CN113363318A - N沟道的平面型vdmos和平面型igbt - Google Patents

N沟道的平面型vdmos和平面型igbt Download PDF

Info

Publication number
CN113363318A
CN113363318A CN202010148530.6A CN202010148530A CN113363318A CN 113363318 A CN113363318 A CN 113363318A CN 202010148530 A CN202010148530 A CN 202010148530A CN 113363318 A CN113363318 A CN 113363318A
Authority
CN
China
Prior art keywords
channel
islands
planar
island
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010148530.6A
Other languages
English (en)
Other versions
CN113363318B (zh
Inventor
王学良
闵亚能
刘建华
郎金荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTA Semiconductor Co Ltd
Original Assignee
SHANGHAI ADVANCED SEMICONDUCTO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI ADVANCED SEMICONDUCTO filed Critical SHANGHAI ADVANCED SEMICONDUCTO
Priority to CN202010148530.6A priority Critical patent/CN113363318B/zh
Publication of CN113363318A publication Critical patent/CN113363318A/zh
Application granted granted Critical
Publication of CN113363318B publication Critical patent/CN113363318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明公开了一种N沟道的平面型VDMOS和平面型IGBT,其中,N沟道的平面型VDMOS包括p阱区,所述p阱区的沟道内埋有至少一个n岛,所述n岛为n型区,所述n型区采用n型半导体元素形成。本发明提供的N沟道的平面型VDMOS和平面型IGBT,通过在器件的p阱区的沟道内埋设n岛,能够有效调整器件的Vth的范围并且一致性更好。n岛的数量取决于具体的应用需求,相对而言,埋入的n岛的数量越多,器件的Vth值越低。

Description

N沟道的平面型VDMOS和平面型IGBT
技术领域
本发明属于集成电路技术领域,特别涉及一种N沟道的平面型VDMOS(verticaldouble-diffused metal oxide semiconductor field effect transistor,垂直双扩散金属氧化物半导体场效应晶体管)和平面型IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)。
背景技术
图1为现有技术中N沟道的平面型VDMOS的元胞结构的切面示意图,包括Gate(栅极)、Source(源级)、Drain(漏极)。另外,从下至上还依次包括n+区、n-drift(n-漂移区)、对称的p+体区,位于p+体区中的p阱以及n+源区。
图2为现有技术中N沟道的平面型IGBT的元胞结构的切面示意图,包括Gate(栅极)、Cathode(阴极)、Anode(阳极),从下至上还依次包括p+区、n-drift、对称的p+体区,位于p+体区中的p阱以及n+阴极区。
Vth(开启电压)是VDMOS器件和IGBT器件的一个重要参数,当栅源电压大于Vth时,栅极下面的p阱表面的电子浓度会高于空穴浓度,使得P型半导体反型为N型而形成反型层,从而进一步形成N沟道。如何调节器件的Vth的大小及一致性一直是业界关注的问题。
现有技术中调控Vth大小多从p阱的浓度和栅氧厚度着手。从p阱的浓度调整,其Vth的可调范围受限于LATCH UP(抗闩锁)能力;而从栅氧厚度调节的方式其Vth的可调范围受限于栅氧工艺技术。如何有效调整N沟道的平面型VDMOS和平面型IGBT的Vth的可控范围以及一致性是急需解决的问题。
发明内容
本发明要解决的技术问题是为了克服现有技术中调整N沟道的平面型VDMOS和平面型IGBT的Vth的可控范围以及一致性有待提高的缺陷,提供一种能够有效调整器件的Vth的范围并且一致性更好的N沟道的平面型VDMOS和平面型IGBT。
本发明是通过下述技术方案来解决上述技术问题:
本发明第一方面提供了一种N沟道的平面型VDMOS,包括p阱区,所述p阱区的沟道内埋有至少一个n岛,所述n岛为n型区,所述n型区采用n型半导体元素形成。
本方案中,通过在p阱区的沟道内埋设n岛,能够有效调整器件的Vth的范围并且一致性更好。可以利用器件的不同层的光刻板在适当层制作时形成n岛,也就是说,本方案对n岛的具体制作步骤不作限定,只要最终生成的n岛的位置处于p阱区的沟道内即可。n岛的数量取决于具体的应用需求,相对而言,埋入的n岛的数量越多,N沟道的平面型VDMOS的Vth值越低。一致性一方面体现在同一个晶圆上的N沟道的平面型VDMOS的Vth趋于一致,另外一方面体现在加入n岛的N沟道的平面型VDMOS的Vth值更加符合预期值。
较佳地,所述n型半导体元素包括氢元素、五族元素中的至少一种。
本方案中,n型半导体元素可以为五族元素,如磷、砷等;也可以为氢元素。
较佳地,所述p阱区的沟道内埋有多个所述n岛,多个所述n岛间隔设置。
本方案中,n岛的数量有多个,多个n岛成间隔设置。通过调节n岛之间的间距、元素的剂量以及结深实现对需要的Vth的值的范围及一致性的调节。
较佳地,每个所述n岛采用氢元素、五族元素中的至少一种形成。
本方案中,多个n岛中每个采用的元素可以相同,也可以不相同。
本发明第二方面提供了一种N沟道的平面型IGBT,包括p阱区,所述p阱区的沟道内埋有至少一个n岛,所述n岛为n型区,所述n型区采用n型半导体元素形成。
本方案中,通过在p阱区的沟道内埋设n岛,能够有效调整器件的Vth的范围并且一致性更好。可以利用器件的不同层的光刻板在适当层制作时形成n岛,也就是说,本方案对n岛的具体制作步骤不作限定,只要最终生成的n岛的位置处于p阱区的沟道内即可。n岛的数量取决于具体的应用需求,相对而言,埋入的n岛的数量越多,N沟道的平面型IGBT的Vth值越低。一致性一方面体现在同一个晶圆上的N沟道的平面型IGBT的Vth趋于一致,另外一方面体现在加入n岛的N沟道的平面型IGBT的Vth值更加符合预期值。
较佳地,所述n型半导体元素包括氢元素、五族元素中的至少一种。
本方案中,n型半导体元素可以为五族元素,如磷、砷等;也可以为氢元素。
较佳地,所述p阱区的沟道内埋有多个所述n岛,多个所述n岛间隔设置。
本方案中,n岛的数量有多个,多个n岛成间隔设置。通过调节n岛之间的间距、元素的剂量以及结深实现对需要的Vth的值的范围及一致性的调节。
较佳地,每个所述n岛采用氢元素、五族元素中的至少一种形成。
本方案中,多个n岛中每个采用的元素可以相同,也可以不相同。
本发明的积极进步效果在于:
本发明提供的N沟道的平面型VDMOS和平面型IGBT,通过在器件的p阱区的沟道内埋设n岛,能够有效调整器件的Vth的范围并且一致性更好。n岛的数量取决于具体的应用需求,相对而言,埋入的n岛的数量越多,器件的Vth值越低。
附图说明
图1为现有技术中N沟道的平面型VDMOS的元胞结构的切面示意图。
图2为现有技术中N沟道的平面型IGBT的元胞结构的切面示意图。
图3为本发明实施例1的N沟道的平面型VDMOS的元胞结构的切面示意图。
图4为本发明实施例2的N沟道的平面型IGBT的元胞结构的切面示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
本实施例提供了一种N沟道的平面型VDMOS,图3为该N沟道的平面型VDMOS的元胞结构的切面示意图,包括Gate、Source和Drain,从下至上还依次包括n+区1、n-drift、对称的p+体区2,位于p+体区2中的p阱以及n+源区3。本实施例中,p阱区的沟道内埋有至少一个n岛4,n岛4为n型区,n型区采用n型半导体元素形成。其中,n型半导体元素包括氢元素、五族元素中的至少一种。
本实施例中,n型半导体元素可以为五族元素,如磷、砷等;也可以为氢元素。
本实施例中,p阱区的沟道内埋有多个n岛4,多个n岛4间隔设置。每个n岛4采用氢元素、五族元素中的至少一种形成。通过调节n岛4之间的间距、元素的剂量以及结深实现对需要的Vth的值的范围及一致性的调节。本实施例中,多个n岛4中每个采用的元素可以相同,也可以不相同。
本实施例中,通过在p阱区的沟道内埋设n岛4,能够有效调整器件的Vth的范围并且一致性更好。可以利用器件的不同层的光刻板在适当层制作时形成n岛4,也就是说,本实施例对n岛4的具体制作步骤不作限定,只要最终生成的n岛4的位置处于p阱区的沟道内即可。n岛4的数量取决于具体的应用需求,相对而言,埋入的n岛4的数量越多,N沟道的平面型VDMOS的Vth值越低。一致性一方面体现在同一个晶圆上的N沟道的平面型VDMOS的Vth趋于一致,另外一方面体现在加入n岛4的N沟道的平面型VDMOS的Vth值更加符合预期值。
实施例2
本实施例提供了一种N沟道的平面型IGBT,图4为该N沟道的平面型IGBT的元胞结构的切面示意图,包括Gate、Cathode和Anode,从下至上还依次包括p+区5、n-drift、对称的p+体区6,位于p+体区6中的p阱以及n+阴极区7。本实施例中,p阱区的沟道内埋有至少一个n岛8,n岛8为n型区,n型区采用n型半导体元素形成。其中,n型半导体元素包括氢元素、五族元素中的至少一种。
本实施例中,n型半导体元素可以为五族元素,如磷、砷等;也可以为氢元素。
本实施例中,p阱区的沟道内埋有多个n岛8,多个n岛8间隔设置。每个n岛8采用氢元素、五族元素中的至少一种形成。通过调节n岛8之间的间距、元素的剂量以及结深实现对需要的Vth的值的范围及一致性的调节。本实施例中,多个n岛8中每个采用的元素可以相同,也可以不相同。
本实施例中,通过在p阱区的沟道内埋设n岛8,能够有效调整器件的Vth的范围并且一致性更好。可以利用器件的不同层的光刻板在适当层制作时形成n岛8,也就是说,本实施例对n岛8的具体制作步骤不作限定,只要最终生成的n岛8的位置处于p阱区的沟道内即可。n岛8的数量取决于具体的应用需求,相对而言,埋入的n岛8的数量越多,N沟道的平面型IGBT的Vth值越低。一致性一方面体现在同一个晶圆上的N沟道的平面型IGBT的Vth趋于一致,另外一方面体现在加入n岛8的N沟道的平面型IGBT的Vth值更加符合预期值。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (8)

1.一种N沟道的平面型VDMOS,包括p阱区,其特征在于,所述p阱区的沟道内埋有至少一个n岛,所述n岛为n型区,所述n型区采用n型半导体元素形成。
2.如权利要求1所述的N沟道的平面型VDMOS,其特征在于,所述n型半导体元素包括氢元素、五族元素中的至少一种。
3.如权利要求1所述的N沟道的平面型VDMOS,其特征在于,所述p阱区的沟道内埋有多个所述n岛,多个所述n岛间隔设置。
4.如权利要求3所述的N沟道的平面型VDMOS,其特征在于,每个所述n岛采用氢元素、五族元素中的至少一种形成。
5.一种N沟道的平面型IGBT,包括p阱区,其特征在于,所述p阱区的沟道内埋有至少一个n岛,所述n岛为n型区,所述n型区采用n型半导体元素形成。
6.如权利要求5所述的N沟道的平面型IGBT,其特征在于,所述n型半导体元素包括氢元素、五族元素中的至少一种。
7.如权利要求5所述的N沟道的平面型IGBT,其特征在于,所述p阱区的沟道内埋有多个所述n岛,多个所述n岛间隔设置。
8.如权利要求7所述的N沟道的平面型IGBT,其特征在于,每个所述n岛采用氢元素、五族元素中的至少一种形成。
CN202010148530.6A 2020-03-05 2020-03-05 N沟道的平面型vdmos和平面型igbt Active CN113363318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010148530.6A CN113363318B (zh) 2020-03-05 2020-03-05 N沟道的平面型vdmos和平面型igbt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010148530.6A CN113363318B (zh) 2020-03-05 2020-03-05 N沟道的平面型vdmos和平面型igbt

Publications (2)

Publication Number Publication Date
CN113363318A true CN113363318A (zh) 2021-09-07
CN113363318B CN113363318B (zh) 2023-12-08

Family

ID=77523770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010148530.6A Active CN113363318B (zh) 2020-03-05 2020-03-05 N沟道的平面型vdmos和平面型igbt

Country Status (1)

Country Link
CN (1) CN113363318B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452817A1 (en) * 1990-04-20 1991-10-23 Kabushiki Kaisha Toshiba Semiconductor device with MOS-transistors and method of manufacturing the same
JP2001094097A (ja) * 1999-09-21 2001-04-06 Denso Corp 炭化珪素半導体装置及びその製造方法
CN105047721A (zh) * 2015-08-26 2015-11-11 国网智能电网研究院 一种碳化硅沟槽栅功率MOSFETs器件及其制备方法
CN113130647A (zh) * 2019-12-30 2021-07-16 比亚迪半导体股份有限公司 碳化硅器件及其制备方法和半导体器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0452817A1 (en) * 1990-04-20 1991-10-23 Kabushiki Kaisha Toshiba Semiconductor device with MOS-transistors and method of manufacturing the same
JP2001094097A (ja) * 1999-09-21 2001-04-06 Denso Corp 炭化珪素半導体装置及びその製造方法
CN105047721A (zh) * 2015-08-26 2015-11-11 国网智能电网研究院 一种碳化硅沟槽栅功率MOSFETs器件及其制备方法
CN113130647A (zh) * 2019-12-30 2021-07-16 比亚迪半导体股份有限公司 碳化硅器件及其制备方法和半导体器件

Also Published As

Publication number Publication date
CN113363318B (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US7372100B2 (en) Semiconductor device
KR100929714B1 (ko) 감소된 밀러 용량을 갖는 모스 게이트 트랜지스터
US5674766A (en) Method of making a trench MOSFET with multi-resistivity drain to provide low on-resistance by varying dopant concentration in epitaxial layer
JP2017139440A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US6768170B2 (en) Superjunction device with improved avalanche capability and breakdown voltage
US20070034941A1 (en) Deep N diffusion for trench IGBT
US20220376107A1 (en) Mosfet in sic with self-aligned lateral mos channel
KR20100064263A (ko) 반도체 소자 및 이의 제조 방법
US20110068353A1 (en) Semiconductor device
CN102194818B (zh) 一种基于p型外延层的bcd集成器件及其制造方法
CN106463503A (zh) 半导体装置
KR20040068848A (ko) 집적 반도체장치 및 그 제조방법
JP2008091450A (ja) 半導体素子
JPWO2005083796A1 (ja) 半導体装置およびその製造方法
US20130146967A1 (en) Trench-Gate Resurf Semiconductor Device and Manufacturing Method
TW200947564A (en) Semiconductor device and method of forming a semiconductor device
US7482205B2 (en) Process for resurf diffusion for high voltage MOSFET
CN109065623A (zh) 一种碳化硅金属氧化物半导体场效应晶体管及其制造方法
CN103151371A (zh) 一种晶圆结构以及应用其的功率器件
CN113363322B (zh) N沟道的沟槽型vdmos和沟槽型igbt
CN113517332A (zh) 基于圆柱型超结区的复杂超结半导体器件及其制备方法
US20200119142A1 (en) Semiconductor device
KR102406116B1 (ko) 반도체 소자 및 그 제조 방법
CN101447432A (zh) 双扩散场效应晶体管制造方法
CN113363318B (zh) N沟道的平面型vdmos和平面型igbt

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211111

Address after: 201306 No. 600, Yunshui Road, Lingang xinpian District, pilot Free Trade Zone, Pudong New Area, Shanghai

Applicant after: Shanghai Jita Semiconductor Co.,Ltd.

Address before: 200233 No. 385, Hongcao Road, Xuhui District, Shanghai

Applicant before: SHANGHAI ADVANCED SEMICONDUCTO

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant