CN113278647A - 一种陆地棉基因组的高效定向基因调控的编辑方法 - Google Patents

一种陆地棉基因组的高效定向基因调控的编辑方法 Download PDF

Info

Publication number
CN113278647A
CN113278647A CN202110572919.8A CN202110572919A CN113278647A CN 113278647 A CN113278647 A CN 113278647A CN 202110572919 A CN202110572919 A CN 202110572919A CN 113278647 A CN113278647 A CN 113278647A
Authority
CN
China
Prior art keywords
dcas9
vector
sequence
cotton
editing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110572919.8A
Other languages
English (en)
Inventor
金双侠
张献龙
王茂军
李波
惠凤娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN202110572919.8A priority Critical patent/CN113278647A/zh
Publication of CN113278647A publication Critical patent/CN113278647A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/22Vectors comprising a coding region that has been codon optimised for expression in a respective host

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于植物基因工程技术领域,具体涉及一种陆地棉基因组的高效定向基因调控的编辑方法,本发明对含有棉花内源启动子pGhU6‑7的GhBE3‑Dcas9载体进行改造,以6TAL‑2VP64+2linker+dCas9融合蛋白取代原有的APOBEC1‑XTEN‑dCas9‑UGI蛋白,构建在棉花中具有定向上调单个基因表达量的载体Gh‑dCas9‑TV。选取GhEPSP和GhPAP1D为目标基因验证Gh‑dCas9‑TV在棉花中的应用。设计2个单靶标以及一个双靶标,利用农杆菌介导的遗传转化将转录激活编辑系统导入棉花基因组,对转基因植株进行表达量检测和转录组测序,检测本发明在异源四倍体棉花基因组中的编辑效率及全基因组和全转录组检测靶标基因,非靶标基因表达量效应。本发明具有良好的编辑效率和特异性。

Description

一种陆地棉基因组的高效定向基因调控的编辑方法
技术领域
本发明涉及基因工程技术领域,具体涉及一种陆地棉基因组的高效定向激活编辑方法,本发明涉及构建陆地棉的高效转化载体,并利用本发明的载体在陆地棉功能基因组中进行转录激活,调控基因表达上调。
背景技术
基因编辑技术自问世以来就一直作为生物技术领域的研究热点,在基因敲除、敲入、碱基替换、表观遗传修饰等领域得到了广泛的应用[1]。CRISPR/Cas9基因编辑系统由一个具有核酸内切酶功能的Cas9蛋白(或其他同源蛋白)和一条单链向导RNA(single guide,sgRNA)组成。Cas9是在细菌中发现的特异性DNA核酸内切酶,其来源于如化脓性链球菌、金黄色葡萄球菌、嗜热链球菌等,其具有两个核酸酶结构域,即HNH结构域和RuvC结构域。当sgRNA与Cas9蛋白结合靶向到基因组特定位点,Cas9切割双链产生双链断裂(doublestrand breaks,DSB),经过细胞自主性的非同源末端连接(non-homologous end joining,NHEJ)或同源重组(homology-directed repair,HR)进行修复,引入突变[2]。2013年,Qi等人将CRISPR/Cas9系统中Cas9蛋白的两个保守的内切核酸酶结构域进行突变,使Cas9蛋白失去内切核酸酶活性使其成为dCas9,dCas9不能切割DNA但仍能与特定DNA序列结合[3]。
dCas蛋白(如dCas9)可与转录抑制结构域(TRD)或转录激活结构域(TAD)融合,dCas蛋白可以与效应蛋白融合,包括转录激活子、抑制子和表观调节子,分别实现有效的基因特异性CRISPR介导的激活(CRISPRa)、干扰(CRISPRi)和表观基因组修饰[4]。转录调控因子本质上是嵌合蛋白,其DNA结合结构域与控制转录机制的功能结构域相连,促进关键辅因子的募集从而调控转录[5]。转录调控因子一方面包括转录阻遏因子,例如KRAB结构域,通过募集共抑制因子来抑制转录,最终导致基因沉默[6];一方面即转录激活因子,例如VP16(单纯疱疹病毒蛋白16),通过招募和稳定启动前复合物的一般转录因子来激活转录[7]。
基因表达涉及多个生命过程,包括DNA转录成信使RNA(mRNA)、mRNA的剪接、翻译和翻译后修饰。精确控制DNA转录成mRNA的过程,是全面控制基因表达这一复杂过程的第一步。精确调控基因表达,将会有助于我们对细胞生理学的理解,这对于生物技术的进步是必不可少的。传统的过表达技术,由于繁琐的靶标基因克隆步骤、载体容量限制、对多个启动子和终止子的要求以及T-DNA插入位点差异导致的外源基因表达水平参差不齐,因此这种方法对基因表达尤其是多基因表达研究效率低下。CRISPR/dCas9的转录激活系统的出现加快了基因调控网络、合成生物学、农艺性状改良等方面研究进展。
目前,转录激活系统在很多物种中被报道,但在异源四倍体的棉花中尚未出现报道。棉花是重要的经济作物,棉花纤维是纺织工业重要的天然纤维,棉籽油也是重要的油料储备[8]。在棉花中开发新的可行而又有效的定向调控基因工具,为棉花基因组功能分析,作物遗传改良和新品种选育提供重要技术支持。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种陆地棉基因组的高效定向基因调控的编辑方法,实现陆地棉基因组中定向转录激活调控,特别是构建一种适用于陆地棉的转录激活系统,发明基于GhBE3-dCas9[9]载体,构建了融合Cas9失活酶(dCas9),转录激活串联复合体(6TAL-2VP64)适用于棉花遗传转化系统的转录激活系统(即载体Gh-dCas9-TV)。
(二)技术方案
为实现上述目的,本发明提供如下技术方案:
一种陆地棉基因组的高效定向基因调控的编辑方法,包括以下步骤:
步骤一:制备一种能够定向调控基因表达的陆地棉基因组高效转化载体Gh-dCas9-TV,该载体的核苷酸序列如SEQ ID NO:2所示。
步骤二:制备一种能够定向调控基因表达的陆地棉基因组高效转化载体Gh-dCas9-TV,该目的序列通过以下步骤制备获得:
①阅读文章A potent Cas9-derived gene activator for plant andmammalian cells,从中获取6TAL-2VP64+2linker氨基酸序列,其核苷酸序列如序列表SEQID NO:3所示;
②文献中获取的6TAL-2VP64核苷酸序列在陆地棉中进行密码子优化;
③优化后的6TAL-2VP64+2linker目的序列通过公司(GenScript)合成,其优化后的6TAL-2VP64+2linkerr核苷酸序列如序列表SEQ ID NO:4所示;
④使用AleI/BstBI对GhBE3-dCas9载体(其核苷酸序列序列表SEQ ID NO:1所示)进行双酶切切除片段rAPOBEC1-XTEN和1573bp的dcas9片段,通过PCR扩增获得1573bp的dcas9片段,其核苷酸序列如序列表SEQ ID NO:5所示;通过infusion连接技术将上述片段(其核苷酸序列如序列表SEQ ID NO:5所示)与双酶切载体相连,获得中间载体Gh-dCas9,其核苷酸序列如序列表SEQ ID NO:6所示;再使用MluI/XbaI对上述中间载体(其核苷酸序列序列表SEQ ID NO6所示)进行双酶切切除片段UGI-NLS后,公司再把切除载体上多余的序列再与步骤①中优化后的6TAL-2VP64+2linker目的序列一起合成连接,通过测序验证,得到如序列表SEQ ID NO:2所示的适用于陆地棉的转录激活的高效转化载体Gh-dCas9-TV。
优选的,将所述步骤一或步骤二所述的载体Gh-dCas9-TV在陆地棉基因组编辑中的应用。
(三)有益效果
与现有技术相比,本发明提供了一种陆地棉基因组的高效定向基因调控的编辑方法,具备以下有益效果:
1、本发明在棉花中有较高的特异性。
2、本发明在棉花中不同基因激活效率不等,主要取决于靶标基因的原始表达水平。
3、本发明在棉花中靶向基因的启动子位置不同,则激活效率不等。
附图说明
图1:是对载体GhBE3-dCas9改造的路线图。
图2:是本发明的表达载体的中间载体的构建图。
图3:是本发明的表达载体Gh-dCas9-TV的构建图。
图4:是对载体GhBE3-dCas9进行用AleI/BstBI双酶切即切除SV40 NLS、rAPOBEC1和1573bp dcas9片段的酶切电泳图。(附图标记说明:泳道1是双酶切切除rAPOBEC1-XTEN的GhBE3检测图,2中泳道1,2,3,4是扩增片段1573bp左右,泳道M是5K的marker)
图5:是拼接后中间载体Gh-dCas9中间载体的电泳图。(附图标记说明:泳道M是5K的marker)
图6:是对中间载体Gh-dCas9切除UGI-NLS并连接公司合成片段后的电泳图。(附图标记说明:泳道M是5K的marker)
图7:是本发明sgRNA连接到Gh-dCas9-TV的电泳图。(附图标记说明:泳道1,2是目的片段连接到Gh-dCas9-TV载体,泳道M是5K的marker)
图8:本发明GhEPSP和GhGhPAP1D的遗传转化图。(附图标记说明:图6中的罗马字编号分别是:Ⅰ.无菌苗培养阶段;Ⅱ.共培养阶段。Ⅲ.选择培养阶段;Ⅳ.愈伤培养阶段;Ⅴ.分化培养阶段;Ⅵ-VII.生根培养;VIII.营养液培养。Ⅸ-X.转基因植株在温室生长)
图9:是本发明的GhPAP1D基因表型图片。(附图标记说明:在小苗子出现明显的红色表型)
图10:是本发明的GhEPSP和GhGhPAP1D基因阳性鉴定电泳图。(附图标记说明:泳道M是5K的marker)
具体实施方式
下面将结合本发明的实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
对序列表的说明:
序列表SEQ ID NO:1是本发明的GhBE3-dCas9载体的核苷酸序列。序列长度为17152bp。
序列表SEQ ID NO:2是陆地棉基因组高效转化载体Gh-dCas9-TV的核苷酸序列。序列长度为17463bp。
序列表SEQ ID NO:3是融合蛋白6TAL-2VP64+2linker的氨基酸原始序列。序列长度为468aa。
序列表SEQ ID NO:4是融合蛋白6TAL-2VP64+2linker密码子优化后核苷酸序列。序列长度为1404bp。
序列表SEQ ID NO:5是重叠延伸片段SV40 NLS和1573bp的dcas9的核苷酸序列。序列长度为1594bp。
序列表SEQ ID NO:6是本发明的中间载体Gh-dCas9载体的核苷酸序列。序列长度为16352bp。
实施例1:6TAL-2VP64+2linker目的序列的获得
查阅文献A potent Cas9-derived gene activator for plant and mammaliancells,从中获取6TAL-2VP64+2linker氨基酸序列(序列表如SEQ ID NO:3)。然后在网站GenScript Rare Codon Analysis Tool(https://www.genscript.com/tools/rare-codon-analysis)进行密码子优化获得优化后的核苷酸序列6TAL-2VP64+2linker(序列表如SEQ ID NO:4),然后经过公司(GenScript)合成。
实施例2:转化载体Gh-dCas9-TV的构建
1.GhBE3-dCas9酶切切除rAPOBEC1-XTEN和1573bp的dcas9,并infusion连接PCR扩增的1573bp的dcas9连接片段
将GhBE3-dCas9(序列表见SEQ ID NO:1)进行双酶切切除rAPOBEC1-XTEN和1573bp的dcas9,酶切体系见表2。37℃酶切5小时,凝胶电泳观察酶切条带是否正确,然后利用凝胶回收试剂盒将酶切产物纯化。酶切体系见表2。
表1 GhBE3-dCas9酶切切除rAPOBEC1体系
Figure BDA0003083231780000061
利用PCR扩增获得1573bp的dcas9连接片段,正向引物为5'GACAAGAAGTACTCGATCGG3',反向引物为:5'TCGTGAGCTCGTTGTAGAC 3',Tm值为52℃。为方便下一步的infusion连接,在两个引物的5'分别添加15bp的infusion接头,正向引物为:5'caaaaaagcaggcttGACAAGAAGTACTCGATCGG3',反向引物为:5'aggtgaagtacgtcaTCGTGAGCTCGTTGTAGAC 3',带下划线的碱基是15bp
infusion接头。
PCR反应条件如下:
预变性:95℃ 4min
变性:95℃ 30s
退火:59℃ 30s
延伸:72℃ 20s
循环:28×
最后延伸:72℃ 5min
将双酶切切开的GhBE3-dCas9载体与上述扩增片段在37℃水浴中连接反应30min,转化到大肠杆菌感受态,挑取阳性克隆进行测序。正确的菌液保菌,提质粒,即完成载体的初步改造---中间载体。Infusion连接体系见表2。
表2 GhBE3-dCas9 infusion反应体系
Figure BDA0003083231780000071
37℃水浴30min,冰上放置5min,可-20℃保存。
2.GhBE3酶切切除切除UGI,连接6TAL-2VP64+2linker
将步骤1中阳性克隆测序正确的中间载体进行M1UI/XbaI双酶切切除UGI,酶切体系见表3。37℃酶切5小时,凝胶电泳观察酶切条带是否正确,然后利用凝胶回收试剂盒将酶切产物纯化。然后公司酶切后的载体补充后与6TAL-2VP64+2linker融合蛋白片段进行连接,转化到大肠杆菌感受态,挑取阳性克隆进行测序,将序列正确的质粒命名为Gh-dCas9-TV质粒(序列表SEQ ID NO:2)。其中双酶切反应体系见表3。
表3中间载体酶切切除UGI体系
Figure BDA0003083231780000081
实施例3:Gh-dCas9-TV-sgRNA载体的构建
1.GhEPSP和GhPAP1D基因的sgRNA设计
选择GhEPSP即3-磷酸钾盐1-羧基乙烯基转移酶(Ghir_A12G010920.1)和陆地棉转录因子MYB113(Gh_D10G017610)基因为验证基因。利用生物信息工具获取两个靶标基因GhPAP1D和EPSP上游的2k启动子序列,截取两个基因转录起始位点上游500bp进行靶标的设计。利用在线软件CRISPR-P(http://cbi.hzau.edu.cn/cgi-bin/CRISPR)13在基因外显子区域设计sgRNA靶标序列。设计sgRNA靶标序列,由于驱动dCas9的启动子为棉花内源的U6-7启动子,其属于U6型PolIII启动子,该类启动子对RNA转录起始的第一个碱基存在偏好性,偏好G碱基,且靶标位于转录起始位点上游350bp-450bp间激活效率更高[li]。依照上述条件,选取两个基因效果最佳的两个靶标(编号分别为sgRNA1、sgRNA2)用来构建转录激活系统植物表达载体。为检测双sgRNA的序列见表4。
表4 sgRNA的序列
Figure BDA0003083231780000082
Figure BDA0003083231780000091
2.sgRNA与Gh-dCas9-TV载体的连接
插入Gh-dCas9-TV载体的靶标序列为tRNA-sgRNA1-gRNA以及tRNA-sgRNA2-gRNA,该两个靶标片段由公司(GenScript)合成。利用BstbI和SbfI双酶切Gh-dCas9-TV切除原本GhBE3-dCas9的sgRNA,将公司合成的tRNA+sgRNA1+gRNA片段和tRNA-sgRNA2-gRNA片段通过In-fusion连接分别连接到Gh-dCas9-TV载体的BstbI和SbfI双酶切位点处。
In-fusion连接体系见表5:
表5 In-fusion连接反应体系
Figure BDA0003083231780000092
37℃水浴30min,冰上放置5min,可-20℃保存。
实施例4:农杆菌介导的遗传转化
具体步骤如下:
A.将剥好的棉花种子(品种为Jin668,专利申请号201510833618.0)用0.1%升汞杀菌,无菌水清洗数次后放入无菌苗培养基中,28℃暗培养1天,挑去种皮,将苗扶正,在28℃,暗培养4-5d;
B.将下胚轴切成小茎段,用活化后的农杆菌侵染,弃菌液,并吹干;
C.将下胚轴平铺在放有滤纸的共培养培养基中,于20℃,暗培养1-2d;
D.将下胚轴转入到附加2,4-D的愈伤组织诱导培养基中,放入光照培养室,20-30d左右用新鲜愈伤组织诱导培养基继代培养一次;
E.当愈伤组织长成米粒状颗粒,转入分化培养基中,进一步分化成胚状体;
F.将分化出的小苗继代到生根培养基中,直至长成生根良好健康的小苗;
G.将小苗转到清水中,进行炼苗,一周左右后,转移到到温室。
转化所用的培养基组分及配比:
无菌苗萌发培养基:1/2MS大量元素,15g/L葡萄糖,2.5g/L的Phytagel;pH:6.1-6.2。
愈伤组织诱导培养基:MSB+24-D 0.1mg/L+KT 0.1mg/L+3%Glucose+0.3%Phytagel;pH:5.85-5.95。
农杆菌活化培养基:胰化蛋白胨5g/L+NaCl 5g/L+MgSO4.7H2O 0.1g/L+KH2PO4+0.25g/L+甘露醇5g/L+甘氨酸1.0g/L;pH:5.85-5.95。
共培养培养基:MSB+2,4-D 0.1mg/l+KT 0.1mg/l+50mg/l AS+3%Glucose+0.25%Phytagel,pH5.8。
选择培养基:MSB+2,4-D 0.1mg/L+KT 0.1mg/L+3%Glucose+0.3%Phytagel,卡那霉素50mg/L和头孢霉素400mg/L;pH:5.85-5.95。
分化培养基:分化培养基:MSB培养基中去掉NH4NO3,将KNO3用量加倍+Gln 1.0g/L+Asn 0.5g/L+IBA 0.5mg/L+KT 0.15mg/L+3%Glucose+0.25%Phytagel,pH:6.1-6.2。
生根培养基:1/2MS无机盐+B5有机物,15g/L葡萄糖,2.5g/L的Phytagel;pH:5.90-5.95;
MSB的成分如下:MS培养基+B5维生素。
实施例5:Gh-dCas9-TV对在转基因棉花植株中基因编辑检测中的应用
①提取DNA检测编辑效率
提取的棉花嫩叶阳性基因组DNA,以阳性DNA为模板,扩增GhEPSP基因(Ghir_A12G010920.1)和GhPAP1D(Gh_D10G017610)靶标序列,筛选阳性单株。
②观察Gh-dCas9-TV编辑后GhPAP1D基因的表型
观察观察Gh-dCas9-TV编辑后GhPAP1D基因后出现的愈伤组织和小苗子,发现愈伤组织变为明显红色,和上一轮阳性鉴定的结果意义对应,且有部分小苗子出现红色表型,叶片和茎秆均为红色。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (2)

1.一种陆地棉基因组的高效定向基因调控的编辑方法,其特征在于,包括以下步骤:
步骤一:制备一种能够定向调控基因表达的陆地棉基因组高效转化载体Gh-dCas9-TV,该载体的核苷酸序列如SEQ ID NO:2所示。
步骤二:制备一种能够精准编辑单个碱基的陆地棉基因组高效转化载体Gh-dCas9-TV,该载体通过下列步骤制备获得:
①获得目的序列6TAL-2VP64+2linker,其核苷酸序列如序列表SEQ ID NO:4所示,具体地,该目的序列通过以下步骤制备获得:
②在如序列表SEQ ID NO:3所示的序列Gh-dCas9-TV在棉花中进行密码子优化;
③优化后的序列如序列表SEQ ID NO:4,根据序列进行核苷酸合成;
④使用AleI/BstBI对GhBE3-dCas9载体(其核苷酸序列序列表SEQ ID NO:1所示)进行双酶切切除片段rAPOBEC1-XTEN和1573bp的dcas9片段,通过PCR扩增获得1573bp的dcas9片段,其核苷酸序列如序列表SEQ ID NO:5所示;通过infusion连接技术将上述片段(其核苷酸序列如序列表SEQ ID NO:5所示)与双酶切载体相连,获得中间载体Gh-dCas9,其核苷酸序列如序列表SEQ ID NO:6所示;再使用M1UI/XbaI对上述中间载体(其核苷酸序列序列表SEQ ID NO6所示)进行双酶切切除片段UGI-NLS后,公司再把切除载体上多余的序列再与步骤①中优化后的6TAL-2VP64+2linker目的序列一起合成连接,通过测序验证,得到如序列表SEQ ID NO:2所示的适用于陆地棉的转录激活的高效转化载体Gh-dCas9-TV。
2.根据权利要求1所述的一种陆地棉基因组的高效定向基因调控的编辑方法,其特征在于:将所述步骤一或步骤二所述的载体Gh-dCas9-TV在陆地棉基因组编辑中的应用。
CN202110572919.8A 2021-05-25 2021-05-25 一种陆地棉基因组的高效定向基因调控的编辑方法 Pending CN113278647A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110572919.8A CN113278647A (zh) 2021-05-25 2021-05-25 一种陆地棉基因组的高效定向基因调控的编辑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110572919.8A CN113278647A (zh) 2021-05-25 2021-05-25 一种陆地棉基因组的高效定向基因调控的编辑方法

Publications (1)

Publication Number Publication Date
CN113278647A true CN113278647A (zh) 2021-08-20

Family

ID=77281448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110572919.8A Pending CN113278647A (zh) 2021-05-25 2021-05-25 一种陆地棉基因组的高效定向基因调控的编辑方法

Country Status (1)

Country Link
CN (1) CN113278647A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826386A (zh) * 2020-07-30 2020-10-27 西南大学 一种调控棉花纤维呈色的融合基因及其表达载体和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203714A (zh) * 2016-12-20 2018-06-26 华中农业大学 一种棉花基因的编辑方法
CN109593781A (zh) * 2018-12-20 2019-04-09 华中农业大学 陆地棉基因组的精准高效编辑方法
CN110283840A (zh) * 2019-04-11 2019-09-27 华中农业大学 陆地棉基因组的精确高效编辑方法
CN111926034A (zh) * 2020-08-24 2020-11-13 华中农业大学 陆地棉基因组单碱基编辑(abe)系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108203714A (zh) * 2016-12-20 2018-06-26 华中农业大学 一种棉花基因的编辑方法
CN109593781A (zh) * 2018-12-20 2019-04-09 华中农业大学 陆地棉基因组的精准高效编辑方法
CN110283840A (zh) * 2019-04-11 2019-09-27 华中农业大学 陆地棉基因组的精确高效编辑方法
CN111926034A (zh) * 2020-08-24 2020-11-13 华中农业大学 陆地棉基因组单碱基编辑(abe)系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111826386A (zh) * 2020-07-30 2020-10-27 西南大学 一种调控棉花纤维呈色的融合基因及其表达载体和应用
CN111826386B (zh) * 2020-07-30 2022-02-01 西南大学 一种调控棉花纤维呈色的融合基因及其表达载体和应用

Similar Documents

Publication Publication Date Title
CN110709519A (zh) 表达调控元件及其用途
Lawrenson et al. Creating targeted gene knockouts in barley using CRISPR/Cas9
CN109234310A (zh) 快速获得无转基因基因编辑植株的重组载体及使用方法
Lawrenson et al. Creating targeted gene knockouts in Brassica oleracea using CRISPR/Cas9
US20220170033A1 (en) Plant explant transformation
CN108795978B (zh) 一种通过基因编辑创制雄性不育番茄新种质的方法及其应用
CN111926034A (zh) 陆地棉基因组单碱基编辑(abe)系统
CN113278647A (zh) 一种陆地棉基因组的高效定向基因调控的编辑方法
WO2001096583A2 (en) Removal of selectable markers from transformed cells
US20230313212A1 (en) Plastid transformation by complementation of nuclear mutations
CN102220327B (zh) 甘蓝型油菜BnPABP8启动子及制备方法和应用
US20220195445A1 (en) Methods and compositions for generating dominant short stature alleles using genome editing
CA3112164C (en) Virus-based replicon for plant genome editing without inserting replicon into plant genome and use thereof
CN113337539A (zh) 一种适用于陆地棉的基因精准高效编辑的方法
WO2020006112A1 (en) Delivery of developmental regulators to plants for the induction of meristematic tissue with genetic alterations
CN111118057B (zh) 用于重组酶介导的特异性位点的基因叠加的大豆目标系
CN113416735B (zh) 一种烟草生殖细胞特异高表达基因及应用
CN117025627A (zh) 烟草氯离子通道蛋白NtCLC13及其编码基因和应用
CN110295192B (zh) 利用Gateway技术构建TYLCV和ToCV的双价RNAi表达载体及其应用
CN115125252A (zh) CsSH1基因在提高黄瓜苗期耐徒长中的应用和方法
US20220162625A1 (en) Methods to improve site-directed integration frequency
CN111235147A (zh) 一种氮高效转基因大豆sa-4外源插入片段的侧翼序列、获取方法和应用
CN117247438A (zh) 大豆乙烯响应因子GmERF113蛋白在提高植物耐镉胁迫中的应用
CN117051006A (zh) 一种正向调控白菜抽薹开花的基因及其应用
Wang et al. LIST OF ABBREVIATIONS CDS coding DNA sequence CRISPR/Cas9 DSBs IAA32

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination