CN113328112A - 用于聚合物电解质膜燃料电池气体扩散层的基体材料 - Google Patents

用于聚合物电解质膜燃料电池气体扩散层的基体材料 Download PDF

Info

Publication number
CN113328112A
CN113328112A CN202110523962.5A CN202110523962A CN113328112A CN 113328112 A CN113328112 A CN 113328112A CN 202110523962 A CN202110523962 A CN 202110523962A CN 113328112 A CN113328112 A CN 113328112A
Authority
CN
China
Prior art keywords
metal
diffusion layer
gas diffusion
base material
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110523962.5A
Other languages
English (en)
Other versions
CN113328112B (zh
Inventor
钟发平
肖进春
李建奇
符长平
黄小兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Engineering Research Center of Advanced Energy Storage Materials Shenzhen Co Ltd
Original Assignee
National Engineering Research Center of Advanced Energy Storage Materials Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Engineering Research Center of Advanced Energy Storage Materials Shenzhen Co Ltd filed Critical National Engineering Research Center of Advanced Energy Storage Materials Shenzhen Co Ltd
Priority to CN202110523962.5A priority Critical patent/CN113328112B/zh
Priority to US17/341,266 priority patent/US11264619B1/en
Publication of CN113328112A publication Critical patent/CN113328112A/zh
Application granted granted Critical
Publication of CN113328112B publication Critical patent/CN113328112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明提供了一种用于聚合物电解质膜燃料电池气体扩散层的基体材料,由六边形的小室相互连接的三维多孔且呈带状,六条边的肋条由两层金属层构成,从内向外是金属镍‑‑‑金属镍和钨的合金,每平方米材料中金属的总质量为:1500~3000克,材料中金属镍的质量含量为88~92%,金属钨的质量含量为8~12%,其余为杂质;基体材料的厚度0.1~0.2mm,比表面积为(1~2)×105㎡/m3;纵向透气率≥2000m/mm/(cm2hmmAq),纵向导热系数≥1.7W/(m·k),横向导热系数≥21W/(m·k)。本发明的这种多孔镍钨金属材料作为气体扩散层的基体材料,较碳纸,具有电阻小且强度高的优势,且具有高比表面积,导热性能和气体透过率性能优异;采用本发明的基体材料制备的气体扩散层可有效对抗因电化学反应对扩散层带来的电化学腐蚀,且具有较优的抗氧化性能。

Description

用于聚合物电解质膜燃料电池气体扩散层的基体材料
技术领域
本发明涉及一种用于聚合物电解质膜燃料电池的材料,特别涉及一种用于聚合物电解质膜燃料电池气体扩散层的基体材料。
背景技术
聚合物电解质膜燃料电池气体扩散层的基体材料普遍采用碳纤维纸或碳纤维布,而碳纤维布和碳纤维纸的特点是轻和孔隙率大,主要被日本东丽、加拿大巴拉德等厂商垄断。但是碳纤维纸、碳纤维布导热性、电阻、强度等性能仍不能满足聚合物电解质膜燃料电池性能不断提高要求,需要寻求一种适合材料来替代碳纤维纸或碳纤维布。
发明内容
本发明旨在提供一种可显著改善导热性和强度性能的聚合物电解质膜燃料电池气体扩散层的基体材料。本发明通过以下方案实现:
一种用于聚合物电解质膜燃料电池气体扩散层的基体材料,由六边形的小室相互连接的三维多孔且呈带状,六条边的肋条由两层金属层构成,从内向外是金属镍---金属镍和钨的合金,每平方米材料中金属的总质量为:1500-3000克,材料中金属镍的质量含量为88~92%,金属钨的质量含量为8~12%,其余为杂质;基体材料的厚度0.1~0.2mm,比表面积为(1~2)×105㎡/m3;0<材料的纵向电阻率≤55mΩ·cm,0<材料的压片电阻率≤4mΩ·cm,0<材料的接触式电阻≤5mΩ·cm;材料的拉伸强度≥25Mpa。
所述基体材料的纵向透气率≥2000m/mm/(cm2hmmAq),纵向导热系数≥1.7W/(m·k),横向导热系数≥21W/(m·k)。所谓纵向是指与带状材料表面垂直的方向,横向是指与与带状材料表面平行的方向。
将材料作为正极,甘汞电极作为负极,以氯化钠水溶液为电解液,使用1.45V外加电位处理75h,材料的重量损失率≤5%。
将材料置于4%的H2O2中浸泡160h再经干燥达到恒重后,材料的重量损失率≤5%。
基体材料的制备方法如下:首先将现有多孔镍带材碾压,再置于电镀镍液中,电镀镍可采用现有技术中的瓦特电镀镍液等,以该多孔镍带材为阳极、镍金属为阴极进行电解处理10~60min,其中电镀镍液的温度为30℃,电镀电流密度为10~30A/m2;之后再将经上述电解处理的多孔镍带材于带有还原气氛的800~1000℃环境中热处理一定时间,此时间的依据为每平方米材料处理10~20分钟,经热处理后的多孔镍带材采用现有的复合电镀钨工艺电镀覆钨,之后,再于带有还原气氛的800~1000℃环境中热处理一定时间,此时间的依据为每平方米材料处理10~60分钟,最后再经热处理后的多孔镍钨金属带材碾压至0.1~0.2mm。
一种用于聚合物电解质膜燃料电池气体扩散层,在上述的基体材料的一面覆盖有包含碳粉的微孔层。使用上述基体材料替换现有技术中的碳纸,采用现有的气体扩散层的制备工艺,可制得这种用于聚合物电解质膜燃料电池气体扩散层。
与现有技术相比,本发明的优点在于:
1、本发明的这种多孔镍钨金属材料作为气体扩散层的基体材料,较碳纸,具有电阻小且强度高的优势。
2、本发明的这种多孔镍钨金属材料孔隙率可达75%以上,具有高比表面积,导热性能和气体透过率性能优异,适合用于作为气体扩散层的基体材料。
3、本发明的这种多孔镍钨金属材料,其金属镍和金属钨的含量以及具有的金属分两层的这种内部结构,使得材料具有较佳的抗电腐蚀性能,在用于制备成气体扩散层后,由于扩散层与燃料电池的电极紧密相接,可有效对抗因电化学反应对扩散层带来的电化学腐蚀。
4、由于气体扩散层主要用于氢气和氧气的通过,在燃料电池的使用过程中,为延长使用寿命,也需要气体扩散层具有良好的抗氧化性能,本发明的这种特定金属镍和金属钨的含量以及具有的金属分层的这种内部结构的基体材料也具备较优的抗氧化性能。
附图说明
图1实施例2材料的扫描电镜图
具体实施方式
实施例1
首先将厚度为1.0mm的每平方米金属镍为2650克的多孔镍带材碾压至0.5mm,之后将其置于瓦特电镀镍液中,以该多孔镍带材为阳极、镍金属为阴极进行电解处理35min,其中电镀镍液的温度为30℃,电镀电流密度为30A/m2;之后再将经上述电解处理的多孔镍带材于带有还原气氛的800~1000℃环境中热处理一定时间,此时间的依据为每平方米材料处理15分钟,经热处理后的多孔镍带材,置于如下复合电镀钨液中电镀时间为15min;再于带有还原气氛的900℃环境中热处理一定时间,此时间的依据为每平米材料处理40分钟;最后再经热处理后的多孔镍钨金属带材碾压至0.1mm。上述采用的复合电镀钨液为:钨酸钠的浓度为80g/L,柠檬酸三胺的浓度为30g/L,硫酸镍的浓度为50g/L,电镀钨液的pH值控制为6.5,温度为55℃,电镀电流密度为25A/dm2
实施例2
采用实施例1方法制备得到一种用于聚合物电解质膜燃料电池气体扩散层的基体材料,扫描电镜如图1所示,由六边形的小室1相互连接的三维多孔且呈带状,六条边的肋条2由两层金属层构成,从内向外是金属镍---金属镍和钨的合金。每平方米材料中金属的总质量为:1670克,材料中金属镍的质量含量为89%,金属钨的质量含量为10.5%,其余为杂质;基体材料的厚度0.1mm,比表面积为1.5×105㎡/m3;材料的孔隙率为82%,纵向透气率2300m/mm/(cm2hmmAq),纵向电阻率为30mΩ·cm,压片电阻率为2.1mΩ·cm,接触式电阻率为3mΩ·cm;材料的拉伸强度为75Mpa;材料的纵向导热系数为1.95W/(m·k),横向导热系数为23W/(m·k)。将上述材料作为正极,甘汞电极作为负极,以氯化钠水溶液为电解液,使用1.45V外加电位处理75h,材料的重量损失率为3.5%。将材料置于4%的H2O2中浸泡160h再经干燥达到恒重后,材料的重量损失率为3.85%。
实施例3
首先将厚度为1.0mm的每平方米金属镍为2400克的多孔镍带材碾压至0.5mm,之后将其置于瓦特电镀镍液中,以该多孔镍带材为阳极、镍金属为阴极进行电解处理45min,其中电镀镍液的温度为30℃,电镀电流密度为25A/m2;之后再将经上述电解处理的多孔镍带材于带有还原气氛的800℃环境中热处理一定时间,此时间的依据为每平方米材料处理55分钟,经热处理后的多孔镍带材,置于如下电镀钨液中电镀时间为10min;再于带有还原气氛的1000℃环境中热处理一定时间,此时间的依据为每平米材料处理10分钟;最后再经热处理后的多孔镍钨金属带材碾压至0.1mm。上述采用的电镀钨液为:钨酸钠的浓度为80g/L,柠檬酸三胺的浓度为30g/L,电镀钨液的pH值控制为6.5,温度为55℃,电镀电流密度为20A/dm2
实施例4
采用实施例3方法制备得到一种用于聚合物电解质膜燃料电池气体扩散层的基体材料,扫描电镜如图1所示,由六边形的小室1相互连接的三维多孔且呈带状,六条边的肋条2由两层金属层构成,从内向外是金属镍---金属镍和钨的合金。每平方米材料中金属的总质量为:2270克,材料中金属镍的质量含量为91%,金属钨的质量含量为8.9%,其余为杂质;基体材料的厚度0.2mm,比表面积为1.87×105㎡/m3;材料的孔隙率为85%,纵向透气率2480m/mm/(cm2hmmAq),纵向电阻率为36mΩ·cm,压片电阻率为3.1mΩ·cm,接触式电阻率为3.6mΩ·cm,材料的拉伸强度为65Mpa;材料的纵向导热系数为2.1W/(m·k),横向导热系数为25W/(m·k)。将上述材料作为正极,甘汞电极作为负极,以氯化钠水溶液为电解液,使用1.45V外加电位处理75h,材料的重量损失率为4%。将材料置于4%的H2O2中浸泡160h再经干燥达到恒重后,材料的重量损失率为3.2%。

Claims (5)

1.一种用于聚合物电解质膜燃料电池气体扩散层的基体材料,其特征在于:由六边形的小室相互连接的三维多孔且呈带状,六条边的肋条由两层金属层构成,从内向外分别是金属镍---金属镍和钨的合金,每平方米材料中金属的总质量为:1500~3000克,其中金属镍的质量含量为88~92%,金属钨的质量含量为8~12%,其余为杂质;基体材料的厚度0.1~0.2mm,比表面积为(1~2)×105㎡/m3;0<材料的纵向电阻率≤55mΩ·cm,0<材料的压片电阻率≤4mΩ·cm,0<材料的接触式电阻≤5mΩ·cm;材料的拉伸强度≥25Mpa。
2.如权利要求1所述的用于聚合物电解质膜燃料电池气体扩散层的基体材料,其特征在于:材料的纵向透气率≥2000m/mm/(cm2hmmAq),纵向导热系数≥1.7W/(m·k),横向导热系数≥21W/(m·k)。
3.如权利要求1或2所述的用于聚合物电解质膜燃料电池气体扩散层的基体材料,其特征在于:将材料作为正极,甘汞电极作为负极,以氯化钠水溶液为电解液,使用1.45V外加电位处理75h,材料的重量损失率≤5%。
4.如权利要求1或2所述的用于聚合物电解质膜燃料电池气体扩散层的基体材料,其特征在于:将材料置于4%的H2O2中浸泡160h再经干燥达到恒重后,材料的重量损失率≤5%。
5.如权利要求3所述的用于聚合物电解质膜燃料电池气体扩散层的基体材料,其特征在于:将材料置于4%的H2O2中浸泡160h再经干燥达到恒重后,材料的重量损失率≤5%。
CN202110523962.5A 2021-05-13 2021-05-13 用于聚合物电解质膜燃料电池气体扩散层的基体材料 Active CN113328112B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110523962.5A CN113328112B (zh) 2021-05-13 2021-05-13 用于聚合物电解质膜燃料电池气体扩散层的基体材料
US17/341,266 US11264619B1 (en) 2021-05-13 2021-06-07 Matrix material for the gas diffusion layer of the polymer electrolyte membrane fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110523962.5A CN113328112B (zh) 2021-05-13 2021-05-13 用于聚合物电解质膜燃料电池气体扩散层的基体材料

Publications (2)

Publication Number Publication Date
CN113328112A true CN113328112A (zh) 2021-08-31
CN113328112B CN113328112B (zh) 2022-10-14

Family

ID=77415547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110523962.5A Active CN113328112B (zh) 2021-05-13 2021-05-13 用于聚合物电解质膜燃料电池气体扩散层的基体材料

Country Status (2)

Country Link
US (1) US11264619B1 (zh)
CN (1) CN113328112B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050370A (ja) * 2000-08-02 2002-02-15 Mitsubishi Materials Corp 固体電解質型燃料電池の集電体
JP2005285599A (ja) * 2004-03-30 2005-10-13 Masayuki Takashima 燃料電池用集電体及びそれを用いた電解質複合体
WO2006003950A1 (ja) * 2004-07-06 2006-01-12 Bridgestone Corporation 複合体、触媒構造体、固体高分子型燃料電池用電極及びその製造方法、並びに固体高分子型燃料電池
CN103249850A (zh) * 2010-12-08 2013-08-14 住友电气工业株式会社 具有高耐腐蚀性的金属多孔体及其制造方法
US20140017582A1 (en) * 2011-04-18 2014-01-16 Toyota Jidosha Kabushiki Kaisha Fuel battery
JP2016171065A (ja) * 2015-03-09 2016-09-23 住友電気工業株式会社 固体高分子型燃料電池用のガス拡散層及び集電体並びに前記ガス拡散層を用いた固体高分子型燃料電池
CN107851814A (zh) * 2015-07-16 2018-03-27 住友电气工业株式会社 燃料电池
KR20190084436A (ko) * 2018-01-08 2019-07-17 한국과학기술연구원 금속 나노와이어가 코팅된 지지층을 포함하는 연료전지용 가스확산층, 이의 제조방법 및 이를 포함하는 플렉서블 고분자 전해질막 연료전지
CN112103515A (zh) * 2020-09-11 2020-12-18 先进储能材料国家工程研究中心有限责任公司 燃料电池气体扩散层及其制备方法
CN112640172A (zh) * 2018-09-05 2021-04-09 住友电气工业株式会社 燃料电池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050370A (ja) * 2000-08-02 2002-02-15 Mitsubishi Materials Corp 固体電解質型燃料電池の集電体
JP2005285599A (ja) * 2004-03-30 2005-10-13 Masayuki Takashima 燃料電池用集電体及びそれを用いた電解質複合体
WO2006003950A1 (ja) * 2004-07-06 2006-01-12 Bridgestone Corporation 複合体、触媒構造体、固体高分子型燃料電池用電極及びその製造方法、並びに固体高分子型燃料電池
CN103249850A (zh) * 2010-12-08 2013-08-14 住友电气工业株式会社 具有高耐腐蚀性的金属多孔体及其制造方法
US20140017582A1 (en) * 2011-04-18 2014-01-16 Toyota Jidosha Kabushiki Kaisha Fuel battery
JP2016171065A (ja) * 2015-03-09 2016-09-23 住友電気工業株式会社 固体高分子型燃料電池用のガス拡散層及び集電体並びに前記ガス拡散層を用いた固体高分子型燃料電池
CN107851814A (zh) * 2015-07-16 2018-03-27 住友电气工业株式会社 燃料电池
KR20190084436A (ko) * 2018-01-08 2019-07-17 한국과학기술연구원 금속 나노와이어가 코팅된 지지층을 포함하는 연료전지용 가스확산층, 이의 제조방법 및 이를 포함하는 플렉서블 고분자 전해질막 연료전지
CN112640172A (zh) * 2018-09-05 2021-04-09 住友电气工业株式会社 燃料电池
CN112103515A (zh) * 2020-09-11 2020-12-18 先进储能材料国家工程研究中心有限责任公司 燃料电池气体扩散层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
钟发平等: ""泡沫镍的制备工艺及性能参数"", 《电池工业》 *

Also Published As

Publication number Publication date
CN113328112B (zh) 2022-10-14
US11264619B1 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
US20200373586A1 (en) Highly corrosion-resistant porous metal body
CN108172850B (zh) 一种析氢电极及其制备和应用
CN103328693B (zh) 具有高耐腐蚀性的多孔金属体及其制造方法
JP4327489B2 (ja) 燃料電池用金属製セパレータおよびその製造方法
TW201139745A (en) Oxygen gas diffusion cathode, electrolytic bath equipped with same, process for production of chlorine gas, and process for production of sodium hydroxide
CN109267117B (zh) 一种多级纳米复合结构的电极材料及其制备方法
CN107785586A (zh) 用于二次金属锂电池负极的三维多孔铜/石墨烯复合集流体
Li et al. Three-dimensional nanoporous gold–cobalt oxide electrode for high-performance electroreduction of hydrogen peroxide in alkaline medium
JP7021669B2 (ja) 金属多孔体、固体酸化物型燃料電池及び金属多孔体の製造方法
WO2017022542A1 (ja) 金属多孔体、燃料電池、及び金属多孔体の製造方法
Liu et al. Three-dimensional hierarchical MoO 2/MoC@ NC-CC free-standing anode applied in microbial fuel cells
CN113328112B (zh) 用于聚合物电解质膜燃料电池气体扩散层的基体材料
CN108172947B (zh) 一种双功能电极及其制备和应用
CN110581279A (zh) 锂离子电池用多孔涂碳铝箔材料的制备方法
US11434547B2 (en) Metal porous material, fuel cell, and method of producing metal porous material
CN113293411B (zh) 一种梯度复合二氧化铅阳极板及其制备方法与应用
CN112064077B (zh) 一种铜箔/碳纳米管/铜箔复合箔的制备方法
CN108336371A (zh) 一种全钒液流电池用双极板
WO2020217668A1 (ja) 金属多孔体、電解用電極、水素製造装置、燃料電池および金属多孔体の製造方法
Zhong et al. Preparation and performance of 3D-Pb anodes for nonferrous metals electrowinning in H2SO4 aqueous solution
KR20200030533A (ko) 금속 다공체, 고체 산화물형 연료 전지 및 금속 다공체의 제조 방법
JP4274737B2 (ja) 燃料電池用金属製セパレータおよびその製造方法
JP3921300B2 (ja) 水素発生装置
EP2644722B1 (en) Method for producing highly corrosion-resistant porous metal body
JP7076693B2 (ja) 金属多孔体、燃料電池及び金属多孔体の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant