晶态的薄膜的厚度。
进一步地,所述真空退火炉内的真空度优于3×10-5Pa。
进一步地,退火目标温度为200℃~550℃,保温时间为0.5h~6h。
本发明采用上述技术方案的优点是:
本发明的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,先在室温下采用磁控溅射镀膜仪制备非晶态的MnBi2Te4薄膜,再退火结晶成MnBi2Te4相,即前期在室温下批量溅射非晶态薄膜,然后集中进行退火处理的方式,这种方法能够最大限度地节约时间成本,使效率最大化,适用于大批量制备磁性本征拓扑绝缘体MnBi2Te4薄膜;由于磁性拓扑绝缘体MnBi2Te4材料本身是具有确定化学计量比的化合物,在热力学上处于亚稳态,可在温度合适的退火保温中自发形成MnBi2Te4相,本发明仅需在目标温度下进行一轮退火便可得到MnBi2Te4相薄膜,可操作性更强;主要使用磁控溅射镀膜仪制备MnBi2Te4薄膜,该种设备早已在工业生产与大规模集成领域得到广泛应用,相关配套技术较为成熟,具有天然的工业化优势;直接对非晶态的MnBi2Te4薄膜进行退火处理后得到高质量的晶态MnBi2Te4薄膜,无需进行任何人工转移操作,且薄膜的成分和厚度都是精确可控的,可避免污染、损坏和浪费情况发生。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法的过程示意图;
图2是本发明实施例1制备的磁性本征拓扑绝缘体MnBi2Te4薄膜的XRD衍射图;
图3是本发明实施例1制备的磁性本征拓扑绝缘体MnBi2Te4薄膜在降温时(300K-2K)电阻的变化曲线,在升温时(10K-50K)电阻的变化曲线,以及电阻随温度的变化的一阶导数。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明利用磁控溅射镀膜仪,采用多靶共溅射的方法,在室温下制备出成分和厚度都精准可控的非晶态薄膜,其中薄膜成分由各阳极靶的溅射功率比决定(各靶的溅射功率与其溅射速率成正比),薄膜的厚度则由共溅射时间控制。因为磁性本征拓扑绝缘体MnBi2Te4是一种具有确定化学计量比的化合物,在热力学上处于亚稳态,故可以通过真空退火处理使得非晶态薄膜结晶形成MnBi2Te4相,本发明的制备方法仅需经过一轮退火处理,就可得到高质量的晶态MnBi2Te4薄膜。
基于上述原理,本发明提供一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,包括如下步骤:
S1.清洁并干燥基片后,将其置于磁控溅射镀膜仪的真空腔内;
S2.室温下,利用磁控多靶共溅射法,将Mn源、Bi源和Te源共溅射在所述基片上制备非晶态的薄膜;
S3.共溅射结束后,原位溅射生长一层Al膜作为保护层;
S4.将所述非晶态的薄膜移入真空退火炉中,退火保温一段时间后,所述得到磁性本征拓扑绝缘体MnBi2Te4薄膜。
其中,所述基片可选择常规适用基片,例如Si基片和Al基片,优选为带热氧化SiO2层的Si基片,例如可设计Si基片取向为(100),带300nm厚的SiO2层,单面抛光,总厚度0.5mm。
步骤S1中,清洁并干燥所述基片的具体步骤为:先使用酒精或丙酮对所述基片的表面进行超声清洗,再通过氮气吹干或烘箱烘干。当然,也可以采用其他更好的清洁并干燥的方法。步骤S1还包括控制磁控溅射镀膜仪的真空腔内的真空度优于4×10-5Pa后,通入氩气,使氩气压强稳定为0.3Pa,实现整个溅射过程都处于氩气氛围中并且稳定在0.3Pa。
其中,步骤S2中,Mn源、Bi源和Te源可以采用Mn靶、Bi2Te3靶和Te靶,或者采用Mn靶、Bi靶和Te靶,或者采用Mn靶和Bi2Te3靶,或者采用MnTe靶和Bi2Te3靶,或者采用MnTe靶、Bi2Te3靶和Te靶,或者采用MnBi2Te4靶和Te靶。在此步骤中,通过控制各靶的溅射功率实现Mn、Bi和Te元素的化学计量比为1:2:4;通过控制共溅射时间控制所述非晶态的薄膜的厚度,可根据实际要求进行控制。例如:Mn源、Bi源和Te源选择为Mn靶、Bi2Te3靶和Te靶,共溅射时控制Mn靶溅射功率为5W~25W,Bi2Te3靶溅射功率为10W~50W,Te靶溅射功率为2.5W~50W,当共溅射时间为30s~500s时,共溅射制备得到的非晶态MnBi2Te4薄膜的厚度为10nm~100nm;当共溅射时间为50s~100s时,共溅射制备得到的非晶态MnBi2Te4薄膜的厚度为20nm~60nm。
其中,步骤S3中原位溅射一层Al膜,用作保护层,因为Al接触空气后会迅速氧化变成致密的AlOx膜,对Al膜的厚度设计也可通过控制Al靶的溅射功率和溅射时间实现。
其中,步骤S4中所述真空退火炉内的真空度一般要求优于3×10-5Pa,退火目标温度优选为200℃~550℃,保温时间优选为0.5h~6h,可得高晶体质量的磁性本征拓扑绝缘体MnBi2Te4薄膜。
实施例1
磁性本征拓扑绝缘体MnBi2Te4薄膜的制备过程如下:
S1.对所使用的带有热氧化SiO2层的Si基片进行清洗,即先使用酒精或丙酮对基片表面进行超声清洗,再通过氮气吹干或烘箱烘干;当磁控溅射镀膜仪真空腔内本地真空优于4×10-5Pa时,打开氩气阀,使得氩气压强为0.3Pa,稳定后使Mn靶、Bi2Te3靶和Te靶起辉;其中,Si基片取向为(100),带300nm厚的SiO2层,单面抛光,总厚度0.5mm。
S2.同时打开Mn靶、Bi2Te3靶和Te靶的挡板进行共溅射,共溅射时氩气压强保持步骤S1中的不变,Mn靶溅射功率为20W,Bi2Te3靶溅射功率为40W,Te靶溅射功率为30W,共溅射时间为100s,溅射时间结束,同时关闭各靶挡板,所得薄膜厚度为20nm。
S3.起辉Al靶,功率30W,原位溅射一层2nm的Al膜作为保护层。
S4.将非晶态薄膜移入真空退火炉中,当退火炉真空优于3×10-5Pa时,升温至目标温度450℃后保温3h,结束后立刻关掉加热源,取出样品,得到磁性本征拓扑绝缘体MnBi2Te4薄膜。
本实施例中制备的磁性本征拓扑绝缘体MnBi2Te4薄膜的性能表征如下:
图2是本实施例制备的磁性本征拓扑绝缘体MnBi2Te4薄膜的XRD衍射图,从图中可以看出,具有(0 0 3n)特征峰,说明本实施例制备的磁性本征拓扑绝缘体MnBi2Te4薄膜具有很好的c轴取向。
图3是本实施例制备的磁性本征拓扑绝缘体MnBi2Te4薄膜在降温时(300K-2K)电阻的变化曲线,在升温时(10K-50K)电阻的变化曲线,以及电阻随温度的变化的一阶导数。从图中可以看出实施例制备的磁性本征拓扑绝缘体MnBi2Te4薄膜的奈尔温度为21K。
上述性能表征结果证明了,本实施例中成功制备出了磁性本征拓扑绝缘体MnBi2Te4薄膜。
本发明的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,先在室温下采用磁控溅射镀膜仪制备非晶态的MnBi2Te4薄膜,再退火结晶成MnBi2Te4相,即前期在室温下批量溅射非晶态薄膜,然后集中进行退火处理的方式,这种方法能够最大限度地节约时间成本,使效率最大化,适用于大批量制备磁性本征拓扑绝缘体MnBi2Te4薄膜;由于磁性拓扑绝缘体MnBi2Te4材料本身是具有确定化学计量比的化合物,在热力学上处于亚稳态,可在温度合适的退火保温中自发形成MnBi2Te4相,本发明仅需在目标温度下进行一轮退火便可得到MnBi2Te4相薄膜,可操作性更强;主要使用磁控溅射镀膜仪制备MnBi2Te4薄膜,该种设备早已在工业生产与大规模集成领域得到广泛应用,相关配套技术较为成熟,具有天然的工业化优势;直接对非晶态的MnBi2Te4薄膜进行退火处理后得到高质量的晶态MnBi2Te4薄膜,无需进行任何人工转移操作,且薄膜的成分和厚度都是精确可控的,可避免污染、损坏和浪费情况发生。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,其特征在于,包括如下步骤:
S1.清洁并干燥基片后,将其置于磁控溅射镀膜仪的真空腔内;
S2.室温下,利用磁控多靶共溅射法,将Mn源、Bi源和Te源共溅射在所述基片上制备非晶态的薄膜;
S3.共溅射结束后,原位溅射生长一层Al膜作为保护层;
S4.将所述非晶态的薄膜移入真空退火炉中,退火保温一段时间后,得到所述磁性本征拓扑绝缘体MnBi2Te4薄膜;
所述真空退火炉内的真空度优于3×10-5 Pa,退火目标温度为200℃~550℃,保温时间为0.5 h~6 h。
2.根据权利要求1所述的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,其特征在于,所述基片为Si基片或者Al基片。
3.根据权利要求2所述的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,其特征在于,所述基片为带热氧化SiO2层的Si基片,Si基片取向为(100)。
4.根据权利要求1所述的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,其特征在于,清洁并干燥所述基片的具体步骤为:
先使用酒精或丙酮对所述基片的表面进行超声清洗,再通过氮气吹干或烘箱烘干。
5.根据权利要求 1所述的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,其特征在于,步骤S1还包括控制磁控溅射镀膜仪的真空腔内的真空度优于4×10-5 Pa后,通入氩气,使氩气压强稳定为0.3 Pa。
6.根据权利要求1所述的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,其特征在于,Mn源、Bi源和Te源采用Mn靶、Bi2Te3靶和Te靶,或者采用Mn靶、Bi靶和Te靶,或者采用Mn靶和Bi2Te3靶,或者采用MnTe靶和Bi2Te3靶,或者采用MnTe靶、Bi2Te3靶和Te靶,或者采用MnBi2Te4靶和Te靶。
7.根据权利要求6所述的磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法,其特征在于,通过控制各靶的溅射功率实现Mn、Bi和Te元素的化学计量比为1:2:4;通过控制共溅射时间控制所述非晶态的薄膜的厚度。
CN202110642910.XA 2021-06-09 2021-06-09 一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法 Active CN113416935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110642910.XA CN113416935B (zh) 2021-06-09 2021-06-09 一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110642910.XA CN113416935B (zh) 2021-06-09 2021-06-09 一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN113416935A CN113416935A (zh) 2021-09-21
CN113416935B true CN113416935B (zh) 2022-09-20

Family

ID=77788149

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110642910.XA Active CN113416935B (zh) 2021-06-09 2021-06-09 一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN113416935B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111979581B (zh) * 2019-05-22 2022-05-31 清华大学 MnBi2Te4块体单晶的制备方法
CN111304737B (zh) * 2019-12-03 2021-08-27 中国人民解放军军事科学院国防科技创新研究院 一种合成内禀磁性拓扑绝缘体的方法

Also Published As

Publication number Publication date
CN113416935A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN106868469B (zh) 一种在硅基上无金属催化剂制备石墨烯的方法
CN107287578B (zh) 一种大范围均匀双层二硫化钼薄膜的化学气相沉积制备方法
CN108193276B (zh) 制备大面积单一取向六方氮化硼二维原子晶体的方法
CN112813385B (zh) 一种c轴择优取向的铌酸铋钙薄膜及其制备方法
CN101235539B (zh) 外延生长La1-xCaxMnO3单晶薄膜的方法
CN114150375A (zh) 一种磁控共溅射制备Fe-Sn-Se-Te四元薄膜的方法
CN112831768A (zh) 一种高结晶质量的氮化铪薄膜制备方法及应用
CN112063980A (zh) 一种室温铁磁硅锗锰半导体薄膜的制备方法及其应用
CN108315705B (zh) 一种提高非晶金属薄膜材料抗晶化能力的结构及其制备方法
CN113416935B (zh) 一种磁性本征拓扑绝缘体MnBi2Te4薄膜的制备方法
CN109706525A (zh) 一种铋基拓扑绝缘体材料及其制备方法
CN105441877B (zh) 电阻式热蒸发制备铁磁性材料Fe3Si薄膜的工艺
Wu et al. Bismuth nanowire grown naturally using a sputtering system
CN114380340B (zh) 无限层镍基超导体前驱物Nd1-xSrxNiO3的制备方法
Shah Annealing studies of YBa2Cu3O7− x thin films
CN113667941A (zh) 一种中熵热敏薄膜及其制备方法和应用
CN112376028A (zh) 一种Sn掺杂Ge2Sb2Te5热电薄膜及其制备方法
CN113564698B (zh) 一种磁性拓扑异质结薄膜的制备方法
CN109306451A (zh) 一种多孔氧化物薄膜的制备方法
CN1156599C (zh) 一种快速生长氧化镁薄膜的方法
CN106024972B (zh) 半导体结构、制备半导体结构的方法及其应用
JPH01208327A (ja) 薄膜超電導体の製造方法
CN112919456B (zh) 一种具有均一层厚的平整石墨烯生长方法及单层或双层石墨烯薄膜
JPH02252697A (ja) 超伝導セラミックス薄膜の製法
CN112011773B (zh) 一种硅酸钇涂层及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant