CN113403579A - 一种强韧化CrTiNiSiN纳米复合涂层制备方法 - Google Patents

一种强韧化CrTiNiSiN纳米复合涂层制备方法 Download PDF

Info

Publication number
CN113403579A
CN113403579A CN202110692487.4A CN202110692487A CN113403579A CN 113403579 A CN113403579 A CN 113403579A CN 202110692487 A CN202110692487 A CN 202110692487A CN 113403579 A CN113403579 A CN 113403579A
Authority
CN
China
Prior art keywords
target
crtinisin
preparation
coating
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110692487.4A
Other languages
English (en)
Inventor
吴志威
周滔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Vocational University of Industry Technology NUIT
Original Assignee
Nanjing Vocational University of Industry Technology NUIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Vocational University of Industry Technology NUIT filed Critical Nanjing Vocational University of Industry Technology NUIT
Priority to CN202110692487.4A priority Critical patent/CN113403579A/zh
Publication of CN113403579A publication Critical patent/CN113403579A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种强韧化CrTiNiSiN纳米复合涂层制备方法,包括以下步骤:1)对基材进行镜面抛光和超声清洗;2)将Ti靶和Cr靶分别安装在直流靶上,Si靶和CrNi靶安装在射频靶上,将基材装夹在样品台上,关闭密封盖,改变沉积腔真空度,运用氩离子轰击基材表面进行清洗除污;3)沉积过渡Cr层;4)沉积CrN涂层;5)沉积CrTiNiSiN涂层。实现层间相的稳定过渡,有效提高层间界面质量和结合力;断面形成硬度逐渐增加的梯度,有效提高复合涂层整体的抗载能力;通过优化制备工艺,在实现增韧的前提下有效保证硬度值。

Description

一种强韧化CrTiNiSiN纳米复合涂层制备方法
技术领域
本发明涉及薄膜制备领域,具体为一种强韧化CrTiNiSiN纳米复合涂层制备方法。
背景技术
根据Archard磨损模型V=K(PL)/H,材料的磨损体积(V)与其硬度(H)成反比,因此合成超硬质(H>40GPa)涂层就成为科研工作者始终追求的目标。然而,传统均质涂层在提高硬度的同时,会大幅降低其韧性,出现强度和韧性“倒置关系”。即涂层硬度越高、脆性就越大、其韧性也就越小,导致其抵抗裂纹扩展的能力也就越小。涂层韧性差的问题再应用中逐步凸显,如在摩擦磨损、冲蚀防护等应用中,当硬质涂层表面产生了裂纹,其耐磨损性能取决于其韧性。CrTiSiN涂层硬度较高,可以达到超硬硬度,但其高硬度导致韧性较差,当作为刀具涂层或者关键零件保护涂层时,在周期性冲击载荷下容易出现裂纹失效。
涂层增韧常用的方法有组织结构增韧、残余压应力增韧、结构设计增韧、韧性相增韧等,但每种增韧方法具有一定的不足。对于韧性相增韧,软金属Ni是最常用的掺杂相,其原因主要是Ni具有良好的抗氧化特性,元素Ni很难与元素Ti、Cr、Zr、N结合形成化合物,多以自由态的形式存在于过渡金属氮化物薄膜中,从而保持其良好的韧性特征;但软相金属Ni的引入,随着含量的增加会导致硬度和抗磨性大幅降低,因此需要控制好Ni含量。
对于结构增韧,常把软金属(Ni、Cu等)和硬质涂层构成多层结构,这种多层结构能有效提高涂层的韧性。然而,Ni和Cu不能和过渡金属氮化物形成化合相,因此,层间界面质量及结合力较差,容易发生层间剥离而失效。鉴于单一增韧方法的局限性,多种增韧方法协同作用已成为硬质涂层增韧发展的趋势。
发明内容
本发明的目的在于提供一种强韧化CrTiNiSiN纳米复合涂层制备方法,实现层间相的稳定过渡,有效提高层间界面质量和结合力;断面形成硬度逐渐增加的梯度,有效提高复合涂层整体的抗载能力;通过优化制备工艺,在实现增韧的前提下有效保证硬度值。
为达到上述目的,根据本发明的一个方面,本发明提供如下技术方案:
一种强韧化CrTiNiSiN纳米复合涂层制备方法,包括以下步骤:
1)对基材进行镜面抛光和超声清洗;
2)将Ti靶和Cr靶分别安装在直流靶上,Si靶和CrNi靶安装在射频靶上,将基材装夹在样品台上,关闭密封盖,改变沉积腔真空度,运用氩离子轰击基材表面进行清洗除污;
3)沉积过渡Cr层;
4)沉积CrN涂层;
5)沉积CrTiNiSiN涂层。
本发明进一步设置为:所述步骤1)对基材进行镜面抛光和超声清洗,具体为,基材在金相抛光机上进行镜面抛光,先用w20金刚石粉配合粗抛帆布进行粗抛,然后用w2.5金刚石粉配合精抛绒布进行精抛,基材精抛清洗干净后,在酒精溶液中进行超声清洗20~30分钟。
本发明进一步设置为:所述步骤2)中,沉积腔真空度抽至2.5×10-3~3.0×10- 3Pa,氩离子的流量20sccm,基材偏压为-500V。
本发明进一步设置为:所述步骤2)中,Ti靶和Cr靶的靶材纯度为99.9%,Si靶和CrNi靶的靶材纯度为99.99%,且CrNi靶为Cr占20%,Ni占80%的合金靶材。
本发明进一步设置为:所述步骤3)沉积过渡Cr层,具体为,沉积腔工作气体压强保持0.10~0.15Pa,制备温度在180~250℃之间,基材旋转速度每分钟5转,Ar气流量20sccm,基材偏压-60V,Cr靶电流4A,沉积过渡Cr层10分钟。
本发明进一步设置为:所述步骤4)沉积CrN涂层,具体为,沉积腔工作气体压强保持0.10~0.15Pa,制备温度在180~250℃之间,基材旋转速度每分钟5转,Ar气流量20sccm,基材偏压-60V,Cr靶电流4A,N2流量为8sccm,沉积30分钟。
本发明进一步设置为:所述步骤5)沉积CrTiNiSiN涂层,具体为,沉积腔工作气体压强保持0.10~0.15Pa,制备温度在180~250℃之间,基材旋转速度每分钟5转,Ar气流量20sccm,基材偏压-60V,Cr和Ti靶电流均为4A,Si靶功率1000W,CrNi靶功率400~1200W,制备CrTiNiSiN复合薄膜,沉积时间为180分钟。
本发明进一步设置为:所述基材为硬质合金样片基材。
本发明进一步设置为:所述过渡Cr层厚度为100nm,CrN涂层厚度为400nm,CrTiNiSiN涂层厚度为2.5μm。
与现有技术相比,本发明具有的有益之处是:涂层采用Cr-CrN-CrTiNiSiN多层结构,层间界面均存在CrNx相,实现层间相的稳定过渡,有效提高层间界面质量和结合力;Cr/CrN/CrTiNiSiN复合涂层断面形成硬度逐渐增加的梯度,能有效提高复合涂层整体的抗载能力;通过优化制备工艺,控制软相金属Ni的掺杂量和涂层内其它元素成分含量,生成(Cr,Ti)N结晶相镶嵌于a-Si3N4非晶基质中、非晶相Ni以固溶体形式存在于(Cr,Ti)N晶粒间,固溶强化效应和纳米复合结构nc-(Cr,Ti)N/a-Si3N4的形成,实现增韧的前提下有效保证硬度值。
附图说明
图1为实施例1制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层的断面形貌扫描电镜图;
图2为实施例1制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层的纳米压痕形貌;
图3为实施例2制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层的断面形貌扫描电镜图;
图4为实施例2制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层的纳米压痕形貌;
图5为实施例3制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层的断面形貌扫描电镜图;
图6为实施例3制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层的纳米压痕形貌;
图7为Cr/CrN/CrTiNiSiN多层纳米复合涂层示意图;
具体实施方式
下面结合说明书附图,对本发明作进一步的说明。
如图7所示,为制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层示意图。
实施例1:
本发明提供了一种强韧化CrTiNiSiN纳米复合涂层制备方法,包括以下步骤:
1)对基材进行镜面抛光和超声清洗;
对硬质合金样片基材进行镜面抛光和超声清洗,硬质合金样片基材在金相抛光机上进行镜面抛光,先用w20金刚石粉配合粗抛帆布进行粗抛,然后用w2.5金刚石粉配合精抛绒布进行精抛,基材精抛清洗干净后,在酒精溶液中进行超声清洗20分钟。
2)将靶材纯度为99.9%的Ti靶和Cr靶分别安装在直流靶上,靶材纯度为99.99%的Si靶和CrNi靶安装在射频靶上,所述CrNi靶为Cr占20%,Ni占80%的合金靶材,将基材装夹在样品台上,关闭密封盖,改变沉积腔真空度,运用氩离子轰击基材表面进行清洗除污;其中沉积腔真空度抽至2.5×10-3Pa,氩离子的流量20sccm,基材偏压为-500V。
3)沉积过渡Cr层;
沉积腔工作气体压强保持0.10Pa,薄膜沉积过程中没有开启加热源,制备温度在180℃,基材旋转速度每分钟5转,Ar气流量20sccm,基材偏压-60V,Cr靶电流4A,沉积过渡Cr层10分钟。
4)沉积CrN涂层;
沉积腔工作气体压强保持0.10Pa,薄膜沉积过程中没有开启加热源,制备温度在180℃,基材旋转速度每分钟5转,Ar气流量20sccm,基材偏压-60V,Cr靶电流4A,N2流量为8sccm,沉积30分钟。
5)沉积CrTiNiSiN涂层;
沉积腔工作气体压强保持0.10Pa,薄膜沉积过程中没有开启加热源,制备温度在180℃,基材旋转速度每分钟5转,Ar气流量20sccm,基材偏压-60V,Cr和Ti靶电流均为4A,Si靶功率1000W,CrNi靶功率400W,制备CrTiNiSiN复合薄膜,沉积时间为180分钟。
实施例1制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层断面形貌扫描电镜图如图1所示。
实施例1制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层,Cr含量为63.1at.%,Ti含量为9.1at.%,Ni含量为0.9at.%,Si含量为0.7at.%,N含量为26.2at.%;Cr/CrN/CrTiNiSiN多层纳米复合涂层的纳米硬度为48.5GPa,弹性模量为512.5GPa;涂层使用纳米压痕大载荷压入深度1μm后,运用扫描电子显微镜测试压痕形貌在压痕尖端未发现放射性裂纹,只是在压痕边缘出现堆积裂纹,如图2所示。
实施例2:
采用与实施例1相同的材料和方法,其与实施例1中的区别在于,步骤1)对基材进行镜面抛光和超声清洗中,超声清洗25分钟;步骤2)中,沉积腔真空度抽至2.7×10-3Pa;步骤3)沉积过渡Cr层中,沉积腔工作气体压强保持0.12Pa,制备温度在200℃;步骤4)沉积CrN涂层中,沉积腔工作气体压强保持0.12Pa,制备温度在200℃;步骤5)沉积CrTiNiSiN涂层中沉积腔工作气体压强保持0.12Pa,制备温度在200℃,CrNi靶功率为800W。
实施例2制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层的断面形貌扫描电镜图如图3所示。
实施例2制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层,Cr含量为60.7at.%,Ti含量为8.6at.%,Ni含量为9.7at.%,Si含量为1.4at.%,N含量为19.5at.%;Cr/CrN/CrTiNiSiN多层纳米复合涂层的纳米硬度为43.6GPa,弹性模量为464.5GPa,具有超硬硬度;涂层使用纳米压痕大载荷压入深度1μm后,运用扫描电子显微镜测试压痕形貌,未发现裂纹,如图4所示,表明涂层具有较好的韧性。
因涂层具有超硬硬度和良好的韧性,获得硬韧兼备涂层,因此适合应用于耐磨涂层的保护层或者刀具涂层。
实施例3:
采用与实施例1相同的材料和方法,其与实施例1中的区别在于,步骤1)对基材进行镜面抛光和超声清洗中,超声清洗30分钟;步骤2)中,沉积腔真空度抽至3.0×10-3Pa;步骤3)沉积过渡Cr层中,沉积腔工作气体压强保持0.15Pa,制备温度在250℃;步骤4)沉积CrN涂层中,沉积腔工作气体压强保持0.15Pa,制备温度在250℃;步骤5)沉积CrTiNiSiN涂层中沉积腔工作气体压强保持0.15Pa,制备温度在250℃,CrNi靶功率为1200W。
实施例3制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层断面形貌扫描电镜图如图5所示。
实施例3制备的Cr/CrN/CrTiNiSiN多层纳米复合涂层,Cr含量为57.1at.%,Ti含量为7.8at.%,Ni含量为16.0at.%,Si含量为2.0at.%,N含量为17.1at.%;Cr/CrN/CrTiNiSiN多层纳米复合涂层的纳米硬度为38.3GPa,弹性模量为412.8GPa;涂层使用纳米压痕大载荷压入深度1μm后,运用扫描电子显微镜测试压痕形貌,未发现裂纹,如图6所示。
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (9)

1.一种强韧化CrTiNiSiN纳米复合涂层制备方法,其特征在于,包括以下步骤:
1)对基材进行镜面抛光和超声清洗;
2)将Ti靶和Cr靶分别安装在直流靶上,Si靶和CrNi靶安装在射频靶上,将基材装夹在样品台上,关闭密封盖,改变沉积腔真空度,运用氩离子轰击基材表面进行清洗除污;
3)沉积过渡Cr层;
4)沉积CrN涂层;
5)沉积CrTiNiSiN涂层。
2.根据权利要求1所述的一种强韧化CrTiNiSiN纳米复合涂层制备方法,其特征在于:所述步骤1)对基材进行镜面抛光和超声清洗,具体为,基材在金相抛光机上进行镜面抛光,先用w20金刚石粉配合粗抛帆布进行粗抛,然后用w2.5金刚石粉配合精抛绒布进行精抛,基材精抛清洗干净后,在酒精溶液中进行超声清洗20~30分钟。
3.根据权利要求1所述的一种强韧化CrTiNiSiN纳米复合涂层制备方法,其特征在于:所述步骤2)中,沉积腔真空度抽至2.5×10-3~3.0×10-3Pa,氩离子的流量20sccm,基材偏压为-500V。
4.根据权利要求1所述的一种强韧化CrTiNiSiN纳米复合涂层制备方法,其特征在于:所述步骤2)中,Ti靶和Cr靶的靶材纯度为99.9%,Si靶和CrNi靶的靶材纯度为99.99%,且CrNi靶为Cr占20%,Ni占80%的合金靶材。
5.根据权利要求1所述的一种强韧化CrTiNiSiN纳米复合涂层制备方法,其特征在于:所述步骤3)沉积过渡Cr层,具体为,沉积腔工作气体压强保持0.10~0.15Pa,制备温度在180~250℃之间,基材旋转速度每分钟5转,Ar气流量20sccm,基材偏压-60V,Cr靶电流4A,沉积过渡Cr层10分钟。
6.根据权利要求5所述的一种强韧化CrTiNiSiN纳米复合涂层制备方法,其特征在于:所述步骤4)沉积CrN涂层,具体为,沉积腔工作气体压强保持0.10~0.15Pa,制备温度在180~250℃之间,基材旋转速度每分钟5转,Ar气流量20sccm,基材偏压-60V,Cr靶电流4A,N2流量为8sccm,沉积30分钟。
7.根据权利要求6所述的一种强韧化CrTiNiSiN纳米复合涂层制备方法,其特征在于:所述步骤5)沉积CrTiNiSiN涂层,具体为,沉积腔工作气体压强保持0.10~0.15Pa,制备温度在180~250℃之间,基材旋转速度每分钟5转,Ar气流量20sccm,基材偏压-60V,Cr和Ti靶电流均为4A,Si靶功率1000W,CrNi靶功率400~1200W,制备CrTiNiSiN复合薄膜,沉积时间为180分钟。
8.根据权利要求1所述的一种强韧化CrTiNiSiN纳米复合涂层制备方法,其特征在于:所述基材为硬质合金样片基材。
9.根据权利要求1所述的一种强韧化CrTiNiSiN纳米复合涂层制备方法,其特征在于:所述过渡Cr层厚度为100nm,CrN涂层厚度为400nm,CrTiNiSiN涂层厚度为2.5μm。
CN202110692487.4A 2021-06-22 2021-06-22 一种强韧化CrTiNiSiN纳米复合涂层制备方法 Pending CN113403579A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110692487.4A CN113403579A (zh) 2021-06-22 2021-06-22 一种强韧化CrTiNiSiN纳米复合涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110692487.4A CN113403579A (zh) 2021-06-22 2021-06-22 一种强韧化CrTiNiSiN纳米复合涂层制备方法

Publications (1)

Publication Number Publication Date
CN113403579A true CN113403579A (zh) 2021-09-17

Family

ID=77682263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110692487.4A Pending CN113403579A (zh) 2021-06-22 2021-06-22 一种强韧化CrTiNiSiN纳米复合涂层制备方法

Country Status (1)

Country Link
CN (1) CN113403579A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089184A (ja) * 2008-10-06 2010-04-22 Dijet Ind Co Ltd 被覆切削工具基材
CN103029366A (zh) * 2012-12-06 2013-04-10 浙江工业大学 一种含有NiCrN三元涂层的制品及制备方法
JP2013233602A (ja) * 2012-05-08 2013-11-21 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
CN107459370A (zh) * 2017-08-15 2017-12-12 上海双石钛金有限公司 一种陶瓷基多彩镀层及其制备方法
CN111118385A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 一种防腐蚀合金抽油杆及其制造方法
CN111172503A (zh) * 2019-12-26 2020-05-19 西安交通大学 一种锆合金包壳表面多层复合涂层及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089184A (ja) * 2008-10-06 2010-04-22 Dijet Ind Co Ltd 被覆切削工具基材
JP2013233602A (ja) * 2012-05-08 2013-11-21 Sumitomo Electric Hardmetal Corp 表面被覆切削工具
CN103029366A (zh) * 2012-12-06 2013-04-10 浙江工业大学 一种含有NiCrN三元涂层的制品及制备方法
CN107459370A (zh) * 2017-08-15 2017-12-12 上海双石钛金有限公司 一种陶瓷基多彩镀层及其制备方法
CN111118385A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 一种防腐蚀合金抽油杆及其制造方法
CN111172503A (zh) * 2019-12-26 2020-05-19 西安交通大学 一种锆合金包壳表面多层复合涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蔡志海等: "Ti含量对(Cr,Ti)N复合涂层组织结构与性能的影响", 《装甲兵工程学院学报》 *

Similar Documents

Publication Publication Date Title
CN109338300B (zh) 一种高熵合金氮化物涂层的高硬度材料及其制备方法
CN100577860C (zh) 一种低应力氮化铬多层硬质薄膜的制备方法
CN105887012B (zh) 一种Zr-B-N纳米复合涂层制备工艺
WO2017156996A1 (zh) 一种钛合金切削用复合功能刀具涂层及其制备方法
EP1736565A1 (en) Composite coatings for finishing of hardened steels
CN104928638A (zh) 一种AlCrSiN基多层纳米复合刀具涂层及其制备方法
CN108517487B (zh) 一种高硬度和高耐磨的TiAlN/W2N多层涂层及其制备方法
CN109097743B (zh) 一种超硬W-Cr-Al-Ti-N纳米梯度多层膜及其制备方法
CN106086886A (zh) 一种自润滑二硼化钛/类金刚石涂层及其制备方法和应用
CN107916402A (zh) 一种AlCrTiSiCN涂层结构及其制备方法
Cao et al. Microstructure, mechanical and tribological properties of multilayer TiAl/TiAlN coatings on Al alloys by FCVA technology
CN111647851B (zh) 兼具高硬度和高韧性Zr-B-N纳米复合涂层及其制备方法
CN107190233A (zh) 一种具有超高硬度的Si掺杂纳米复合涂层的制备工艺
CN114196914B (zh) 一种碳化物高熵陶瓷材料、碳化物陶瓷层及其制备方法和应用
TWI293991B (en) Sputtering target and method of manufacturing same
CN113403579A (zh) 一种强韧化CrTiNiSiN纳米复合涂层制备方法
JP2015157975A (ja) 硬質皮膜およびその形成方法
JP7360202B2 (ja) ダイヤモンドコーティング窒化ケイ素セラミック全体ツールの製造方法
CN110484881A (zh) 一种致密二硼化钛涂层及其制备方法和应用
JP2012511437A (ja) 高い寸法精度が必要とされている切削工具インサートの製造方法
US20090226715A1 (en) Coated article and method of making the same
CN113652638A (zh) 一种超高硬质刀具涂层及其制备方法
Peng et al. Characterization and adhesion strength of diamond films deposited on silicon nitride inserts by dc plasma jet chemical vapour deposition
CN111471973A (zh) 一种还原性气氛中制备Zr-B-N纳米复合涂层的工艺
CN113403578A (zh) 一种超硬质多层纳米复合涂层制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210917