CN113284645B - 一种纳米银膏及其制备方法 - Google Patents

一种纳米银膏及其制备方法 Download PDF

Info

Publication number
CN113284645B
CN113284645B CN202110447478.9A CN202110447478A CN113284645B CN 113284645 B CN113284645 B CN 113284645B CN 202110447478 A CN202110447478 A CN 202110447478A CN 113284645 B CN113284645 B CN 113284645B
Authority
CN
China
Prior art keywords
nano silver
silver paste
nano
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110447478.9A
Other languages
English (en)
Other versions
CN113284645A (zh
Inventor
蔡航伟
杜昆
许四妹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Hanyuan Microelectronic Packaging Material Co ltd
Original Assignee
Guangzhou Hanyuan Microelectronic Packaging Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Hanyuan Microelectronic Packaging Material Co ltd filed Critical Guangzhou Hanyuan Microelectronic Packaging Material Co ltd
Priority to CN202110447478.9A priority Critical patent/CN113284645B/zh
Publication of CN113284645A publication Critical patent/CN113284645A/zh
Priority to JP2023559032A priority patent/JP7570149B2/ja
Priority to PCT/CN2022/073665 priority patent/WO2022227736A1/zh
Application granted granted Critical
Publication of CN113284645B publication Critical patent/CN113284645B/zh
Priority to US18/468,587 priority patent/US20240009731A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • B22F1/147Making a dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/056Particle size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/058Particle size above 300 nm up to 1 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种纳米银膏及其制备方法。本发明的纳米银膏包括纳米银粉、微米锡基焊料粉粒、还原剂、分散剂、稀释剂。本发明的纳米银膏是将纳米银粉、微米锡基焊料粉粒与还原剂、分散剂、稀释剂混合均匀得到。本发明的纳米银膏解决了现有技术中的纳米银膏在无压焊接时堆垛密度低、孔隙率高、体积收缩剧烈、易出现裂纹、界面焊合率低的问题,从而提高了焊接部位的力学性能与可靠性。

Description

一种纳米银膏及其制备方法
技术领域
本发明涉及电子元器件焊接技术领域,特别是涉及一种纳米银膏及其制备方法。
背景技术
随着电子元器件日趋精密、微型化和集成化,势必导致封装密度与功率密度更高,因而会对封装的散热和可靠性要求越来越高。以碳化硅、氮化镓为代表的新一代功率半导体,具有禁带宽度宽、击穿电压高、热稳定强、开关特性稳定等特点,被广泛应用于轨道交通、航空航天、新能源汽车、深海深井探测等领域。
在服役过程中,功率器件的互连材料会受到来自机械振动、热应力、高密度电流和功率循环等严苛考验,传统的锡基焊料势必会无法满足日益苛刻的可靠性要求,因此亟需开发新的耐高温焊接材料和相应的焊接工艺。
由于纳米金属颗粒具有高表面能、低熔点特性,近年来国内外提出使用纳米金属焊接封装器件。纳米银膏因具有良好的导电导热、低温焊接、高可靠性,具有高温服役性能,是目前最具潜力的低温焊接互连材料。然而,纳米银膏原始堆垛密度较低,封装焊接时,特别是焊接器件的结构导致无法给予压力,或者为了防止压力对焊接器件造成损伤而需要无压焊接时,会产生大量不可控制的孔隙结构,焊接层致密度低,体积收缩明显,在无压焊接时焊接层易出现裂纹,导致界面焊合率降低、机械强度低,导电导热性能相比于块体银大幅下降。而且,焊接银膏因具有较大的热膨胀系数,在服役过程中也会产生较大的热机械应力,造成焊接部位的失效。
发明内容
本发明的首要目的在于克服现有技术的缺点与不足,提供了一种纳米银膏,以解决现有纳米银膏在无压焊接时焊接层堆垛密度低、体积收缩剧烈、易出现裂纹、界面焊合率低的问题,进而提高焊接部位的力学性能与可靠性。
本发明的另一目的在于提供上述纳米银膏的制备方法。
本发明的目的通过下述技术方案实现:一种纳米银膏,包括纳米银粉、微米锡基焊料粉粒、还原剂、分散剂、稀释剂。
所述微米锡基焊料粉粒的材质为熔点在120-250℃范围内的锡基合金;优选为SnBi系列合金、SnBiAg系列合金、SnAg系列合金、SnCu系列合金、SnAgCu系列合金、SnSb系列合金、SnSbCu系列合金、SnSbAg系列合金、SnAgCuBi系列合金、SnAgCuSb系列合金中的至少一种。
所述纳米银粉的平均粒径为5-3000nm。
优选的,所述纳米银粉的平均粒径为10-1500nm。
所述纳米银粉为一种平均粒径的纳米银粉或两种以上不同平均粒径的纳米银粉混合体。
所述微米锡基焊料粉粒的平均粒径为0.1-100μm。
优选的,所述微米锡基焊料粉粒的平均粒径为0.5-50μm。
所述纳米银粉与所述微米锡基焊料粉粒的质量之比为20-500:1。
优选的,所述纳米银粉与所述微米锡基焊料粉粒的质量之比为30-200:1。
所述稀释剂为醇类、烃类、酮类、酯类等中的至少一种。
所述稀释剂在体系中的质量百分比为2-8%。
所述分散剂为聚烃类酰胺、聚烃类酸盐、烷基酸盐等中的至少一种。
所述分散剂在体系中的质量百分比为0.1-3%。
所述还原剂为有机酸中的至少一种。
所述还原剂在体系中的质量百分比为0.1-1.5%。
上述纳米银膏的制备方法:将所述纳米银粉、所述微米锡基焊料粉粒与所述还原剂、分散剂、稀释剂混合均匀,得到纳米银膏。
所述纳米银粉是通过化学还原银盐溶液,并将银沉积层在100Pa以下的负压环境中干燥的方法得到。
所述微米锡基焊料粉粒是将锡基焊料通过真空研磨机研磨得到。
所述混合均匀优选为采用机械搅拌或者磁力搅拌的方式。
纳米银膏中低熔点的微米锡基焊料粉粒,如果加入量太少,则不足以起到填充未完全熔化的纳米银颗粒间的孔隙的效果;如果加入量太多,焊后焊层中存在太多的低熔点相,反而会降低焊接后焊层的可靠性。所以控制纳米银膏中低熔点微米锡基焊料粉粒的用量是本发明的关键之一。
低熔点的微米锡基焊料粉粒,如果粒径太小,一方面由于粒径越小,比表面积越大,粉粒越容易氧化;另一方面,粒径小,制造粉粒的成本高。但是如果粒径太大,与纳米银膏中的纳米银粉的接触几率会降低,不利于微米锡基焊料粉粒在纳米银膏中充分混合。
与现有技术相比,本发明具有以下有益效果:
1、本发明的纳米银膏中均匀混有低熔点微米锡基焊料粉粒,焊接过程中完全熔化的微米锡基焊料粉粒填充了未完全熔化的纳米银颗粒间的孔隙,从而解决了现有纳米银膏在无压焊接时堆垛密度低、孔隙率高、体积收缩剧烈、易出现裂纹、界面焊合率低的问题,进而提高了焊接部位的力学性能与可靠性。
2、本发明的纳米银膏的制备方法以可规模化生产为出发点,工艺简单,成本低,可操作性强,可批量生产,经济效益显著。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例一
本实施例提供了一种纳米银膏,该纳米银膏中含有平均粒径为30nm的纳米银粉、平均粒径为5μm的Sn42Bi58合金粉粒(熔点为139℃)、将上述粉粒形成膏状的稀释剂、防止银膏中粉末发生团聚的分散剂、焊接过程用于还原被焊面氧化层和银膏中金属颗粒氧化层的还原剂。所述纳米银粉与微米Sn42Bi58合金粉粒的质量之比为200:1。所述稀释剂为质量百分比为1:2的乙二醇和正丁烷,所述稀释剂在整个纳米银膏体系中的质量百分比为2%。所述分散剂为质量百分比为3:1的十二烷基硫酸钾和聚丁烯酸钠,所述分散剂在整个纳米银膏体系中的质量百分比为1.2%。所述还原剂为质量百分比为1:4的松香酸和乙酸,所述还原剂在整个纳米银膏体系中的质量百分比为0.5%。
纳米银膏的制备方法,包括如下步骤:
S1、通过化学还原银盐溶液,并采用将银沉积层在100Pa以下的负压环境中干燥的方法得到平均粒径为30nm的纳米银粉;
S2、按照锡基焊料的合金成分(Sn和Bi的质量百分比(42:58))配置好Sn42Bi58合金,将Sn42Bi58合金通过真空研磨机研磨,得到平均粒径为5μm的Sn42Bi58合金粉粒;
S3、按照质量百分比为1:2的乙二醇和正丁烷,在整个纳米银膏体系中的总质量百分比为2%的配比,配好稀释剂。按照质量百分比为3:1的十二烷基硫酸钾和聚丁烯酸钠,在整个纳米银膏体系中的总质量百分比为1.2%的配比,配好分散剂。按照质量百分比为1:4的松香酸和乙酸,在整个纳米银膏体系中的总质量百分比为0.5%的配比,配好还原剂。
S4、将步骤S1制成的纳米银粉与步骤S2制成的微米Sn42Bi58粉粒按照200:1的质量比,加入到步骤S3配好的含有还原剂、分散剂、稀释剂的混合溶剂中,采用机械搅拌均匀混合,得到混有微米锡基焊料粉粒的纳米银膏。
实施例二
本实施例提供了一种纳米银膏,该纳米银膏中含有平均粒径为20nm的纳米银粉、平均粒径为100nm的纳米银粉所组成的混合纳米银粉,其质量比为5:3;平均粒径为10μm的Sn96.5Ag3.5合金粉粒(熔点为221℃),混合纳米银粉与微米Sn96.5Ag3.5合金粉粒的质量之比为160:1;并含有将上述粉粒形成膏状的稀释剂、防止银膏中粉末发生团聚的分散剂、焊接过程用于还原被焊面氧化层和银膏中金属颗粒氧化层的还原剂。所述稀释剂为质量百分比为3:2的己酮和正戊烷,所述稀释剂在整个纳米银膏体系中的质量百分比为3.5%。所述分散剂为质量百分比为4:3的聚乙烯酰胺和聚丙烯酸钾,所述分散剂在整个纳米银膏体系中的质量百分比为1.9%。所述还原剂为质量百分比为2:1的草酸和己二酸,所述还原剂在整个纳米银膏体系中的质量百分比为0.8%。
纳米银膏的制备方法,包括如下步骤:
S1、通过化学还原银盐溶液,并采用将银沉积层在100Pa以下的负压环境中干燥的方法分别得到平均粒径为20nm和100nm的纳米银粉;
S2、按照锡基焊料的合金成分配置好所述的Sn96.5Ag3.5合金,将Sn96.5Ag3.5合金通过真空研磨机研磨,得到平均粒径为10μm的Sn96.5Ag3.5合金粉粒;
S3、按照质量百分比为3:2的己酮和正戊烷,在整个纳米银膏体系中的总质量百分比为3.5%的配比,配好稀释剂。按照质量百分比为4:3的聚乙烯酰胺和聚丙烯酸钾,在整个纳米银膏体系中的总质量百分比为1.9%的配比,配好分散剂。按照质量百分比为2:1的草酸和己二酸,在整个纳米银膏体系中的总质量百分比为0.8%的配比,配好还原剂。
S4、将步骤S1制成的纳米银粉(平均粒径为20nm的纳米银粉、平均粒径为100nm的纳米银粉的质量百分比为5:3)与步骤S2制成的微米Sn96.5Ag3.5合金粉粒按照160:1的质量比,加入到步骤S3配好的含有还原剂、分散剂、稀释剂的混合溶剂中,采用磁力搅拌均匀混合,得到混有微米锡基焊料粉粒的纳米银膏。
实施例三
本实施例提供了一种纳米银膏,该纳米银膏中含有平均粒径为10nm的纳米银粉、平均粒径为120nm的纳米银粉、平均粒径为800nm的纳米银粉所组成的混合纳米银粉,其质量比为7:4:1;含有平均粒径为15μm的Sn99.3Cu0.7合金粉粒(熔点为227℃),混合纳米银粉与微米Sn99.3Cu0.7合金粉粒的质量之比为120:1;并含有将上述粉粒形成膏状的稀释剂、防止银膏中粉末发生团聚的分散剂、焊接过程用于还原被焊面氧化层和银膏中金属颗粒氧化层的还原剂。所述稀释剂为质量百分比为2:5的正戊烷和醋酸乙酯,所述稀释剂在整个纳米银膏体系中的质量百分比为5%。所述分散剂为质量百分比为1:3的聚丙烯酰胺和十二烷基硫酸钠,所述分散剂在整个纳米银膏体系中的质量百分比为2.2%。所述还原剂为质量百分比为3:1的戊二酸和松香酸,所述还原剂在整个纳米银膏体系中的质量百分比为1%。
纳米银膏的制备方法,包括如下步骤:
S1、通过化学还原银盐溶液,并采用将银沉积层在100Pa以下的负压环境中干燥的方法分别得到平均粒径为10nm、120nm、800nm的纳米银粉;
S2、按照锡基焊料的合金成分配置好所述的Sn99.3Cu0.7合金,将Sn99.3Cu0.7合金通过真空研磨机研磨,得到平均粒径为15μm的Sn99.3Cu0.7合金粉粒;
S3、按照质量百分比为2:5的正戊烷和醋酸乙酯,在整个纳米银膏体系中的总质量百分比为5%的配比,配好稀释剂。按照质量百分比为1:3的聚丙烯酰胺和十二烷基硫酸钠,在整个纳米银膏体系中的总质量百分比为2.2%的配比,配好分散剂。按照质量百分比为3:1的戊二酸和松香酸,在整个纳米银膏体系中的总质量百分比为1%的配比,配好还原剂。
S4、将步骤S1制成的纳米银粉(平均粒径为10nm的纳米银粉、平均粒径为120nm的纳米银粉、平均粒径为800nm的纳米银粉的质量比为7:4:1)与步骤S2制成的微米Sn99.3Cu0.7合金粉粒按照120:1的质量比,加入到步骤S3配好的含有还原剂、分散剂、稀释剂的混合溶剂中,采用机械搅拌均匀混合,得到混有微米锡基焊料粉粒的纳米银膏。
实施例四
本实施例提供了一种纳米银膏,该纳米银膏中含有平均粒径为25nm的纳米银粉、平均粒径为70nm的纳米银粉、平均粒径为1200nm的纳米银粉所组成的混合纳米银粉,其质量比为9:5:1;含有平均粒径为20μm的Sn42Bi57Ag1合金粉粒(熔点为139℃)和Sn96.5Ag3Cu0.5合金粉粒(熔点为217℃)所组成的混合低熔点微米合金粉粒(其质量比为4:1),上述混合纳米银粉与混合低熔点微米合金粉粒的质量之比为30:1;并含有将上述粉粒形成膏状的稀释剂、防止银膏中粉末发生团聚的分散剂、焊接过程用于还原被焊面氧化层和银膏中金属颗粒氧化层的还原剂。所述稀释剂为质量百分比为1:3:4的正戊烷、丙二醇和醋酸乙酯,所述稀释剂在整个纳米银膏体系中的质量百分比为8%。所述分散剂为质量百分比为1:2:4的聚乙烯酰胺、聚丙烯酸钠和十二烷基硫酸钠,所述分散剂在整个纳米银膏体系中的质量百分比为2.5%。所述还原剂为质量百分比为1:4的草酸和松香酸,所述还原剂在整个纳米银膏体系中的质量百分比为1.2%。
纳米银膏的制备方法,包括如下步骤:
S1、通过化学还原银盐溶液,并采用将银沉积层在100Pa以下的负压环境中干燥的方法分别得到平均粒径为25nm、70nm、1200nm的纳米银粉;
S2、按照锡基焊料的合金成分分别配置好所述的Sn96.5Ag3Cu0.5合金和Sn42Bi57Ag1合金,并将Sn42Bi57Ag1合金和Sn96.5Ag3Cu0.5合金分别通过真空研磨机研磨,得到平均粒径均为20μm的Sn42Bi57Ag1合金粉粒和Sn96.5Ag3Cu0.5合金粉粒;
S3、按照质量百分比为1:3:4的正戊烷、丙二醇和醋酸乙酯,在整个纳米银膏体系中的总质量百分比为8%的配比,配好稀释剂。按照质量百分比为1:2:4的聚乙烯酰胺、聚丙烯酸钠和十二烷基硫酸钠,在整个纳米银膏体系中的总质量百分比为2.5%的配比,配好分散剂。按照质量百分比为1:4的草酸和松香酸,在整个纳米银膏体系中的总质量百分比为1.2%的配比,配好还原剂。
S4、将步骤S1制成的纳米银粉(平均粒径为25nm的纳米银粉、平均粒径为70nm的纳米银粉、平均粒径为1200nm的纳米银粉的质量比为9:5:1)与步骤S2制成的微米合金粉粒(Sn42Bi57Ag1合金粉粒和Sn96.5Ag3Cu0.5合金粉粒的质量比为4:1)按照质量比30:1,加入到步骤S3配好的含有还原剂、分散剂、稀释剂的混合溶剂中,采用磁力搅拌均匀混合,得到混有微米锡基焊料粉粒的纳米银膏。
实施例五
本实施例提供了一种纳米银膏,该纳米银膏中含有平均粒径为15nm的纳米银粉、平均粒径为60nm的纳米银粉、平均粒径为900nm的纳米银粉、平均粒径为1500nm的纳米银粉所组成的混合纳米银粉,其质量比为12:9:5:1;含有平均粒径为50μm的Sn64Bi35Ag1合金粉粒(熔点范围约为139-180℃)、平均粒径为10μm的Sn96Ag2.5Bi1Cu0.5合金粉粒(熔点约为215℃)、平均粒径为2μm的SnSb5合金粉粒(熔点约为240℃)所组成的混合低熔点微米合金粉粒,其质量比为11:5:2;上述混合纳米银粉与混合低熔点微米合金粉粒的质量之比为80:1;并含有将上述粉粒形成膏状的稀释剂、防止银膏中粉末发生团聚的分散剂、焊接过程用于还原被焊面氧化层和银膏中金属颗粒氧化层的还原剂。所述稀释剂为质量百分比为1:2:5的正庚烷、丁醇和醋酸乙酯,所述稀释剂在整个纳米银膏体系中的质量百分比为6%。所述分散剂为质量百分比为1:1:2的聚丙烯酸钾、聚丙烯酰胺和十二烷基硫酸钠,所述分散剂在整个纳米银膏体系中的质量百分比为3%。所述还原剂为质量百分比为1:3:4的乙酸、戊二酸和松香酸,所述还原剂在整个纳米银膏体系中的质量百分比为1.5%。
纳米银膏的制备方法,包括如下步骤:
S1、通过化学还原银盐溶液,并采用将银沉积层在100Pa以下的负压环境中干燥的方法分别得到平均粒径为15nm、60nm、900nm和1500nm的纳米银粉;
S2、按照锡基焊料的合金成分分别配置好所述的Sn64Bi35Ag1合金、Sn96Ag2.5Bi1Cu0.5合金和SnSb5合金,并将其分别通过真空研磨机研磨得到平均粒径为50μm的Sn64Bi35Ag1合金粉粒、平均粒径为10μm的Sn96Ag2.5Bi1Cu0.5合金粉粒、平均粒径为2μm的SnSb5合金粉粒;
S3、按照质量百分比为1:2:5的正庚烷、丁醇和醋酸乙酯,在整个纳米银膏体系中的总质量百分比为6%的配比,配好稀释剂。按照质量百分比为1:1:2的聚丙烯酸钾、聚丙烯酰胺和十二烷基硫酸钠,在整个纳米银膏体系中的总质量百分比为3%的配比,配好分散剂。按照质量百分比为1:3:4的乙酸、戊二酸和松香酸,在整个纳米银膏体系中的总质量百分比为1.5%的配比,配好还原剂。
S4、将步骤S1制成的纳米银粉(平均粒径为15nm的纳米银粉、平均粒径为60nm的纳米银粉、平均粒径为900nm的纳米银粉、平均粒径为1500nm的纳米银粉的质量百分比为12:9:5:1)与步骤S2制成的微米合金粉粒(Sn64Bi35Ag1合金粉粒、Sn96Ag2.5Bi1Cu0.5合金粉粒和SnSb5合金粉粒的质量比为11:5:2)按照80:1的质量比,加入到步骤S3配好的含有还原剂、分散剂、稀释剂的混合溶剂中,采用机械搅拌均匀混合,得到混有微米锡基焊料粉粒的纳米银膏。
为了进一步验证本发明的技术效果,以下对本发明的纳米银膏进行焊接试验。其中,焊接试验所需用到的检测样品和被焊接材料具体为:
检测样品:
本发明实施例五:混有微米锡基焊料粉粒的纳米银膏
对比例一:未加有微米锡基焊料粉粒(其它条件与本发明实施例五相同)的纳米银膏
被焊接材料:厚度为1.5mm,焊接面积为10mm*8mm的无氧铜板。
焊接方式:通过在两块无氧铜板中间分别夹设0.1mm厚的对比例一的纳米银膏或者本发明实施例五的纳米银膏,且对对比例一的纳米银膏和本发明实施例五的纳米银膏同时进行无额外施加压力的常压回流焊接。
以下对焊接后的焊层进行性能测试,焊层的性能测试包括焊层孔隙率、剪切强度、热导率,以及焊层进行温度循环冲击后的孔隙率。焊层孔隙率通过超声波扫描仪或X-Ray检测仪来检测,剪切强度通过电子万能试验机来测试,热导率通过激光闪色法导热分析仪来测试。
焊层的孔隙率越小,表明纳米银膏焊接后的焊层质量越好,以及焊层进行温度循环冲击后的孔隙率变化越小,表明焊层的退化程度越低,即焊层抗温度冲击的能力越强。焊层的剪切强度越大,表明焊层抗机械冲击的能力越强。焊层的热导率越大,表明焊层将功率器件工作时产生的热量传导出去的能力越强。
(1)实验一:焊层孔隙率和热导率测试
表1焊接后的焊层孔隙率和热导率
Figure BDA0003036681790000091
Figure BDA0003036681790000101
从表1可以看出,焊接后,本发明实施例五的纳米银膏比对比例一的纳米银膏的焊层孔隙率平均降低约53.2%((19.74-9.24)/19.74×100%=53.2%),热导率提高约35.5%((248-183)/183×100%=35.5%)。
(2)实验二:焊层剪切强度测试
对实验一中的对比例一的纳米银膏和本发明实施例五的纳米银膏焊接后相互对应的五组焊层分别进行剪切强度测试,测试结果如表2所示。
表2焊接后的焊层剪切强度
Figure BDA0003036681790000102
从表2可以看出,焊接后,本发明实施例五的纳米银膏比对比例一的纳米银膏的焊层剪切强度提高约29.2%((35.0-27.1)/27.1×100%=29.2%)。
(3)实验三:焊层经过温度循环冲击后的孔隙率(退化程度)
对实验一中的对比例一的纳米银膏和本发明实施例五的纳米银膏焊接后相互对应的五组焊层分别经过1000次,-40℃-125℃的温度循环冲击后,检测其焊层孔隙率(温度循环冲击后的焊层孔隙率相较于温度循环冲击前的焊层孔隙率变化较大时,说明退化程度较严重,其中,退化程度=温度循环冲击后的孔隙率-温度循环冲击前的孔隙率),测试结果如表3所示。
表3焊接后的焊层经温度循环冲击后的退化程度
Figure BDA0003036681790000111
从表3可以看出,采用对比例一的纳米银膏和本发明实施例五的纳米银膏焊接后的焊层在经过1000次,-40℃-125℃的温度循环冲击后,本发明实施例五的纳米银膏的焊层退化程度明显低于对比例一的纳米银膏的焊层退化程度,本发明实施例五的纳米银膏的焊层退化程度比对比例一的纳米银膏的焊层退化程度要降低约46.7%((3.45-1.84)/3.45×100%=46.7%)。
为了更进一步验证本发明的技术效果,以下对本发明实施例一的加有不同粒径和不同加入量的微米锡基焊料粉粒的纳米银膏,作为对比例进行焊接试验。其中,焊接试验所需用到的检测样品和被焊接材料具体为:
检测样品:本发明实施例一的加有不同粒径和不同加入量的微米锡基焊料粉粒的纳米银膏
本发明实施例一:按照纳米银粉与平均粒径为5μm的微米Sn42Bi58粉粒的质量之比为200:1,制成的纳米银膏
对比例二:按照纳米银粉与平均粒径为5μm的微米Sn42Bi58粉粒的质量之比为10:1(其它条件与本发明实施例一相同),制成的纳米银膏
对比例三:按照纳米银粉与平均粒径为5μm的微米Sn42Bi58粉粒的质量之比为800:1(其它条件与本发明实施例一相同),制成的纳米银膏
对比例四:按照纳米银粉与平均粒径为250μm的微米Sn42Bi58粉粒的质量之比为200:1(其它条件与本发明实施例一相同),制成的纳米银膏
被焊接材料:厚度为1.5mm,焊接面积为10mm*8mm的无氧铜板。
焊接方式:通过在两块无氧铜板中间分别夹设0.1mm厚的本发明实施例一、对比例二、对比例三、对比例四的纳米银膏,且对本发明实施例一、对比例二、对比例三、对比例四的纳米银膏同时进行无额外施加压力的常压回流焊接。
对焊接后的焊层,经过1000次,-40℃-125℃的温度循环冲击后的退化程度进行测试,测试结果如表4所示。
表4焊接后的焊层经温度循环冲击后的退化程度
Figure BDA0003036681790000121
Figure BDA0003036681790000131
从表4可以看出,采用本发明实施例一、对比例二、对比例三、对比例四的纳米银膏焊接后的焊层在经过1000次,-40℃-125℃的温度循环冲击后,本发明实施例一的纳米银膏的焊层退化程度明显低于对比例二、对比例三、对比例四的纳米银膏的焊层退化程度,本发明实施例一的纳米银膏的焊层退化程度比对比例二的纳米银膏的焊层退化程度要降低约59.3%((5.77-2.35)/5.77×100%=59.3%),比对比例三的纳米银膏的焊层退化程度要降低约31.1%((3.41-2.35)/3.41×100%=31.1%),比对比例四的纳米银膏的焊层退化程度要降低约46.6%((4.40-2.35)/4.40×100%=46.6%)。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (9)

1.一种纳米银膏,其特征在于,包括纳米银粉、微米锡基焊料粉粒、还原剂、分散剂、稀释剂;
所述纳米银粉与所述微米锡基焊料粉粒的质量之比为20-500:1。
2.根据权利要求1所述的纳米银膏,其特征在于,所述微米锡基焊料粉粒的材质为熔点在120-250℃范围内的锡基合金。
3.根据权利要求2所述的纳米银膏,其特征在于,所述微米锡基焊料粉粒的材质为SnBi系列合金、SnBiAg系列合金、SnAg系列合金、SnCu系列合金、SnAgCu系列合金、SnSb系列合金、SnSbCu系列合金、SnSbAg系列合金、SnAgCuBi系列合金、SnAgCuSb系列合金中的至少一种。
4.根据权利要求1所述的纳米银膏,其特征在于,
所述纳米银粉的平均粒径为5-3000nm;
所述微米锡基焊料粉粒的平均粒径为0.1-100μm。
5.根据权利要求4所述的纳米银膏,其特征在于,
所述纳米银粉的平均粒径为10-1500nm;
所述微米锡基焊料粉粒的平均粒径为0.5-50μm。
6.根据权利要求1所述的纳米银膏,其特征在于,所述纳米银粉为一种平均粒径的纳米银粉或两种以上不同平均粒径的纳米银粉混合体。
7.根据权利要求1所述的纳米银膏,其特征在于,所述纳米银粉与所述微米锡基焊料粉粒的质量之比为30-200:1。
8.根据权利要求1所述的纳米银膏,其特征在于,
所述稀释剂为醇类、烃类、酮类、酯类等中的至少一种;
所述稀释剂在体系中的质量百分比为2-8%;
所述分散剂为聚烃类酰胺、聚烃类酸盐、烷基酸盐等中的至少一种;
所述分散剂在体系中的质量百分比为0.1-3%;
所述还原剂为有机酸中的至少一种;
所述还原剂在体系中的质量百分比为0.1-1.5%。
9.权利要求1-8任一项所述的纳米银膏的制备方法,其特征在于,是将所述纳米银粉、所述微米锡基焊料粉粒与所述还原剂、分散剂、稀释剂混合均匀,得到纳米银膏。
CN202110447478.9A 2021-04-25 2021-04-25 一种纳米银膏及其制备方法 Active CN113284645B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202110447478.9A CN113284645B (zh) 2021-04-25 2021-04-25 一种纳米银膏及其制备方法
JP2023559032A JP7570149B2 (ja) 2021-04-25 2022-01-25 ナノ銀ペースト及びその製造方法
PCT/CN2022/073665 WO2022227736A1 (zh) 2021-04-25 2022-01-25 一种纳米银膏及其制备方法
US18/468,587 US20240009731A1 (en) 2021-04-25 2023-09-15 Nano silver paste and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110447478.9A CN113284645B (zh) 2021-04-25 2021-04-25 一种纳米银膏及其制备方法

Publications (2)

Publication Number Publication Date
CN113284645A CN113284645A (zh) 2021-08-20
CN113284645B true CN113284645B (zh) 2022-10-11

Family

ID=77277342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110447478.9A Active CN113284645B (zh) 2021-04-25 2021-04-25 一种纳米银膏及其制备方法

Country Status (3)

Country Link
US (1) US20240009731A1 (zh)
CN (1) CN113284645B (zh)
WO (1) WO2022227736A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113284645B (zh) * 2021-04-25 2022-10-11 广州汉源微电子封装材料有限公司 一种纳米银膏及其制备方法
CN114473103A (zh) * 2022-04-19 2022-05-13 合肥阿基米德电子科技有限公司 一种液态金属锡辅助纳米银烧结工艺

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11329072A (ja) * 1998-05-13 1999-11-30 Murata Mfg Co Ltd 導電ペースト及びそれを用いた太陽電池
EP1837119B1 (en) * 2005-01-11 2015-02-11 Murata Manufacturing Co., Ltd. Solder paste and electronic device
JP2013081966A (ja) * 2011-10-06 2013-05-09 Fujitsu Ltd 導電性接合材料、並びに導体の接合方法、及び半導体装置の製造方法
US20140018482A1 (en) * 2012-03-26 2014-01-16 E I Du Pont De Nemours And Company Polymer thick film solder alloy/metal conductor compositions
US9034417B2 (en) * 2012-08-20 2015-05-19 E I Du Pont De Nemours And Company Photonic sintering of polymer thick film conductor compositions
CN103258584B (zh) * 2013-01-09 2018-04-10 深圳市创智材料科技有限公司 一种导电银浆及其制备方法
JP6118192B2 (ja) * 2013-06-21 2017-04-19 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
WO2015198022A1 (en) * 2014-06-23 2015-12-30 Alpha Metals, Inc. Multilayered metal nano and micron particles
JP6460578B2 (ja) * 2015-03-20 2019-01-30 株式会社豊田中央研究所 接合材料、それを用いた接合方法、接合材料ペースト及び半導体装置
CN104759725B (zh) * 2015-04-17 2016-10-05 哈尔滨工业大学 一种使用微纳米级金属颗粒填充Sn基焊料实现电子组件高温封装的方法
CN109562493B (zh) * 2016-08-03 2021-10-26 古河电气工业株式会社 含金属粒子的组合物
JP7007140B2 (ja) * 2016-09-30 2022-01-24 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
KR101980946B1 (ko) * 2016-11-11 2019-05-21 삼성에스디아이 주식회사 태양전지용 전면 전극 및 이를 포함하는 태양전지
CN107175433A (zh) * 2017-04-19 2017-09-19 天津大学 一种低温烧结的锡掺杂纳米银焊膏的制备方法
US11325210B2 (en) * 2017-11-22 2022-05-10 Shenzhen Fitech Co., Ltd. Micro/nano particle reinforced composite solder and preparation method therefor
CN107887050A (zh) * 2017-11-27 2018-04-06 钦州学院 一种晶体硅太阳能电池高可焊性正面电极银浆及制备方法
CN108526751B (zh) * 2018-04-26 2019-06-18 深圳市先进连接科技有限公司 一种可用于无压烧结的微纳米混合焊膏及其制备方法
CN109215828B (zh) * 2018-08-22 2020-07-07 湖南省国银新材料有限公司 一种可焊接的低温烘干银浆及其制备方法
KR102243472B1 (ko) * 2018-12-17 2021-04-26 주식회사 경동원 전력반도체 접합용 소결 페이스트 조성물
CN109686472B (zh) * 2018-12-29 2020-07-14 广州市儒兴科技开发有限公司 一种单组分hjt电池用低温银浆
CN109979639A (zh) * 2019-02-18 2019-07-05 英鸿纳米科技股份有限公司 一种纳米芯片封装用混合型导电银浆
EP3939719A4 (en) * 2019-03-15 2023-02-22 Furukawa Electric Co., Ltd. COMPOSITION CONTAINING METAL PARTICLES AND CONDUCTIVE ADHESIVE FILM
CN110238562A (zh) * 2019-06-28 2019-09-17 华中科技大学 一种微纳米复合金属焊膏制备方法、产品及应用
JP7333056B2 (ja) * 2019-07-19 2023-08-24 協立化学産業株式会社 接合用組成物、接合体及びその製造方法
CN113284645B (zh) * 2021-04-25 2022-10-11 广州汉源微电子封装材料有限公司 一种纳米银膏及其制备方法

Also Published As

Publication number Publication date
US20240009731A1 (en) 2024-01-11
JP2024512617A (ja) 2024-03-19
CN113284645A (zh) 2021-08-20
WO2022227736A1 (zh) 2022-11-03

Similar Documents

Publication Publication Date Title
CN113284645B (zh) 一种纳米银膏及其制备方法
EP3217424B1 (en) Electroconductive assembly for electronic component, semiconductor device in which said assembly is used, and method for manufacturing electroconductive assembly
CN110153589B (zh) 一种铟基钎料及其制备方法
KR20160022355A (ko) 접합재 및 그것을 사용한 접합 방법
KR102243472B1 (ko) 전력반도체 접합용 소결 페이스트 조성물
TWI417399B (zh) 具有奈米微粒之複合無鉛焊錫合金組成物
EP3349262B1 (en) Metal paste and thermoelectric module
CN114043123A (zh) 纳米铜焊膏及其在芯片封装互连结构中的应用
Gao et al. Effects of phenolic resin addition on the electrical conductivity and mechanical strength of nano-copper paste formed Cu-Cu joints
Calata et al. Sintered nanosilver paste for high-temperature power semiconductor device attachment
CN104588905A (zh) Ag-Cu-Ti/Sn纳米颗粒焊膏及其制备方法
Liu et al. Ultrasonic-assisted nano Ag-Al alloy sintering to enable high-temperature electronic interconnections
Guo et al. High reliability lead free solder evaluations in power module application
Liu et al. Mechanical properties of transient liquid phase bonded joints by using Ag-In sandwich structure
JP7570149B2 (ja) ナノ銀ペースト及びその製造方法
Gao et al. Highly reliable package using Cu particles sinter paste for next generation power devices
Hu et al. Rapid formation of Cu–Cu joints with high shear strength using multiple-flocculated Ag nanoparticle paste
Satoh et al. Silver adhesive layer for enhanced pressure-free bonding using copper nanoparticles
Li et al. Pressure Copper Sintering Paste for High-Power Device Die-Attach Applications
CN114473110B (zh) 一种抗电迁移抗氧化的焊膏及其应用
Chen et al. Highly Reliable Pressure-Less Silver Sintering Joints
Chen et al. Sinter Ag joining on different metallization substrate and their high temperature reliability
CN116921914B (zh) 一种复合金属组合物及其制备方法与应用
Wu et al. Applications of low temperature sintering technology as die attach for high temperature power modules
CN116408568B (zh) 一种焊膏和组合件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211229

Address after: 510000 room 404, building B, No. 58, Nanyun Second Road, Science City, Huangpu District, Guangzhou City, Guangdong Province

Applicant after: Guangzhou Hanyuan microelectronic packaging material Co.,Ltd.

Address before: No.58, Nanyun 2nd Road, Science City, Guangzhou hi tech Industrial Development Zone, Guangzhou, Guangdong 510000

Applicant before: GUANGZHOU SOLDERWELL ADVANCED MATERIALS Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant