CN1132918A - 高品质因数集成电感器 - Google Patents

高品质因数集成电感器 Download PDF

Info

Publication number
CN1132918A
CN1132918A CN95120205A CN95120205A CN1132918A CN 1132918 A CN1132918 A CN 1132918A CN 95120205 A CN95120205 A CN 95120205A CN 95120205 A CN95120205 A CN 95120205A CN 1132918 A CN1132918 A CN 1132918A
Authority
CN
China
Prior art keywords
magnetic core
induction structure
circuit
magnetic
conductive path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95120205A
Other languages
English (en)
Other versions
CN1078382C (zh
Inventor
科克·波顿·阿仕比
伊科诺莫茨·A·科里亚斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AT&T Corp filed Critical AT&T Corp
Publication of CN1132918A publication Critical patent/CN1132918A/zh
Application granted granted Critical
Publication of CN1078382C publication Critical patent/CN1078382C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/346Preventing or reducing leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0053Printed inductances with means to reduce eddy currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0086Printed inductances on semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

提供一种在高频时显出自感增加和Q值提高的电感结构。改进之处在于靠近电感结构放置适量的磁性材料以增加电感器有电流流过的导电通路相邻部分间的互感。

Description

高品质因数集成电感器
本发明涉及用于高频集成电路的电感器。
串联电阻是电感结构中固有的。硅工艺所形成的电感结构的串联电阻决定了工作频率增加时工作的损耗。损耗会减小电感的品质因数Q,即电感中电抗与串联电阻的比值(当用一定的拓扑给电感结构建模时)。减小频率增加时串联电阻的增加或使其增加最小(具有对电感器Q值的伴随效应)是通过增加电感器中电流流过的截面积实现的。截面积的增加可通过增加形成电感器的导电通路的金属化厚度或宽度,或两者都增加来实现。
电感器所显示出来的随宽度W或深度D的增加而提高的Q值在直流时实际与较低的频率成线性关线。当工作频率增加时,流过电感器通路整个截面积的电流却趋于下降。此后的电流倾向于在电感器截面的外边沿(即周边)流过,如图1A中所示的L10。这样的电流遵从所谓“趋肤效应”原理。
所制成的用于集成电路中的电感器通常为螺旋形。图1B给出的是在硅衬底22上用铝导体24制成的常规螺旋电感器L20的一部分。图1C给出导体24的导电通路的截面部分。W和L分别代表导体的宽和长,D代表其深度。L是组成电感器导电通路的各段长度L1,L2,…LN的总和。由于导电通路是螺旋形的(尽管由截面图看不清楚),电流引起的磁场往往使得电流沿螺旋型导电通路内边或短边(阴影所示)流过。由于这些边沿效应,频率增加时,在某一特定点之外增加宽度W(因而增加截面积)就不再显示出电感器Q值的相应提高。导电通路的厚度或深度D必须增加或相邻圈之间的磁耦合必须增加以提供所需Q值。
本发明提供一种为半导体应用制造的电感器,其显示出用常规集成电感器制造技术无法实现的增加的自感和提高的Q值。因此,根据本发明所述制成的电感器可在约100MHz到10GHz以上的频率范围使用。工作时,本发明的电感结构表现出的Q值在大约2到15的范围内。
对于制成具有一定圈数N的螺旋形电感结构,附加这里所描述的磁性材料芯,会使该结构的电感更高。换句话说,在本发明的电感结构中可使用较少的圈数(相对已有技术的电感结构),还能得到相似的电感值。由于在根据本发明所述制成的结构中使用了较少的圈数,该结构中的寄生电容也较低。
一方面是,构成电感结构导电通路的相邻金属流道间互感被增加。此外,导电通路具有的串联电阻保持固定,即几乎不随频率的增加下降。这保证频率变化时Q值稳定或得到提高。结构的布置包括在形成电感器导电通路的金属流道上沉积一部分高磁导率的磁性材料,最好是一层。
磁性材料层又被进一步整理以提供低磁阻通路并使通路各部分间的磁耦合最大,同时给磁芯中产生的涡流提供高电阻通路。这种布置使得结构的电感最大同时又使磁芯中产生的影响电感器Q值的涡流损耗最小。最好是,高磁导率磁性材料与电感结构作为其一部分的集成电路没有任何电连接。据信制作高磁导率磁性材料层的工艺与现有硅生产工艺可兼容。
图1A是先前技术的矩形导体的截面;
图1B是用常规硅生产技术制成的螺旋电感器的一部分的平面图;
图1C是用常规生产技术制成的螺旋电感器部分导电通路的截面图;
图2A是本发明的螺旋集成电感结构的平面图;
图2B是图2A中的部分螺旋导体的截面图;
图3A、3B和3C是包括在本发明中的各种形式的高磁导率磁性材料层的平面图。
本发明所提供的电感结构是用于高频半导体集成电路的。对于形成电感器的导电通路所固有的固定值的串联电阻,这种电感结构的电感得到提高。电感的提高使得本发明的品质因数Q在甚高频时的值为10到16,这用以前的技术是不能实现的。如这里所述制成的电感器的工作范围从大约100MHz到10GHz。
图2A和2B分别给出几个构成本发明电感结构L30的螺旋导电通路的导电元件21、22、23、24、25的螺旋和截面部分。导电通路可置于衬底材料(如半导体材料、衬底材料或介电材料)上或衬底材料中。非导电衬底的一个例子是砷化镓(GaAs),通常被描述为半绝缘材料。
在距离导电通路无件X处放置一段高磁导率的磁性材料30,并用一层介电材料32将其隔开。高磁导率磁性材料最好是平面型的并且提供一条低磁阻通路,其在有电流通过的两相邻流道间引起感生互感。正如从图中所看到的,高磁导率磁性材料不与集成电路中所包含电路的任何部分电连接。
高磁导率材料板30(平板或芯)的使用(如上所述)是有利的,但也在半导体电路中引入了麻烦。在磁性材料中会产生涡流,其以热损的方式损耗能量。当通过构成层30的固体磁性物质(如铁)的磁通量变化时就会感生出涡流。
现在参考图2C,在图2C的右边(条22-24)流入纸平面而在图2C的左边(图25-27)流出纸平面的交变电流产生影响磁芯30的变化的磁通量。通量场用环形箭头标出,标明通量方向。磁通量在磁性材料(磁芯30)中感生出与感生磁通量相当的电流。
当变化的磁通量密度高时,涡流对相当一部分功耗负责。涡流损耗与频率的平方和最大通量密度的平方有关。
为使铁芯变压器中的涡流(和与之相关的损耗)减至最小,铁芯用与磁通方向平行放置的成组薄片构成。如图3A、3B和3C所示,施加变化的磁通量(相对中孔,指向或穿出纸平面)在磁芯材料30的平面中感生出净电流。感生电流用环形箭头指示。因而,感生涡流就产生与所加的变化磁通量相反的随时间变化的磁通量(由纸平面指向外边)。感生的涡流垂直于变化的磁通量的方向。结果,感生涡流就可通过将磁芯分成薄片减至最小。相应地,环形涡流的通路就受到了限制,整个磁性材料中的涡流损耗也就减少了。
示于图3A的平板磁芯30的形状包括一大致在中央的矩形孔。矩形孔可减少关于中心相对的两边上的通路间不希望有的磁耦合。然而,这种设计没有涉及与涡流的产生有关的问题。图3B给出由于上述原因分成楔形并且中央有孔的磁芯(即最佳实施例的平面型磁芯)。这种设计既减少了不想要的耦合又相对图3A的设计减少了涡流损耗。图3C给出采用多条磁性材料构成的磁芯。这种设计相对图3B进一步减小了涡流损耗。磁性材料条最好与形成电感器导体的金属流道所形成的线成直角(正交)。
这里所描述的仅是对本发明原理的应用的说明。本领域的技术人员可以实现其它的布置和方法但没有脱离本发明的精神或范围。

Claims (21)

1.一种在衬底中形成的电感结构,其可与半导体集成电路相集成,包括:
a)电导体,其提供在所述衬底上制成螺旋平面图案的导电通路,其中所述通路的相邻段是大致平行的;
b)磁芯性材料芯,其位于所述平面图形上以便在所述相邻段内由电流感生的互感被磁芯增加,在所述磁芯内产生的涡流损耗的量是受控的。
2.权利要求1所定义的电感结构,其中所述磁芯由高磁导率材料制成。
3.权利要求1所定义的电感结构,其中所述磁芯被布置成中间不连续状以减少所述螺旋平面图案各段间不希望有的电感的诱因。
4.权利要求1所定义的电感结构,其中所述磁芯包括四个电隔离的楔形部分,所述四个部分被安置成中间不连续状以减少置于所述螺旋形对边上的所述导电通路段中不希望出现的电感诱因,并减少所述磁芯中的涡流损耗。
5.权利要求4定义的电感结构,其中所述楔形部分由多条磁性材料构成以进一步减小所述结构中的涡流损耗。
6.权利要求5所定义的电感结构,其中将多个条形磁性材料放置得大致与述导电通路的相邻段成直角。
7.权利要求1所定义的电感结构,其中所述磁芯是平板型的。
8.权利要求1所定义的电感结构,其还包括一块置于所述图形上的介电材料以将所述图形与所述磁芯隔离开。
9.权利要求1所定义的电感结构,其中所述衬底由下列之一构成:半导体、非导体和介电材料。
10.权利要求1所定义的电感结构,其中所述图形和所述磁芯的安排使得能提供直到大约12GHz的高频工作。
11.一种包括衬底材料和电感结构的半导体集成电路,所述电感结构还包括:
a)一电导体,其在所述衬底上以螺旋平面图形的形式提供一导电通路,其中所述导电通路的相邻段大致平行;
b)一磁性材料芯,其置于所述平面图形上,以使在相邻导电元件中引起感生互感的增加,并且在所述磁芯中,所述磁芯中适量的涡流损耗被控制。
12.权利要求11所定义的电路,其中所述磁芯由高磁导率磁性材料构成。
13.权利要求11所述电路,其中所述磁芯被安排得中间不连续以减少置于所述图形对边的所述螺旋平面图形段中不希望出现的电感的诱因。
14.权利要求11所述的电路,其中所述磁芯包括四个电隔离的楔形部分,所述四部分被布置成中间不连续状以减少置于所述螺旋图形对边上的所述导电通路段中不希望出现的电感的诱因,并减少所述磁芯中的涡流损耗。
15.权利要求14所述的电路,其中所述楔形设计部分由多条磁性材料构成以进一步减少所述结构中的涡流损耗。
16.权利要求15所述的电路,其中所述多个磁性材料条被放置成大致与相邻的所述导电通路段成直角。
17.权利要求11所定义的电路,其中所述磁芯是平板型的。
18.权利要求11所定义的电路,其还包括一块置于所述图形上的介电材料以将所述图形与所述磁芯电隔离。
19.权利要求9所定义的电路,其中放置所述图形和所述磁芯是为保证高频率时的工作。
20.权利要求11所定义的电路,其中所述衬底由下列之一构成:半导体,非导体和介电材料。
21.权利要求11所定义的电路,其中放置所述图形和所述磁芯是为保证直到12GHz的高频工作。
CN95120205A 1994-12-06 1995-12-04 高品质因数集成电感器 Expired - Fee Related CN1078382C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US350,358 1994-12-06
US08/350,358 US5635892A (en) 1994-12-06 1994-12-06 High Q integrated inductor

Publications (2)

Publication Number Publication Date
CN1132918A true CN1132918A (zh) 1996-10-09
CN1078382C CN1078382C (zh) 2002-01-23

Family

ID=23376373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95120205A Expired - Fee Related CN1078382C (zh) 1994-12-06 1995-12-04 高品质因数集成电感器

Country Status (7)

Country Link
US (1) US5635892A (zh)
EP (1) EP0716433B1 (zh)
JP (1) JPH08227814A (zh)
KR (1) KR960026744A (zh)
CN (1) CN1078382C (zh)
DE (1) DE69524554T2 (zh)
TW (1) TW291612B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111144A (zh) * 2017-12-08 2018-06-01 北京航天广通科技有限公司 栅极谐振部件和栅极谐振装置

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6118351A (en) * 1997-06-10 2000-09-12 Lucent Technologies Inc. Micromagnetic device for power processing applications and method of manufacture therefor
US6440750B1 (en) 1997-06-10 2002-08-27 Agere Systems Guardian Corporation Method of making integrated circuit having a micromagnetic device
US6013939A (en) * 1997-10-31 2000-01-11 National Scientific Corp. Monolithic inductor with magnetic flux lines guided away from substrate
US5959522A (en) * 1998-02-03 1999-09-28 Motorola, Inc. Integrated electromagnetic device and method
US6166422A (en) * 1998-05-13 2000-12-26 Lsi Logic Corporation Inductor with cobalt/nickel core for integrated circuit structure with high inductance and high Q-factor
US6169008B1 (en) * 1998-05-16 2001-01-02 Winbond Electronics Corp. High Q inductor and its forming method
JP2000022085A (ja) * 1998-06-29 2000-01-21 Toshiba Corp 半導体装置及びその製造方法
US6255714B1 (en) 1999-06-22 2001-07-03 Agere Systems Guardian Corporation Integrated circuit having a micromagnetic device including a ferromagnetic core and method of manufacture therefor
US6856228B2 (en) 1999-11-23 2005-02-15 Intel Corporation Integrated inductor
US6452247B1 (en) 1999-11-23 2002-09-17 Intel Corporation Inductor for integrated circuit
US6870456B2 (en) * 1999-11-23 2005-03-22 Intel Corporation Integrated transformer
US6815220B2 (en) * 1999-11-23 2004-11-09 Intel Corporation Magnetic layer processing
US6891461B2 (en) * 1999-11-23 2005-05-10 Intel Corporation Integrated transformer
JP3438704B2 (ja) * 2000-07-14 2003-08-18 株式会社村田製作所 導体パターンおよび該導体パターンを備えた電子部品
US6309922B1 (en) * 2000-07-28 2001-10-30 Conexant Systems, Inc. Method for fabrication of on-chip inductors and related structure
US6535101B1 (en) * 2000-08-01 2003-03-18 Micron Technology, Inc. Low loss high Q inductor
CA2355674A1 (en) * 2000-08-21 2002-02-21 Sirific Wireless Corporation Improvements to filters implemented in integrated circuits
US6801585B1 (en) 2000-10-16 2004-10-05 Rf Micro Devices, Inc. Multi-phase mixer
US6748204B1 (en) 2000-10-17 2004-06-08 Rf Micro Devices, Inc. Mixer noise reduction technique
US6807406B1 (en) 2000-10-17 2004-10-19 Rf Micro Devices, Inc. Variable gain mixer circuit
US20020158305A1 (en) * 2001-01-05 2002-10-31 Sidharth Dalmia Organic substrate having integrated passive components
US6509777B2 (en) 2001-01-23 2003-01-21 Resonext Communications, Inc. Method and apparatus for reducing DC offset
US6606489B2 (en) 2001-02-14 2003-08-12 Rf Micro Devices, Inc. Differential to single-ended converter with large output swing
US6458611B1 (en) 2001-03-07 2002-10-01 Intel Corporation Integrated circuit device characterization
US6778022B1 (en) 2001-05-17 2004-08-17 Rf Micro Devices, Inc. VCO with high-Q switching capacitor bank
US6700472B2 (en) 2001-12-11 2004-03-02 Intersil Americas Inc. Magnetic thin film inductors
US6714112B2 (en) * 2002-05-10 2004-03-30 Chartered Semiconductor Manufacturing Limited Silicon-based inductor with varying metal-to-metal conductor spacing
US6900708B2 (en) * 2002-06-26 2005-05-31 Georgia Tech Research Corporation Integrated passive devices fabricated utilizing multi-layer, organic laminates
US6987307B2 (en) * 2002-06-26 2006-01-17 Georgia Tech Research Corporation Stand-alone organic-based passive devices
US7260890B2 (en) * 2002-06-26 2007-08-28 Georgia Tech Research Corporation Methods for fabricating three-dimensional all organic interconnect structures
US7302011B1 (en) 2002-10-16 2007-11-27 Rf Micro Devices, Inc. Quadrature frequency doubling system
US7489914B2 (en) * 2003-03-28 2009-02-10 Georgia Tech Research Corporation Multi-band RF transceiver with passive reuse in organic substrates
US7852185B2 (en) * 2003-05-05 2010-12-14 Intel Corporation On-die micro-transformer structures with magnetic materials
US8345433B2 (en) * 2004-07-08 2013-01-01 Avx Corporation Heterogeneous organic laminate stack ups for high frequency applications
US8134548B2 (en) * 2005-06-30 2012-03-13 Micron Technology, Inc. DC-DC converter switching transistor current measurement technique
TWI259481B (en) * 2005-08-08 2006-08-01 Realtek Semiconductor Corp Apparatus for enhancing Q factor of inductor
US7439840B2 (en) 2006-06-27 2008-10-21 Jacket Micro Devices, Inc. Methods and apparatuses for high-performing multi-layer inductors
US7808434B2 (en) * 2006-08-09 2010-10-05 Avx Corporation Systems and methods for integrated antennae structures in multilayer organic-based printed circuit devices
US7989895B2 (en) * 2006-11-15 2011-08-02 Avx Corporation Integration using package stacking with multi-layer organic substrates
TWI484569B (zh) * 2012-07-20 2015-05-11 Nat Univ Tsing Hua 系統級封裝方法
US11064610B2 (en) 2012-09-11 2021-07-13 Ferric Inc. Laminated magnetic core inductor with insulating and interface layers
US11197374B2 (en) 2012-09-11 2021-12-07 Ferric Inc. Integrated switched inductor power converter having first and second powertrain phases
US10893609B2 (en) 2012-09-11 2021-01-12 Ferric Inc. Integrated circuit with laminated magnetic core inductor including a ferromagnetic alloy
US9844141B2 (en) 2012-09-11 2017-12-12 Ferric, Inc. Magnetic core inductor integrated with multilevel wiring network
US11058001B2 (en) 2012-09-11 2021-07-06 Ferric Inc. Integrated circuit with laminated magnetic core inductor and magnetic flux closure layer
US10244633B2 (en) 2012-09-11 2019-03-26 Ferric Inc. Integrated switched inductor power converter
US11116081B2 (en) 2012-09-11 2021-09-07 Ferric Inc. Laminated magnetic core inductor with magnetic flux closure path parallel to easy axes of magnetization of magnetic layers
US9337251B2 (en) 2013-01-22 2016-05-10 Ferric, Inc. Integrated magnetic core inductors with interleaved windings
US9647053B2 (en) 2013-12-16 2017-05-09 Ferric Inc. Systems and methods for integrated multi-layer magnetic films
US10629357B2 (en) 2014-06-23 2020-04-21 Ferric Inc. Apparatus and methods for magnetic core inductors with biased permeability
US9991040B2 (en) 2014-06-23 2018-06-05 Ferric, Inc. Apparatus and methods for magnetic core inductors with biased permeability
US11302469B2 (en) 2014-06-23 2022-04-12 Ferric Inc. Method for fabricating inductors with deposition-induced magnetically-anisotropic cores
US10354950B2 (en) 2016-02-25 2019-07-16 Ferric Inc. Systems and methods for microelectronics fabrication and packaging using a magnetic polymer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5873105A (ja) * 1981-10-27 1983-05-02 Nec Corp うず巻コイル
JPS6320810A (ja) * 1986-07-15 1988-01-28 Hitachi Ltd 変圧器鉄心
US4979016A (en) * 1988-05-16 1990-12-18 Dallas Semiconductor Corporation Split lead package
US5027255A (en) * 1988-10-22 1991-06-25 Westinghouse Electric Co. High performance, high current miniaturized low voltage power supply
JPH0377360A (ja) * 1989-08-18 1991-04-02 Mitsubishi Electric Corp 半導体装置
MY105486A (en) * 1989-12-15 1994-10-31 Tdk Corp A multilayer hybrid circuit.
JPH03212913A (ja) * 1990-01-18 1991-09-18 Matsushita Electric Ind Co Ltd インダクタンス部品
JPH0666193B2 (ja) * 1990-03-19 1994-08-24 株式会社アモルファス・電子デバイス研究所 磁性薄膜トランス
IL94340A (en) * 1990-05-09 1994-05-30 Vishay Israel Ltd Selectable high precision resistor and technique for production thereof
JP2997729B2 (ja) * 1990-06-29 2000-01-11 日本電信電話株式会社 インダクタンス素子形成法
JPH0583017A (ja) * 1991-09-24 1993-04-02 Mitsubishi Electric Corp マイクロ波集積回路装置
US5243319A (en) * 1991-10-30 1993-09-07 Analog Devices, Inc. Trimmable resistor network providing wide-range trims

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108111144A (zh) * 2017-12-08 2018-06-01 北京航天广通科技有限公司 栅极谐振部件和栅极谐振装置
CN108111144B (zh) * 2017-12-08 2021-06-08 北京航天广通科技有限公司 栅极谐振部件和栅极谐振装置

Also Published As

Publication number Publication date
DE69524554T2 (de) 2002-08-01
KR960026744A (zh) 1996-07-20
JPH08227814A (ja) 1996-09-03
US5635892A (en) 1997-06-03
TW291612B (zh) 1996-11-21
EP0716433B1 (en) 2001-12-12
EP0716433A1 (en) 1996-06-12
CN1078382C (zh) 2002-01-23
DE69524554D1 (de) 2002-01-24

Similar Documents

Publication Publication Date Title
CN1078382C (zh) 高品质因数集成电感器
US7671714B2 (en) Planar inductive component and a planar transformer
US5545916A (en) High Q integrated inductor
US6653924B2 (en) Transformer with controlled interwinding coupling and controlled leakage inductances and circuit using such transformer
KR100310794B1 (ko) 반도체집적회로에집적가능한유도성구조체및집적회로
JP2004519844A (ja) セグメント化された導電性平面を有するプレーナインダクタ
US8003529B2 (en) Method of fabrication an integrated circuit
US6603382B1 (en) Inductive element having improved superposed DC current characteristic
DE112012002725T5 (de) Isolierter Umrichter mit ON-Chip-Magnetik
US20080238602A1 (en) Components with on-die magnetic cores
US20080143469A1 (en) Magnetic device
US20220246349A1 (en) Resonant lc structure with standalone capacitors
JPH1140438A (ja) 平面型磁気素子
US6069397A (en) Integrable using amorphous magnetic material circuit inductor
Wallace et al. Inductor design for high-power applications with broad-spectrum excitation
JP4138956B2 (ja) コイル部品
WO2006008747A2 (en) On-chip inductor
JP3033262B2 (ja) 平面インダクタンス部品
Cheng et al. Effect of geometrical factors on copper loss in high-frequency low-profile transformers
JPH0645148A (ja) 高周波用インダクタンス回路
CN117790130A (zh) 电感装置、低噪声放大电路及射频前端模块
Mo et al. Study of planar inductors
EP0855723A2 (en) Transformer with controlled interwinding coupling and controlled leakage inductances and circuit using such transformer
Evans Megahertz transformers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020123

Termination date: 20141204

EXPY Termination of patent right or utility model