CN113358999A - 用于计量系统的参考电路 - Google Patents

用于计量系统的参考电路 Download PDF

Info

Publication number
CN113358999A
CN113358999A CN202110659141.4A CN202110659141A CN113358999A CN 113358999 A CN113358999 A CN 113358999A CN 202110659141 A CN202110659141 A CN 202110659141A CN 113358999 A CN113358999 A CN 113358999A
Authority
CN
China
Prior art keywords
voltage
circuit
sensor
temperature
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110659141.4A
Other languages
English (en)
Inventor
D·J·弗里奇曼
J·萨沃杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Inc filed Critical Apple Inc
Publication of CN113358999A publication Critical patent/CN113358999A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2644Adaptations of individual semiconductor devices to facilitate the testing thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/203Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit in an oscillator circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本发明公开了用于计量系统的参考电路。在一个实施方案中,该电路包括参考传感器,该参考传感器具有与整个IC中的多个传感器相同的拓扑结构和特征。参考传感器和IC上的传感器均可用于执行电压和温度测量。参考传感器可接收来自精密电压源的电压,并且也可用作传感器以为校准其他传感器提供依据。此后,可将从其他传感器获得的温度读数与由参考传感器获得的读数相关联以提高准确性。参考中心电路还包括模拟过程监测电路,该模拟过程监测电路可耦接到在IC上实现的晶体管中的一些(如果不是全部)晶体管。

Description

用于计量系统的参考电路
本申请是申请号为201780005894.5、申请日为2017年1月4日、发明名称为“用于计量系统的参考电路”的发明专利申请的分案申请。
技术领域
本公开涉及集成电路,并且更具体地涉及用于计量系统的参考电路,该参考电路用于在集成电路的操作期间监测参数诸如温度和电压。
背景技术
集成电路(IC)上的晶体管数量随着特征部尺寸的减小而相应地增加。每单位面积晶体管数量的增加导致IC的热输出相应地增加。此外,每单位面积晶体管数量的增加也对应于提供给IC上各种功能电路的供电电压的降低。这继而为平衡IC的性能、功率消耗和热输出带来了重大挑战。为此,许多IC实现了监测IC的各种度量(例如,温度、电压、电压下降)的子系统,并且基于接收到的测量来调整性能。例如,控制子系统可响应于超过预定义阈值的温度读数而减小时钟频率、供电电压或两者。这可有助于使IC的操作保持在指定的热限制范围内。此类控制系统也可在所测得的度量完全在限制范围内时提高某些功能电路的性能。
用于基于系统度量来控制性能的IC子系统通常包括一个或多个传感器和至少一个控制系统。由于诸如工艺、电压和温度变化等因素,此类子系统中的至少一些传感器可被耦接以从与用于为IC中的功能电路供电的电源不同的电源接收电力。
发明内容
本发明公开了用于计量系统的参考中心电路。在一个实施方案中,该电路包括参考传感器,该参考传感器具有与整个IC中的多个传感器相同的拓扑结构和特征。参考传感器和IC上的传感器均可用于执行电压和温度测量。参考传感器可接收来自精密电压源的电压,并且也可用作传感器以为校准其他传感器提供依据。此后,可将从其他传感器获得的温度读数与由参考传感器获得的读数相关联以提高准确性。参考中心电路还包括模拟过程监测电路,该模拟过程监测电路可耦接到(在IC上实现的晶体管中的一些(如果不是全部)晶体管。模拟过程监测电路可提供用于表征IC上晶体管的模拟特征的机制。模拟测试中心可提供集线器,以用于提取和数字化来自参考温度传感器(与上述参考传感器分开但与其结合使用)、模拟过程监视器的信号,以及经由模拟总线接收的其他模拟测量信号。所得的数字信息可提供给芯片上或芯片外的其他电路,以用于后期处理和分析。
在一个实施方案中,参考传感器与精密电压源和精密温度传感器相关联。参考传感器以及其他传感器可用环形振荡器实现。在一个实施方案中,每个传感器包括具有彼此不同特征的两个环形振荡器。基于由环形振荡器产生的相应频率,可基于在校准过程中导出的特征多项式来求解所感测的电压和温度。参考传感器可接收精确的输入电压,并且位于紧邻参考温度传感器的位置。因此,可将已知的温度和电压值输入到参考传感器中,并且可随即生成相应的特征多项式。由于参考传感器具有与其他传感器相同的拓扑结构和基本上相同的特征,因此可将从其接收的读数与参考传感器特征相关联。参考传感器的温度和电压输入可由被布置为以低速和高分辨率操作的高精度模数转换器数字化。为了实现附加的准确性,可使用自动测试设备来校准参考传感器的参考温度和输入电压。对来自参考传感器的参考电压、参考温度和读数的数据进行数字化可用于执行模拟非线性的数字校准。
附图说明
现在对附图进行简要说明,下面的具体说明将参照附图进行描述。
图1是IC的一个实施方案的框图。
图2是具有多个传感器的功能电路块的一个实施方案的框图。
图3是示出了针对采用两个环形振荡器的传感器的实施方案的操作概念的框图。
图4是具有两个环形振荡器的传感器的一个实施方案的框图。
图5是具有单个环形振荡器的传感器的一个实施方案的框图。
图6是用于实现环形振荡器的电路的一个实施方案的示意图。
图7是用于校准IC上的传感器的方法的一个实施方案的流程图。
图8是用于确定由使用两个环形振荡器的传感器所指示的电压和温度的方法的一个实施方案的流程图。
图9是用于确定由使用单个环形振荡器的传感器所指示的电压和温度的方法的一个实施方案的流程图。
图10是包括计量金参考中心的IC的一个实施方案的框图。
图11是示出了计量金参考中心的一个实施方案的框图。
图12是示出了在IC上实现的模拟过程监视器的一个实施方案的框图。
图13是示出了在IC上实现的模拟测试中心的一个实施方案的框图。
图14是示出了温度感测电路的一个实施方案的框图。
图15是示例性系统的一个实施方案的框图。
尽管所公开的主题易受各种修改形式和替代形式的影响,但其具体实施方案在附图中以举例的方式示出并且将在本文中详细描述。然而,应当理解,附图及对附图的详细描述并非旨在将所公开的主题限制于所公开的特定形式,而正相反,其目的在于覆盖落在由所附权利要求书所限定的所公开主题的实质和范围内的所有修改形式、等同形式和替代形式。本文所使用的标题仅用于组织目的,并不旨在用于限制说明书的范围。如在整个本申请中所使用的那样,以允许的意义(即,意味着具有可能性)而非强制的意义(即,意味着必须)使用“可能”一词。类似地,字词“包括”是指包括但不限于。
各种单元、电路或其他部件可被描述为“被配置为”执行一个或多个任务。在此类上下文中,“被配置为”为通常表示“具有”在操作期间执行一个或多个任务的“电路”的结构的宽泛表述。如此,即使在单元/电路/部件当前未接通时,单元/电路/部件也可被配置为执行任务。一般来讲,形成与“被配置为”对应的结构的电路可包括硬件电路和/或存储可执行以实现该操作的程序指令的存储器。该存储器可包括易失性存储器诸如静态随机存取存储器或动态随机存取存储器和/或非易失性存储器诸如光盘或磁盘存储装置、闪存存储器、可编程只读存储器等。类似地,为了描述方便,可将各种单元/电路/部件描述为执行一项或多项任务。此类描述应当被解释为包括短语“被配置为”。详述被配置为执行一项或多项任务的单元/电流/组件意在明确地不援引35U.S.C.§112,段落(f)(或pre-AIA第六段)对该单元/电路/部件的解释。
具体实施方式
现在转向图1,其示出了IC的一个实施方案的框图。在所示实施方案中,IC 10包括两个功能电路块、处理单元(PU)130和PU 140。在各种实施方案中,可包括其他功能电路块,包括PU 130的附加实例。因此,本文示出了PU 130和PU 140作为示例性功能电路块,但并非旨在限制本公开的范围。PU 130和PU 140中的每一者可以是通用处理器内核、图形处理单元、数字信号处理单元或实质上被配置为执行处理功能的任何其他类型的功能单元。本公开的范围可适用于这些类型的功能电路块中的任一者以及本文中未明确提及的其他功能电路块。本文示出的功能电路块的数量也是示例性的,因为本公开不限于任何特定的数量。
所示实施方案中的PU 130是被配置为执行指令集中的指令并执行通用处理操作的通用处理器内核。因此,PU 130的功能电路131可包括各种类型的电路,诸如各种类型(整数、浮点等)的执行单元、寄存器文件、调度器、指令取出单元、各种级别的高速缓存存储器以及可在处理器内核中实现的其他电路。在该实施方案中,PU 130以及其中的所有电路被耦接以接收供电电压Vdd1。然而需注意,可在PU 130的各种实施方案中实现多个电源域,并且因此实现多个供电电压。此外,提供给PU 130的供电电压在电源管理电路(未示出)的控制下可为可变的。电源管理电路出于各种原因诸如控制性能水平、热输出和功率消耗而调整电压。
所示实施方案中的GPU 140包括可实现各种类型的图形处理电路的功能电路141。这可包括图形处理内核、各种类型的存储器和寄存器等。所示实施方案中的GPU 140被耦接以接收与PU 130所接收的Vdd1分开的第二供电电压Vdd2。
PU 130和PU 140均包括多个传感器120。本文示出的传感器的具体数量是示例性的,并且在实际的实施方案中可更大、更小或者相等。传感器120可被配置为感测一个或多个性能度量或参数。在该特定实施方案中,这些传感器被配置为感测电压和温度值。所感测的电压和温度值可进而用于确定其中实现的电路是否在限制范围内操作和/或是否能够具有更高的性能。
所示实施方案中的传感器120中的每一者都耦接到与功能电路块中的其相应一者中的功能电路相同的电压源。也就是说,PU 130中的每个传感器120被耦接以接收供电电压Vdd1,而GPU 140中的每个传感器被耦接以接收Vdd2。在现有技术的实施方案中,此类传感器通常被耦接以从某个电源接收电力,该电源与这些传感器被实现的功能电路附近的功能电路的电源分开。这可能会限制它们在IC/功能电路模块中的布局,因为需要路由连接以用于另一电压源。此外,现有技术实施方案中的这些传感器通常可大于本文所讨论的实施方案中使用的传感器,这可能进一步限制它们的数量和布局。相反,本文实现的传感器120可以是简化的传感器。因此,传感器120可比现有技术传感器小。这继而可允许将更多的传感器放置在IC上。此外,这些传感器可被放置在较小的区域中,从而增加了其实施方式的通用性。在一个实施方案中,可使用一个或多个环形振荡器来实现传感器120。然而,由于由环形振荡器产生的频率可显著依赖于工艺、电压和温度变化,因此可校准这些环形振荡器使得这些依赖性不会不利地影响其精确度。下面将进一步详细讨论各种校准和操作方法。需注意,在测试期间,可使用自动测试设备(ATE)在已知电压和温度下对每个传感器执行初始校准(和表征)。可在实现IC 10的系统的启动和/或操作期间执行后续校准。
所示实施方案中的IC 10包括计量控制电路(MCC)105。MCC 105可在IC 10的各种功能电路块中执行与传感器120的操作有关的各种操作。在所示的实施方案中,MCC 105经由计量总线13耦接到传感器120中的每一者。在IC 10的操作期间,传感器120中的每一者可执行对例如其相应一个或多个环形振荡器的频率的读取,将该频率读数转换成数字格式并将该信息传输到MCC 105。在该实施方案中,MCC 105是串行总线,并且信息可在总线上移位,其操作方式类似于扫描链的操作方式。然而,利用不同机构与传感器进行通信的实施方案是可能的且可设想的。
MCC 105可经由计量总线13的其对应耦接的实例从这些传感器中的每一者接收频率信息。使用该频率信息,MCC 105可确定由传感器120中的每一者感测的电压和温度。在所示的实施方案中,MCC 105包括服务处理器111和存储器112。服务处理器111可执行软件例程的指令,以基于从传感器120中的每一者接收到的频率信息来求解电压和温度值。其中代替软件指令的执行而使用专用电路来执行这些任务的实施方案也是可能的且可设想的。服务处理器可使用存储器112来存储各种信息,包括从传感器接收到的频率信息、所确定的电压和温度信息以及在执行计算期间产生的中间信息。存储器112还可存储表征其中的传感器和电路(例如,环形振荡器)的信息。存储器112可使用易失性存储器、非易失性存储器或其组合来实现。
MCC 105还包括在参考电路107中实现的传感器120的实例。MCC 105的传感器120被耦接以接收供电电压AVdd。此外,传感器120可根据在IC 10上实现的传感器120的其他实例来配置。传感器120的这一具体实例可为确定系统中其他传感器120的特征提供读数作为依据。虽然在图1中未明确示出,但“金”温度传感器可在MCC 105的传感器120附近实现。该温度传感器可被设计成高度精确的。类似地,提供AVdd的电源是具有严格控制电压的精密电源。因此,可高度精确地计算使用MCC 105的传感器120所确定的电压和温度中的任何误差。继而,这些误差可用于校准和表征在整个系统中实现的其他传感器120。此外,从MCC105的传感器120获得的读数可用于确定是否以及何时可能需要重新校准其他传感器120。
图2是具有多个传感器120的功能电路块的一个实施方案的框图。在所示的实施方案中,功能电路块(FCB)211实际上可以是在IC上实现的任何类型的功能电路。功能电路211可包括数字电路、模拟电路和混合信号电路。FCB 211的传感器120被实现于功能电路211中及其周围的各个位置中。由于其占用区域相对较小,至少一些传感器120可在由功能电路211占据的区域内实现,而其他传感器可在附近或部分地在其内实现。本实施方案中的传感器120通过计量总线13以串联配置耦接,数据(例如,用于环形振荡器的频率数据)可通过该计量总线被移位。所示实施方案中的传感器120中的每一者被耦接以接收与功能电路211所接收的供电电压相同的供电电压Vdd。
图3是示出了针对采用两个环形振荡器的传感器的实施方案的操作概念的框图。在一些实施方案中,每个传感器包括被设计为具有彼此不同的特征的两个环形振荡器。这两个环形振荡器可紧邻彼此实现,并且因此可在基本上相同的电压和温度条件下操作。然而,由于它们的特征彼此不同,所以这两个环形振荡器可在相同的电压和温度条件下以不同的频率操作。该原理可使用来自每个环形振荡器的频率读数来确定传感器处的电压和温度。
在所示的示例中,两个环形振荡器RO1和RO2分别耦接到计数器1和计数器2。在读取时,可允许每个环形振荡器将其相应耦接的计数器触发预先确定的时间量。在已过去预先确定的时间之后,这些计数器可被冻结并且它们的计数值被提供以指示频率。
环形振荡器中的每一者可通过多项式来表征。更具体地,由每个环形振荡器输出的频率可通过电压和温度的非线性函数来表征,其形式如方程1所示:
fRO=ΣαijTiVj (1)
因此,RO1的频率可表征为:
fRO1=ΣαijTiVj (2),
而RO2的频率可表征为:
fRO2=ΣβijTiVj (3)。
上述方程中的“f”项可表示频率,或另选地,可表示振荡频率和相数的乘积与参考频率之比。该表达式中对应于给定环形振荡器的各项数量的确定取决于该环形振荡器的特征。一般来讲,较高数量的非线性项会增加用多项式表示环形振荡器频率的准确性。
输出频率(或上述乘积)可提供给非线性方程求解器。通过使用表征环形振荡器的多项式,该联立方程组可求解由传感器检测到的电压和温度。在一个实施方案中,可使用服务处理器111(图1)和由此执行的软件指令来实现非线性方程求解器。更一般地,可使用硬件、软件、固件及其任何组合来实现非线性方程求解器。此外,可在相应的功能电路块中局部地执行非线性方程的求解,这在一些实施方案中是可能的且可设想的。
以上方程中的系数可基于实际的环形振荡器频率针对给定的一组电压和温度值来计算。考虑一个环形振荡器模型,其中使用用于计算环形振荡器特征的一组24个数据点(电压、温度和输出频率)的9项函数来定义频率。如果使用更多数量的数据点来确定系数,则所得到的函数可更好地表征对应的环形振荡器。该技术可被称为环形振荡器特征的表面拟合,并且可使用数值技术将一组大量的数据点映射到多项式。
作为一个示例,考虑环形振荡器的频率由以下表达式定义:
fRO=α22T2V221T2V120T2V012T1V211T1V110T1V002T0V2+
α01T0V100T0V0 (4)
如果环形振荡器频率的测量出现在以下范围内:
{(f0,V0,T0),(f1,V1,T1),…,(f23,V23,T23)},
那么可形成下列矩阵:
F=[f0 f1… f23] (5)
A=[α22 α21 α20 α12 α11 α10 α02 α01 α00] (6)
X=[X0 X1…X23],
其中
Figure BDA0003114628350000081
因此,频率F可被定义为F=AX(8)。使用最小二乘估计可求解项A,从而计算初始表面拟合中的所有系数。
这个概念可扩展到具有各自如上所述表征的一组不同特征的两个环形振荡器。因此,紧邻彼此放置、接收相同的供电电压并且在基本上相同的局部温度下操作的两个环形振荡器可用如下两个表达式表征:
Figure BDA0003114628350000082
以上假设两个环形振荡器用具有相等长度的多项式来表征,但这对于所有实例不一定是必需的。
使用分段线性(PWL)技术可降低求解上述联立方程组的复杂性。使用该技术,可使用一组PWL函数来描述环形振荡器的输出频率的二维非线性表面。在整个电压和温度上的操作表面可被分成多个三角形区域,对于每个三角形区域,可使用电压和温度的线性函数来描述对应区域的特征。因此,整个表面可被分成整数n个PWL区域,如下所述:
Figure BDA0003114628350000091
PWL函数中的每一者的系数可使用描述任何给定区域的三角形的三个顶点处的输出频率来确定。例如,对于描述在第一轴上的温度T1和T2和在第二轴上的电压V1和V2之间延伸的三角形的PWL函数,其中在(T1,V1)、(T1,V2)和(T2,V1)处测得的频率分别由f1、f2和f3给出并且PWL的指数给出为i,则可求解以下方程组以便计算该区域中相应PWL函数的系数:
Figure BDA0003114628350000092
这可针对每个区域进行重复以确定其PWL特征,从而确定环形振荡器的操作表面。
一旦两个环形振荡器均已用一组PWL函数表征,那么求解一组非线性方程就被简化为求解一组PWL方程。对于每个PWL计算,要求解的方程可通常如下所述:
Figure BDA0003114628350000093
求解这两个方程得出温度T和电压V,结果如下:
Figure BDA0003114628350000101
如前所述,本文所讨论的计算可在MCC 105中执行,具体地可在服务处理器111中执行。这可允许每个传感器120在小区域中实现并限制其功率消耗,因为它不需要执行频率到电压和/或温度的任何转换。更一般地,用于频率测量的特征部可在每个传感器120内实现,而用于PWL计算、针对工艺变化的校准以及同样地针对精确度的校准的那些特征部可在MCC105内实现。
每个环形振荡器的表面拟合(并因此其相应的PWL表示)可随每个工艺角而改变并且也可受到局部芯片上变化的影响。而且,由于诸如老化等影响,给定环形振荡器的精确度可能会降低。因此,用于此类环形振荡器的校准方案可更新每个环形振荡器的特征。这些特征可基于来自每个环形振荡器的有限的一组精确测量来更新。如果给定环形振荡器的初始(但非准确的)模型为
fRO_precal=∑i,jαijTiVi (15),
则可执行一组实际测量来更新系数,使得该环形振荡器的更精确模型如下:
Figure BDA0003114628350000102
该校准因子取决于初始模型和一组校准点两者。精确度随点数量的增加而相应地增大。相反,校准算法的效率可基于最小数量的数据点由后校准模型的精确度来确定。
在一个实施方案中,根据本公开的校准算法包括使用任何校准点处的误差信号的缩放值来更新系数。对于任何校准点,误差信号(e)可被定义为实际测量与由模型预测的值之间的差值。这意味着
Figure BDA0003114628350000103
Figure BDA0003114628350000111
如果将初始模型(αij)中的系数合并到以A0给出的矢量中,则可使用递归方法针对每个单个校准点更新矢量:
Ak=Ak-1+ekG (18)。
在一个实施方案中,可使用递归最小二乘(RLS)技术来确定G矢量。这可继而导致相对较快地收敛到基于有限的一组校准数据的最终期望值。在使用RLS技术时,G矢量在每个步骤期间递归地更新。RLS技术可利用环形振荡器的如下另选的表征:
Figure BDA0003114628350000112
其中U是(i+1)(j+1)项的矢量,即:
U=[TiVj Ti-1Vj … T0V0] (20)。
由此,可形成对角矩阵:
Figure BDA0003114628350000113
对于任何校准点,可执行以下一组计算:
Figure BDA0003114628350000114
其中λ是遗忘因子,并且e是误差。
因此,使用诸如如上所述的递归最小二乘算法,可在校准过程期间更新表征环形振荡器的多项式的系数。此类校准可在不同的时间执行,诸如在系统启动时、在系统/IC的使用寿命期间的选定时间、响应于MCC 105中的参考传感器107和传感器120中大的变化等。因此,基于环形振荡器频率的电压和温度可在系统的使用寿命范围内以合理的精确度水平来确定,同时使得能够使用具有较小占用面积的简单传感器。
图4是示出了利用两个环形振荡器的传感器的一个实施方案的框图。在所示的实施方案中,传感器140包括可具有相对于彼此不同的特征的环形振荡器141和142。在该特定实施方案中,环形振荡器141使用串联耦接的反相器来实现,而环形振荡器142使用串联耦接的NAND门来实现。两个环形振荡器141和142均被耦接以接收相同的供电电压Vdd(局部),并且紧邻彼此放置。然而,由于电路的实施方式不同,环形振荡器141和142可在相同的操作条件下以不同的频率振荡。根据以上讨论,这可使环形振荡器141和142产生的相应频率成为求解传感器140处的电压和温度的依据。
环形振荡器141和142分别耦接到计数器143和144。这些计数器可耦接到其相应耦接的环形振荡器中的一个或多个抽头点。在进行测量期间,计数器143和144可跟踪一个或多个计数值,这些计数值继而可指示由环形振荡器141和142产生的频率。在一些实施方案中,计数器143和144中的每一者可包括跟踪运行时间的相应定时器,以允许计数器在测量期间累计计数。提供耦接到两个计数器的单独计时器的其他实施方案是可能的且可设想的。
计数器143和144各自耦接到寄存器144。通过使用寄存器144,MCC 105(图1)可将信息输入到计数器中,并且也可从其接收信息。例如,指示计数器用于跟踪由相应耦接的环形振荡器的振荡产生的计数值的运行时间的信息可经由寄存器145从MCC 105输入到计数器中。启动指示也可通过寄存器145输入。寄存器145可从计数器143和144接收在实际测量期间产生的计数值。根据图1所示的实施方案,这些值可通过计量总线13串行移位到MCC105,以用于计算电压和温度值。其中寄存器145直接耦接到MCC 105的实施方式的实施方案也是可能的且可设想的。
图5是示出了利用单个环形振荡器的传感器的一个实施方案的框图。通过使用这种类型的传感器,电压和温度可使用多感测技术来确定,其中使用单个环形振荡器进行测量,并在不同的输入电压下执行测量。在该特定实施方案中的环形振荡器151被耦接以接收偏置电压VBias和可选输入电压Vin。偏置电压可由用于产生此类电压的任何合适的电路产生,并且对于所有测量可基本相同。用于产生偏置电压的电路相对于传感器可以是局部的,或者可全局地产生然后分配给传感器中的每一者。输入电压Vin可以是通过选择电路155输入的电压中的任一者。下文参考图6进一步描述了用于一个实施方案的这些电压的产生。可由MCC 105来执行用于选择这些电压的选择信号的控制。
所示实施方案中的环形振荡器151经由一个或多个抽头点耦接到计数器152,并且可在操作时使计数器触发。因此,计数器152可跟踪计数值,并且在预先确定的时间段结束时可停止计数并将计数值提供给寄存器153。然后计数值可被转发到MCC 105用于电压和温度计算。类似地,计数器152可经由寄存器153以类似于上文参考图4的实施方案所描述的方式从MCC 105接收信息。
环形振荡器151可通过多项式以类似于上文参考图3所描述的方式来表征。该技术可涉及用于在多个电压和频率下进行多频率测量的表面拟合技术。也就是说,根据电压和温度,环形振荡器151的频率响应可按照以上方程(1)和(4)来表征。
为了执行电压和温度测量,可在通过选择器155提供的四个不同的输入电压处进行频率测量。可进行以下频率测量:
对于Vin=VGS1 f1=f0+KVCO(VGS1-V0) (23),
对于Vin=VGS2 f2=f0+KVCO(VGS2-V0) (24),
对于Vin=a1V f3=f0+KVCO(a1V-V0)(25),
以及对于Vin=a2V f4=f0+KVCO(a2V-V0) (26)。
上述方程组假设选择a1V和a2V使其接近VGS1和VGS2,使得所有这些电压可使用环形振荡器的同一线性模型(即KVCO、V0和f0)。
从以上测量可推导出以下方程:
(f4-f3)/(f2-f1)=(a2-a1)V/(VGS1-VGS2) (27)。
在亚阈值区域中,VTlnN和VT可被重写为kT/q。因此,方程25可被重写为
(f4-f3)/(f2-f1)=(a2-a1)V/(kT/q)lnN (28)。
由此,环形振荡器的特征可被简化为:
fRO=ΣβijTiTj (29)。
通过使用方程27,可求解温度T,并将其插回多项式表征中以求解电压V。
使用ATE进行校准时,可在两个温度和两个供电电压下确定频率。针对其他所测量的频率可使用线性插值。附加的频率测量可改善表面拟合。在操作过程中,可能会进行附加测量,其结果将用于替换插值,直到已替换所需的数量。这继而可提高正常操作期间所进行的测量的精确度。
图6包括在传感器150中并与其一起使用的电路元件的示意图。在所示的实施方案中,环形振荡器151包括多个串联耦接的反相器161。每个反相器161包括两个PMOS(p沟道金属氧化物半导体)晶体管和两个NMOS(n沟道金属氧化物半导体)晶体管的叠堆。PMOS叠堆包括P1和P2,而NMOS叠堆包括N1和N2。在操作期间,P1的栅极端子接收上文参考图5所讨论的输入电压中的一者。类似地,N1在其相应的栅极端子上接收偏置电压VBias。P2和N2各自具有耦接到输入节点的相应栅极端子和耦接到输出节点的相应漏极端子。因此,P2和N2用以执行实际的反相器功能。N1用以设定反相器的特征,而P1用以经由不同的Vin值改变反相器的特征。环形振荡器151的每个反相器161可以这种方式配置。在改变提供给每个反相器161的P1的输入电压时,可改变环形振荡器151的特征,并因此改变由其输出的频率。这继而可允许执行校准和测量,以确定由每个传感器检测到的温度和电压(即供电电压)。
所示实施方案中的参考电路162被配置为产生各种电压,这些电压可作为Vin被提供给每个反相器161的P1。该电路包括PMOS晶体管P3、P4和P5以及NMOS晶体管N3和N4。晶体管P3被耦接在Vdd(局部)和具有相对较大电阻值的电阻器R1之间。该电阻设定P3、P4和P5的栅极电压。电压VGS1和VGS2分别取自P4和P5的漏极端子。P4与P5的相对大小为1:N,因此电压VGS1和VGS2是不同的(这也是方程26中“N”项的来源)。R1使用较大的电阻值可确保流经N3和N4的电流非常小,因此器件在亚阈值区域中操作。这保证了VGS1和VGS2之间的差值与绝对温度(PTAT)电压成比例。其他两个电压a1V和a2V从梯形电阻163上的抽头点产生。
参考电路162可以各种方式实现。在一个实施方案中,每个传感器可包括其专用的参考电路162。在另一个实施方案中,每个功能电路块可具有将这些电压提供给每个传感器的环形振荡器151的参考电路162。在另一个实施方案中,每个不同的电压源(或电压轨)可与参考电路162相关联,该参考电路将各种电压分配给从相同源接收供电电压的每个环形振荡器151。
图7是用于执行IC中的一个或多个传感器的校准的方法的一个实施方案的流程图,其中这些传感器使用环形振荡器。可使用上文所讨论的各种电路实施方案中的任何一者以及与其相关联的软件和/或固件来执行方法700。本文没有明确讨论的也能够执行方法700的其他硬件/软件/固件实施方案是可能的且可设想的。
方法700以使用已知的V和T值在ATE上执行传感器的初始校准为起始(方框705)。在一个实施方案中,可使用至少两个不同点的V和T来校准每个环形振荡器。这些点之间的插值可用于完善对每个环形振荡器的初始表征。如果需要,也可使用附加的点。校准各个这种部分所使用的点的数量可基于期望的精确度、IC的各个单元在ATE上执行的可允许时间、可用的处理能力和可用的存储器能力而变化。一般来讲,所使用的点数量越多,初始校准就越准确,但这通常会导致每个IC单元在ATE上执行的时间更长。
还需注意,本文执行的校准可包括执行上文所讨论的各种数学方法。然而,包括使用多项式或其他数学函数来表征环形振荡器的其他方法也是可能的且可设想的。
基于在ATE校准中使用的点,每个环形振荡器可用多项式来表征,该多项式表示作为电压和温度的函数的环形振荡器的操作频率(方框710)。该多项式可为后续的校准提供起始点,并且可响应于后续校准而被更新。
可在系统的后续启动中执行下一个校准(方框715),该系统包括在其上实现了传感器的IC。响应于这些后续的校准,可更新表征每个环形振荡器的多项式(方框720)。在每次随后的下一次启动(方框725)时,该方法可返回到方框715,并且可用与校准后的环形振荡器对应的每个多项式的另一次更新来执行另一次校准。
校准的执行不限于上文所讨论的那些情况。例如,在一个实施方案中,校准也可在操作期间周期性地执行。在另一个实施方案中,可监测由MCC 105(或等效电路/单元)中的传感器和更精确的参考传感器检测到的V和T值。如果由传感器(其配置为功能电路块中的那些)和参考传感器检测到的V和T的值相差超过预先确定的值,则可响应于此执行校准。在另一个实施方案中,如果由传感器和参考传感器检测到的V和T值之间的差值以突然的速率或大于预先确定的速率变化,则可执行校准。因此,本文所讨论的方法可被理解为包括在其范围内的此类实施方案。
图8是用于确定由使用两个环形振荡器的传感器所指示的电压和温度的方法的一个实施方案的流程图。本文所讨论的方法800的实施方案可使用其中传感器利用具有不同特征的两个环形振荡器的任何实施方案中的任一者来执行。环形振荡器的配置可包括上文明确讨论的那些以及本文未明确讨论的那些。上文所讨论的各种数学方法可用于表征在特定实施方案中采用的环形振荡器。本文未明确讨论的其他数学方法也可在本公开的范围内使用。
方法800以分别从第一环形振荡器和第二环形振荡器获得频率值f1和f2为起始(方框805)。可将这些频率值插入到用于表征产生这些频率值的相应环形振荡器的多项式表达式中。由于环形振荡器可紧邻彼此放置并因此在基本上相同的电压和温度条件下操作,因此可将表征它们的相应多项式视为联立方程组。因此,可基于所指示的f1和f2的值来解该联立方程组以求出电压和温度(方框810)。
图9是用于确定由使用单个环形振荡器的传感器所指示的电压和温度的方法的一个实施方案的流程图。如本文所讨论的方法900可使用包括具有如上所述的单个环形振荡器的传感器的各种实施方案来执行。其他硬件实施方案以及本文未明确讨论的支持软件和/或固件的实施方案也被设想为能够执行方法900,并且因此落入本公开的范围内。
方法900将环形振荡器表征为多项式函数,其中输出频率是电压和温度的函数(方框905)。在执行表征之后,使用不同的Vin值执行多次感测,从而测量频率f1-f4(方框910)。使用所确定的频率值,基于上文所讨论的方程(26)进行计算(方框915)。由此,环形振荡器的特征可简化为如上所述的方程27,其中用温度项替换电压项中的一者(方框920)。在用温度项替换电压项中的一者之后,可解方程27求出温度T,并且可基于此计算电压V(方框925)。
图10是示出了在MCC 105的实例中实现的参考电路107的一个实施方案以及其作为整体与所公开的计量系统的关系的框图。在所示的实施方案中,参考电路107(也可称为计量金参考中心)耦接到功能电路211中的多个传感器120。功能电路211可包括中央处理单元(CPU)、图形处理单元(GPU)或片上系统(SoC;其可包括GPU以及CPU的一个或多个实例)。还需注意,在至少一些实施方案中,传感器120可在实现计量金参考中心的IC的外部IC中实现。金参考中心经由MCC 105耦接到传感器。
所示实施方案中的金参考中心包括与分布在整个IC中的那些传感器基本相同的传感器121。传感器121的这一实例在下文中将被称为参考传感器。参考传感器121具有与系统中的其他传感器120完全相同的拓扑结构和基本相同的特征,并且因此可与其他传感器基本上相同对相同的操作条件作出响应。参考传感器121被耦接以接收来自高精密电压源(此处示为Avdd,其也可被称为金电源)的供电电压。类似地,金温度传感器127在参考传感器附近实现。金温度传感器127是可使用各种电路拓扑结构和其他温度感测机制实现的高精度温度传感器。对整个系统的温度传感器建模可基于参考传感器121、金温度传感器127以及由金电源提供的电压的操作。可将从参考传感器121获得的数据与金电源的电压和从金温传感器127接收的温度相关联。可基于这些相关性对参考传感器121进行校准。此后,可将从参考传感器121获得的数据与系统中的其他传感器120相关联,以便对它们进行校准并形成相应的多项式特征。
参考电路107还包括模拟过程监视器125和模拟测试中心126。这两个单元中的电路可用于IC上的附加计量功能,并且如果这样连接,则用于IC外部的其他电路。如下文所讨论的,模拟过程监视器125可用于获得分布在整个IC/系统中的各种设备(例如晶体管)的特征。模拟测试中心126可接收来自IC/系统各部分的数据,以便提供用于测量各种电路参数(诸如电压、电流、阻抗/电阻和电容)的机制。模拟测试中心126可被进一步配置为将这些值数字化,以便由IC的其他部分或其外部的实体进行导出和分析。此类实体可包括但不限于用于传感器120/121的初始校准的自动测试设备(ATE)以及可与IC结合使用的其他类型的测试设备。模拟过程监视器125和模拟测试中心126均将在下文中进一步详细讨论。
图11是进一步示出了MCC 105的一个实施方案的框图,该MCC包括参考单元300、参考传感器121和金温度传感器127。电路被包括在参考单元300中,以用于产生待被提供给参考传感器121的高精度电压。在所示的实施方案中,电压参考数模转换器(VREF DAC)304包括多路复用器302和DAC 306。DAC 306被耦接以经由多路复用器302接收计量参考电压和/或来自带隙电路303的输出。多路复用器302可耦接到各种类型的电路,诸如带隙电路303和外部参考电压源。在该示例中,参考电压源是自动测试设备/电力管理单元(ATE/PMU)317。其他电压源也可被耦接以向多路复用器302提供输入。这些源中的每一个均可包括电路以输出用于表示经由多路复用器302提供给DAC 306的电压(或期望电压)的数字值。在一些情况下,电压最初可被生成为模拟值,并且随后被转换为数字以传输至VREF DAC 304。在其他情况下,电压可源自传输至VREF DAC的数字值。在由多路复用器302选择输入(例如,由于此处未示出来自其他控制电路的选择信号)之后,DAC 306可将所选择的数字值转换为模拟电压。
VREF DAC 304的输出可被提供给低压差(LDO)稳压器307。通过使用VREF DAC 304和LDO稳压器307的组合,提供给参考传感器121的电压可被准确地驱动到用于表征的期望值。此外,该电路可能够驱动大范围内的电压以对应于IC上使用的各种电压。例如,一个实施方案可将来自LDO稳压器307的电压以3.25mv的精度从0.5伏特的值驱动到1.1伏特。然而,需注意这些值是示例性的,并非旨在限制本公开的范围。来自LDO稳压器307的电压输出也可被提供给模拟过程监视器(APM)125,该APM继而耦接到多路复用器329的输入。LDO稳压器307的电压输出的表示可从APM 125传送至多路复用器329的相应耦接的输入。多路复用器329的输出耦接到精密模数转换器(ADC)311。在该具体实施方案中,ADC 311为ΣΔADC,但如果需要,可使用其他类型的高精密ADC。一般来讲,所用的ADC可以是低速高精密ADC。多路复用器329的另一个输入耦接到模拟总线,并且可接收来自参考单元300外部的源的模拟测试信号。该源可在同一IC上,或者可来自其外部的电路。通过模拟总线接收的模拟测试信号可包括指示IC老化特征、工艺、设备特征等信息。因此,这可有效地使MCC 105成为集线器,以用于接收来自多种不同源的原始模拟数据以及用于提供相应数字数据以供进一步处理和/或分析。这使得能够在IC(或通过模拟总线提供信息的外部电路)上执行广泛的调试和测试。
精密ADC 311可将由多路复用器所接收的任何信号转换为数字格式,并将其输出到计量金参考中心外部的目的地。目的地可在芯片上(例如,如图1所示的服务处理器111)、芯片外(例如,ATE),或为这两种情况。
参考单元300还包括温度前端(TFE)电路309。TFE电路309是被配置为生成高精度温度测量的模拟电路。本示例中所示的拓扑结构包括可随温度改变其输出的电流源以及二极管。但是实际上,能够生成精密温度读数的任何类型的电路都可落入本公开的范围内。由TFE电路309生成的读数可经由多路复用器329输入到精密ADC 311中,并转换为数字格式。可将所得数据与由参考传感器121获得的温度数据相关联,以用于对其进行校准和多项式表征。
除了将模拟信号提供给ADC的输入之外,多路复用器还可将模拟信号提供给适于耦接到外部设备的接口。例如,从多路复用器输出的模拟信号可被提供给自动测试设备或其他实验室设备。这可为从ADC输出的数字值与产生它们的相应模拟信号之间的比较提供有用的参考和依据。在该具体示例中,从多路复用器329输出的电压被提供给外部模拟电压测量单元323。可将由模拟电压测量单元取得的测量与从精密ADC 311数字输出的那些测量进行比较,以确定后者的准确度。
图12是示出了在IC上实现的APM 125的一个实施方案的框图。该具体实施方案还示出了相对于上文参考图11所讨论的实施方案的DAC 306和LDO稳压器307的单独实例。然而,利用图11的实施方案中所示的DAC 306和LDO稳压器307的实例的实施方案是可能的和可设想的。
APM 125还包括单独的DAC,此处标记为DAC 336。DAC 336可接收与待被驱动到对应耦接的晶体管上的期望的栅极电压对应的数字输入。晶体管在此处被示为DUT(待测设备)331。取决于具体实施方案,可选择作为DUT 331的晶体管可实际上包括IC上的任何(或全部)晶体管。一般而言,包括在IC上实现的那些晶体管的至少一个子组的多个晶体管可被选择为DUT 331(为了简单起见,此处未示出选择电路,但暗示了它的存在)。除了其他晶体管之外,晶体管中特定的一个可被选择为DUT 331。该布置可允许在DUT 331的栅极上施加精确的电压,该DUT在此处也示为耦接到可变电阻器327。在该布置中,可经由电阻可变的电阻器327两端的电压来测量穿过被选定为DUT 331的晶体管的漏极-源极电流。继而能够测量作为栅极电压函数的源极-漏极电流。使用该值,可导出与DUT 331相关的其他值,诸如跨导、输出阻抗等。这些值可反映在可变电阻器327两端的电压中(鉴于施加到栅极的电压)。电阻器两端的电压被输入到精密ADC 311(其在一个实施方案中可以是如上文所讨论的低速高分辨率ΣΔADC)中,并且作为数字输出被提供以供进一步处理和分析。所示的布置允许APM 125以非常小的附加开销产生可与其连接的任何晶体管的模拟特征。因此,由于APM125被配置为在选定的单独设备上操作,因此可获得该设备的各个特征。不仅在分析IC的各个器件时而且在分析总体过程、电压和温度变化以及其他因素诸如老化时,这都可提供显著粒度。此外,这种布置可允许同样以高粒度对IC上各个电路的参数进行校准。
现在转向图13,其示出了在IC上实现的模拟测试中心126的一个实施方案的框图。在所示的实施方案中,模拟测试中心126包括具有三个输入的多路复用器329。第一输入来自温度感测前端(TFE)电路309。TFE电路309是可用任何合适的电路拓扑结构实现的极高精度温度传感器。第二输入来自APM 125诸如上文参考图12所讨论的APM的实施方案。第三输入来自模拟总线,该模拟总线被耦接以传送来自整个系统中的其他模拟测量系统单元(其可在同一IC上、在其外部的电路上或在它们的某个组合上实现)的模拟测试信号。多路复用器的输出耦接到低速高分辨率ADC 311,诸如上文所讨论的ΣΔADC。因此,温度数据(来自TFE电路309)、单个晶体管数据(来自APM 125)或其他模拟测量信号可被转换为数字格式并输出到其他数字电路以供进一步处理和分析。由于ADC 311的分辨率和模拟电路(诸如,温度感测前端)的精度,可提供高精度数据。这继而能够对IC的各种部件,包括分布在所有晶体管和各个晶体管中的传感器进行更好地表征。
一般来讲,ATC 126可提供用于聚合和路由模拟信号并生成相应数字信息的集线器。经由APM 125和其他模拟测量信号,数据可从IC的几乎任何部分提供,并且在一些实施方案中,可从其外部的电路提供。因此,ATC 126可有效地充当端口,关于芯片和/或外部电路的操作的大量信息可从该端口提取。
图14是示出在MCC 105的实施方案中使用的金温度传感器127中的温度感测电路的一个实施方案的示意图。在所示的实施方案中,TFE 309实现电路拓扑结构以将所感测的温度转换为模拟电压。在该具体示例中,使用两个电流源和两个分别耦接的二极管来生成对应于温度的电压差。然而,该拓扑结构是示例性的,并且可实现适于提供高精度读数的任何温度感测电路。差分电压可被提供给可选的ADC接口337,并且随后提供给ADC 341(或者另选地,如上所述,提供给ADC 311)。ADC 341被布置成将模拟电压差转换成被提供给数字后端347的数字信号。可选的数字预校准电路343在此处示出,并且可在数字域中执行任何期望的预校准操作。然后该输出被提供给数字校准引擎345,以用于将输出温度读数校准为所感测的温度。来自数字校准引擎的输出可以是提供给芯片上或芯片外的外部目的地(例如,提供给自动测试设备399)的N位输出。自动测试设备399(或其他外部目的地)也可将反馈提供给数字校准引擎345,以使闭环校准过程具有更高的精度。所感测温度的数字表示可用于形成多项式表征,该多项式表征将所生成的模拟电压定义为温度的函数。
此处需注意,温度感测操作的模拟部分与数字部分之间的功能的划分是示例性的,并且不一定适用于落入本公开范围内的所有实施方案。一般来讲,一些实施方案可更多地强调电路的模拟部分,而其他实施方案可更多地强调电路的数字部分。
上文讨论的各种系统和电路可在设计、表征和操作电路方面提供许多优势。在典型的现有技术电路中,模拟设计的固有缺点通常会导致过度设计以进行补偿。这继而可导致IC面积消耗的增加、功耗的增加或两者均增加。上文讨论的电路可通过提供揭示模拟缺点来源的信息来减少或消除对过度设计的需要。基于对缺点来源的理解,可进行测量和相应校准,这样便至少部分地避免了对过度设计的需要,从而允许在实现期望的性能目标的同时更有效地缩放功率和面积。
接下来转向图15,其示出了系统150的一个实施方案的框图。在例示的实施方案中,该系统150包括耦接至外部存储器158的集成电路10的至少一个实例。该集成电路10可包括耦接至外部存储器158的存储器控制器。该集成电路10耦接到一个或多个外围设备154和外部存储器158。还提供了向集成电路10供应供电电压以及向存储器158和/或外围设备154供应一个或多个供电电压的电源156。在一些实施方案中,可包括集成电路10的多于一个实例(并且也可包括多于一个外部存储器158)。
取决于系统150的类型,外围设备154可包括任何期望的电路。例如,在一个实施方案中,系统150可以是移动设备(例如个人数字助理(PDA)、智能电话等),并且外围设备154可包括用于各种类型的无线通信的设备,诸如WiFi、蓝牙、蜂窝、全球定位系统等。外围设备154还可包括附加存储装置,该附加存储装置包括RAM存储装置、固态存储装置或磁盘存储装置。外围设备154可包括用户界面设备诸如显示屏,其包括触摸显示屏或多点触摸显示屏、键盘或其他输入设备、麦克风、扬声器等。在其他实施方案中,系统150可以是任何类型的计算系统(例如,台式个人计算机、膝上型电脑、工作站、平板电脑等)。
外部存储器158可包括任何类型的存储器。例如,外部存储器158可以是SRAM、动态RAM(DRAM)诸如同步DRAM(SDRAM)、双数据速率(DDR、DDR2、DDR3、LPDDR1、LPDDR2等)SDRAM、RAMBUS DRAM等。该外部存储器158可包括供存储器设备安装的一个或多个存储器模块,诸如单列直插存储器模块(SIMM)、双列直插存储器模块(DIMM)等。
虽然注意到以上描述针对传感器120和参考传感器121,但需注意本公开并不旨在排除IC或系统结合本文未讨论的其他类型的传感器。因此,针对“多个传感器”的权利要求语言旨在涵盖具有与参考传感器相同的电路拓扑结构和操作特征的那些传感器,但并不旨在排除也可在同一IC上或同一系统中实现的其他类型的传感器。
一旦充分理解了以上公开,很多变型和修改对于本领域的技术人员而言将变得显而易见。本发明旨在使以下权利要求书被解释为涵盖所有此类变型和修改。

Claims (20)

1.一种集成电路,包括:
多个传感器,所述多个传感器在一个或多个功能电路块中的对应功能电路块中实现;
计量控制电路,所述计量控制电路包括:
参考传感器,所述参考传感器具有与所述多个传感器中的传感器相同的电路拓扑结构;
电压生成电路,所述电压生成电路被配置为在所述计量控制电路中提供已知电压值;
温度感测电路,所述温度感测电路具有与所述参考传感器相同的操作条件集;和
处理电路,所述处理电路被配置为将从所述参考传感器获取的频率值与从所述电压生成电路接收的一个或多个电压和由所述温度感测电路感测的一个或多个温度相关联,并且其中所述处理电路被进一步配置为基于所述关联来从所述多个传感器中的传感器获取的频率信息中得到相应的电压读数和温度读数。
2.根据权利要求1所述的集成电路,其中所述处理电路被配置为将频率信息与从所述电压生成电路和所述温度感测电路接收的读数相关联,其中所述频率值是从所述参考传感器的一个或多个环形振荡器接收的。
3.根据权利要求2所述的集成电路,其中所述处理电路被配置为基于将从所述参考传感器的所述一个或多个环形振荡器接收的所述频率信息与从所述电压生成电路和所述温度感测电路接收的所述读数相关联来为所述多个传感器中的所述传感器产生操作的相应数学模型,其中所述数学模型用于从获取自所述多个传感器中的传感器的所述频率信息得到相应的电压读数和温度读数。
4.根据权利要求1所述的集成电路,其中所述功能电路块中的给定一个功能电路块被耦接到局部电压源,所述局部电压源被配置为向所述多个传感器中的在所述给定功能电路块中实现的传感器提供局部电压。
5.根据权利要求1所述的集成电路,其中所述电压生成电路包括数模转换器DAC,所述DAC被耦接以接收表示期望模拟电压的数字值。
6.根据权利要求5所述的集成电路,其中所述电压生成电路还包括低压差LDO稳压器,所述LDO稳压器被耦接以接收来自所述DAC的模拟电压,其中所述LDO稳压器被耦接以将所述已知电压提供给所述参考传感器。
7.根据权利要求5所述的集成电路,其中所述DAC被耦接以接收来自多路复用器的数字值,其中所述多路复用器被耦接以接收来自在所述计量控制电路中实现的带隙电路的第一数字值和来自所述集成电路外部的源的第二数字值。
8.根据权利要求1所述的集成电路,其中所述计量控制电路还包括模拟过程监测电路,所述模拟过程监测电路被配置为确定在所述集成电路上实现的多个晶体管的至少一个子组的操作特征,其中所述模拟过程监测电路被耦接以接收来自所述电压生成电路的输入电压。
9.根据权利要求8所述的集成电路,其中所述模拟过程监测电路包括数模转换器DAC,所述DAC被配置为将基于数字输入值的期望电压提供给选定晶体管的栅极端子。
10.根据权利要求9所述的集成电路,其中所述模拟过程监测电路包括可变电阻器,所述可变电阻器被配置为调整存在于选定晶体管的端子上的第一电压,其中所述可变电阻器耦接到第一Σ-Δ模数转换器ΣΔADC,使得在所述可变电阻器两端生成的第二电压被输入到所述第一ΣΔADC中,所述第二电压与穿过所述选定晶体管的漏极-源极电流成比例。
11.根据权利要求8所述的集成电路,还包括多路复用器,所述多路复用器具有被耦接以从所述模拟过程监测电路接收第一模拟电压的第一输入、被耦接以从温度前端电路接收第二模拟电压的第二输入以及被耦接以从所述计量控制电路外部的一个或多个对应源接收相应模拟信号的一个或多个附加输入。
12.根据权利要求11所述的集成电路,还包括第二Σ-ΔADC电路,所述第二Σ-ΔADC电路被耦接以从所述多路复用器接收选定模拟信号并且生成表示所述多路复用器的选定输入的特征的对应数字信号表示。
13.一种方法,包括:
在集成电路上实现的控制电路处接收来自参考传感器的第一多个频率读数;
由所述控制电路将所述第一多个频率读数与以下项相关联:
从所述控制电路内的局部温度传感器接收的多个温度值;以及
从所述控制电路内的局部电压生成电路接收的多个已知电压值;
由所述控制电路接收来自在所述集成电路中实现的在所述控制电路外的特定传感器的第二多个频率读数,其中所述参考传感器和所述特定传感器具有相同的电路拓扑结构;以及
由所述控制电路基于从所述第一多个频率读数的所述关联获取的频率、电压和温度的关联值来确定针对所述特定传感器的感测电压值和感测温度值。
14.根据权利要求13所述的方法,还包括:
所述处理电路基于所述关联产生描述针对所述参考传感器和所述特定传感器的电压、温度和频率之间的关系的特征多项式;以及
通过将所述第二多个频率读数应用到所述特征多项式来确定所述感测电压值和所述感测温度值。
15.根据权利要求13所述的方法,其中所述参考传感器和所述特定传感器的相同的电路拓扑结构包括具有第一电路配置的第一环形振荡器、具有不同的第二电路配置的第二环形振荡器以及寄存器,所述寄存器被配置为接收和存储由第一环形振荡器和第二环形振荡器生成的频率信息。
16.一种系统,包括:
处理电路,所述处理电路耦接以接收来自集成电路中的特定传感器的频率读数;
参考传感器,所述参考传感器是所述特定传感器的复制;
电压生成器,所述电压生成器被配置为向所述参考传感器提供已知电压;以及
温度传感器,所述温度传感器具有与所述参考传感器相同的操作条件;
其中,所述处理电路被配置为通过将来自所述参考传感器的频率信息与以下项相关联来生成关联信息:
来自所述电压生成器的所述已知电压的一个或多个值;以及
由所述温度传感器感测的一个或多个温度;以及
其中,所述处理电路被配置为使用所述频率读数和所述关联信息确定所述特定传感器的温度值和电压值。
17.根据权利要求16所述的系统,其中所述关联信息包括指示来自所述参考传感器的至少一个环形振荡器的电压、温度和频率之间的关系的特征多项式,并且其中所述处理电路被进一步配置为通过将所述频率读数应用到所述特征多项式来确定所述特定传感器的所述温度值和所述电压值。
18.根据权利要求16所述的系统,其中所述参考传感器包括第一环形振荡器和第二环形振荡器,所述第一环形振荡器具有第一组操作特征,所述第二环形振荡器具有不同的第二组操作特征,并且其中,所述频率信息包括由所述第一环形振荡器生成的至少一个频率和由所述第二环形振荡器生成的至少一个频率。
19.根据权利要求16所述的系统,其中所述特定传感器是在所述集成电路的一个或多个功能电路块的给定一个功能电路块中实现的,其中所述功能电路被耦接到局部电压源,所述局部电压源被配置为向在所述一个或多个功能电路块的所述给定一个功能电路块中实现的一个或多个传感器的传感器中提供局部电压,所述一个或多个传感器包括所述特定传感器。
20.根据权利要求16所述的系统,其中所述特定传感器是经由串行测试总线耦接的多个传感器中的一部分,所述串行测试总线被配置为从所述多个传感器向包括所述参考传感器、所述电压生成器和所述温度传感器的计量控制电路传送频率信息。
CN202110659141.4A 2016-01-08 2017-01-04 用于计量系统的参考电路 Pending CN113358999A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662276635P 2016-01-08 2016-01-08
US62/276,635 2016-01-08
US15/272,941 2016-09-22
US15/272,941 US10527503B2 (en) 2016-01-08 2016-09-22 Reference circuit for metrology system
CN201780005894.5A CN108474820B (zh) 2016-01-08 2017-01-04 用于计量系统的参考电路

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780005894.5A Division CN108474820B (zh) 2016-01-08 2017-01-04 用于计量系统的参考电路

Publications (1)

Publication Number Publication Date
CN113358999A true CN113358999A (zh) 2021-09-07

Family

ID=57861287

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202110659141.4A Pending CN113358999A (zh) 2016-01-08 2017-01-04 用于计量系统的参考电路
CN201780005894.5A Active CN108474820B (zh) 2016-01-08 2017-01-04 用于计量系统的参考电路

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201780005894.5A Active CN108474820B (zh) 2016-01-08 2017-01-04 用于计量系统的参考电路

Country Status (6)

Country Link
US (2) US10527503B2 (zh)
EP (1) EP3400453A1 (zh)
JP (1) JP6676188B2 (zh)
KR (2) KR102179316B1 (zh)
CN (2) CN113358999A (zh)
WO (1) WO2017120242A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088857B1 (en) 2017-09-26 2018-10-02 Apple Inc. Highly granular voltage regulator
IL306080A (en) 2017-11-15 2023-11-01 Proteantecs Ltd Device margin measurement and integrated circuit failure prediction
EP3714280B1 (en) 2017-11-23 2024-04-17 Proteantecs Ltd. Integrated circuit pad failure detection
US11408932B2 (en) 2018-01-08 2022-08-09 Proteantecs Ltd. Integrated circuit workload, temperature and/or subthreshold leakage sensor
US11740281B2 (en) 2018-01-08 2023-08-29 Proteantecs Ltd. Integrated circuit degradation estimation and time-of-failure prediction using workload and margin sensing
TWI828676B (zh) 2018-04-16 2024-01-11 以色列商普騰泰克斯有限公司 用於積體電路剖析及異常檢測之方法和相關的電腦程式產品
TWI796494B (zh) 2018-06-19 2023-03-21 以色列商普騰泰克斯有限公司 高效積體電路模擬及測試
JP7419380B2 (ja) 2018-12-30 2024-01-22 プロテアンテックス リミテッド 集積回路i/oの完全性および劣化監視
US20220268644A1 (en) * 2019-07-29 2022-08-25 Proteantecs Ltd. On-die thermal sensing network for integrated circuits
US11114352B2 (en) * 2019-08-25 2021-09-07 Birad—Research & Development Company Ltd. Process monitor circuitry with measurement capability
CN110542849B (zh) * 2019-09-16 2021-11-05 广州粒子微电子有限公司 全mos电压及温度监测方法及电路
WO2021111444A1 (en) 2019-12-04 2021-06-10 Proteantecs Ltd. Memory device degradation monitoring
US11616841B2 (en) * 2020-02-07 2023-03-28 Taiwan Semiconductor Manufacturing Company Limited Remote mapping of circuit speed variation due to process, voltage and temperature using a network of digital sensors
US11258447B2 (en) 2020-02-20 2022-02-22 Apple Inc. Integration of analog circuits inside digital blocks
IL297427A (en) 2020-04-20 2022-12-01 Proteantecs Ltd Inter-chip connectivity monitoring
CN117355755A (zh) * 2021-06-16 2024-01-05 索尼半导体解决方案公司 具有电压监测电路的图像传感器
US11619551B1 (en) 2022-01-27 2023-04-04 Proteantecs Ltd. Thermal sensor for integrated circuit
CN116611378A (zh) * 2022-02-08 2023-08-18 长鑫存储技术有限公司 电路模型的仿真模拟方法及装置、计算机设备和存储介质
US11815551B1 (en) 2022-06-07 2023-11-14 Proteantecs Ltd. Die-to-die connectivity monitoring using a clocked receiver
CN116087756B (zh) * 2023-03-06 2023-06-23 瀚博半导体(上海)有限公司 基于数字环形振荡器的芯片电压检测方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643586A (en) * 1983-01-12 1987-02-17 Hansen Jens S Equipment and method for calibration of instruments having a temperature sensing unit
US20060238267A1 (en) * 2005-04-20 2006-10-26 Advanced Micro Devices, Inc. Zoned thermal monitoring
US20070081575A1 (en) * 2005-10-07 2007-04-12 Advanced Micro Devices, Inc. Method and apparatus for temperature sensing in integrated circuits
CN1950716A (zh) * 2004-03-04 2007-04-18 爱特梅尔股份有限公司 使用片上传感器和计算装置的集成电路片温度补偿方法和装置
US20080151966A1 (en) * 2006-05-03 2008-06-26 International Business Machines Corporation Design structure for bolometric on-chip temperature sensor

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06169237A (ja) * 1991-09-13 1994-06-14 Mitsubishi Electric Corp リングオシレータ回路
US5349311A (en) * 1992-11-23 1994-09-20 National Semiconductor Corporation Current starved inverter voltage controlled oscillator
US5994970A (en) * 1998-03-23 1999-11-30 Dallas Semiconductor Corporation Temperature compensated crystal oscillator
GB2368064B (en) * 2000-09-30 2002-11-13 Imp Cancer Res Tech DNA Element and Associated Protein
US6695475B2 (en) * 2001-05-31 2004-02-24 Stmicroelectronics, Inc. Temperature sensing circuit and method
US6850125B2 (en) 2001-08-15 2005-02-01 Gallitzin Allegheny Llc Systems and methods for self-calibration
US6893154B2 (en) * 2002-02-19 2005-05-17 Sun Microsystems, Inc. Integrated temperature sensor
US7148763B2 (en) * 2002-10-15 2006-12-12 Marvell World Trade Ltd. Integrated circuit including processor and crystal oscillator emulator
US8437720B2 (en) 2002-12-02 2013-05-07 Broadcom Corporation Variable-gain low noise amplifier for digital terrestrial applications
US7044633B2 (en) * 2003-01-09 2006-05-16 International Business Machines Corporation Method to calibrate a chip with multiple temperature sensitive ring oscillators by calibrating only TSRO
US6995622B2 (en) * 2004-01-09 2006-02-07 Robert Bosh Gmbh Frequency and/or phase compensated microelectromechanical oscillator
US7375642B2 (en) * 2004-08-24 2008-05-20 Wagner Alarm- Und Sicherungssysteme Gmbh Method and device for identifying and localizing a fire
US7594149B2 (en) 2005-02-22 2009-09-22 Integrated Device Technology, Inc. In-situ monitor of process and device parameters in integrated circuits
US20060259840A1 (en) 2005-05-12 2006-11-16 International Business Machines Corporation Self-test circuitry to determine minimum operating voltage
WO2006135977A1 (en) * 2005-06-24 2006-12-28 Carl Peter Renneberg A circuit and method for fitting the output of a sensor to a predetermined linear relationship
WO2007080527A2 (en) 2006-01-09 2007-07-19 Nxp B.V. Testable integrated circuit and ic test method
CN1937410B (zh) * 2006-08-17 2010-05-12 复旦大学 一种自适应工艺和温度补偿的高频环振型锁相环电路
JP2008076197A (ja) 2006-09-20 2008-04-03 Eastman Kodak Co 試験装置
KR100857436B1 (ko) 2007-01-24 2008-09-10 주식회사 하이닉스반도체 Dll 회로 및 그 제어 방법
US8310265B2 (en) 2007-05-02 2012-11-13 Nxp B.V. IC testing methods and apparatus
US20090285261A1 (en) * 2008-05-17 2009-11-19 Lsi Corporation Integrated Circuit System Monitor
US20100073068A1 (en) * 2008-09-22 2010-03-25 Hanwoo Cho Functional block level thermal control
JP2010091443A (ja) 2008-10-09 2010-04-22 Shinko Electric Ind Co Ltd 温度測定用半導体装置、半導体装置の温度測定システムおよび半導体装置の温度測定方法
US8183910B2 (en) 2008-11-17 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Circuit and method for a digital process monitor
US8529126B2 (en) * 2009-06-11 2013-09-10 Rosemount Inc. Online calibration of a temperature measurement point
GB2506538B (en) 2009-07-28 2014-07-02 Skyworks Solutions Inc Process, voltage and temperature sensor
CN201536362U (zh) * 2009-09-19 2010-07-28 无锡爱睿芯电子有限公司 温度感应振荡器以及温度频率校正系统
US8154353B2 (en) * 2009-11-03 2012-04-10 Arm Limited Operating parameter monitor for an integrated circuit
CA2692097A1 (en) 2010-02-04 2011-08-04 Ignis Innovation Inc. Extracting correlation curves for light emitting device
TW201140308A (en) 2010-03-15 2011-11-16 Kyushu Inst Technology Semiconductor device, detection method, and program
US8400091B2 (en) 2010-03-19 2013-03-19 Renesas Electronics America Inc. Voltage regulator and cooling control integrated circuit
US8340941B2 (en) * 2010-06-04 2012-12-25 Tyco Electronics Corporation Temperature measurement system for a light emitting diode (LED) assembly
US8248167B2 (en) * 2010-06-28 2012-08-21 Mstar Semiconductor, Inc. VCO frequency temperature compensation system for PLLs
US8793512B2 (en) * 2010-10-29 2014-07-29 Advanced Micro Devices, Inc. Method and apparatus for thermal control of processing nodes
US8970234B2 (en) * 2011-09-26 2015-03-03 Apple Inc. Threshold-based temperature-dependent power/thermal management with temperature sensor calibration
US9658118B2 (en) * 2012-11-16 2017-05-23 Linear Technology Corporation Precision temperature measurement devices, sensors, and methods
US20140159801A1 (en) * 2012-12-12 2014-06-12 Texas Instruments Incorporated Performance Adaptive Voltage Scaling with Performance Tracking Sensor
US9176089B2 (en) 2013-03-29 2015-11-03 Stmicroelectronics Pte Ltd. Integrated multi-sensor module
US9201436B2 (en) * 2013-07-22 2015-12-01 Entropic Communications, Llc Adaptive LDO regulator system and method
CN103441760A (zh) * 2013-09-10 2013-12-11 灿芯半导体(上海)有限公司 一种高精度环形振荡器及其频率校准电路和频率校准方法
US9442025B2 (en) 2013-10-30 2016-09-13 Apple Inc. System and method for calibrating temperatures sensor for integrated circuits
US10379155B2 (en) 2014-10-02 2019-08-13 Xilinx, Inc. In-die transistor characterization in an IC
CN204831597U (zh) * 2015-07-22 2015-12-02 苏州市灵矽微系统有限公司 片上集成温度传感器电路
US9720033B2 (en) * 2015-09-29 2017-08-01 Apple Inc. On-chip parameter measurement
DE102016117754B4 (de) * 2016-09-21 2019-03-21 Netzsch-Gerätebau GmbH Verfahren zum Kalibrieren einer Vorrichtung zur thermischen Analyse von Proben
US10768057B2 (en) * 2017-03-30 2020-09-08 Oracle International Corporation Statistical temperature sensor calibration apparatus and methodology
US10459478B1 (en) * 2018-04-13 2019-10-29 Apple Inc. Digital sensor with embedded reference clock

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643586A (en) * 1983-01-12 1987-02-17 Hansen Jens S Equipment and method for calibration of instruments having a temperature sensing unit
CN1950716A (zh) * 2004-03-04 2007-04-18 爱特梅尔股份有限公司 使用片上传感器和计算装置的集成电路片温度补偿方法和装置
US20060238267A1 (en) * 2005-04-20 2006-10-26 Advanced Micro Devices, Inc. Zoned thermal monitoring
US20070081575A1 (en) * 2005-10-07 2007-04-12 Advanced Micro Devices, Inc. Method and apparatus for temperature sensing in integrated circuits
US20080151966A1 (en) * 2006-05-03 2008-06-26 International Business Machines Corporation Design structure for bolometric on-chip temperature sensor

Also Published As

Publication number Publication date
CN108474820A (zh) 2018-08-31
EP3400453A1 (en) 2018-11-14
CN108474820B (zh) 2021-06-22
JP6676188B2 (ja) 2020-04-08
KR20180095658A (ko) 2018-08-27
US11022503B2 (en) 2021-06-01
US20170199089A1 (en) 2017-07-13
WO2017120242A1 (en) 2017-07-13
KR102070675B1 (ko) 2020-01-29
KR102179316B1 (ko) 2020-11-16
US10527503B2 (en) 2020-01-07
JP2019502935A (ja) 2019-01-31
KR20200011558A (ko) 2020-02-03
US20200217729A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
CN108474820B (zh) 用于计量系统的参考电路
KR101999076B1 (ko) 온칩 파라미터 측정
CN108475101B (zh) 数字欠压检测和控制的方法和装置
US7714635B2 (en) Digital adaptive voltage supply
US20220343048A1 (en) Determination of unknown bias and device parameters of integrated circuits by measurement and simulation
CN114430803A (zh) 用于集成电路的管芯上热感测网络
US7542862B2 (en) Calibration of multi-metric sensitive delay measurement circuits
US20130144549A1 (en) Method for calibrating temperature sensors using reference voltages
KR20150027414A (ko) 온도에 따른 교정 기능을 가지는 온도 센서, 이의 동작 방법 및 상기 온도 센서를 포함하는 장치
US9323274B2 (en) Self-calibrating digital bandgap voltage and current reference
US10296025B2 (en) Apparatus for electric current measurement or calibration and associated methods
JP2011089950A (ja) 半導体集積回路およびその動作方法
CN109974877B (zh) 一种温度传感器及芯片
Chung et al. An all-digital voltage sensor for static voltage drop measurements
Cochet et al. Body-Bias Calibration Based Temperature Sensor
WO2023144817A1 (en) Thermal sensor for integrated circuit
CN115152146A (zh) 数字块内部的模拟电路集成

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination