CN115125252A - CsSH1基因在提高黄瓜苗期耐徒长中的应用和方法 - Google Patents

CsSH1基因在提高黄瓜苗期耐徒长中的应用和方法 Download PDF

Info

Publication number
CN115125252A
CN115125252A CN202110299392.6A CN202110299392A CN115125252A CN 115125252 A CN115125252 A CN 115125252A CN 202110299392 A CN202110299392 A CN 202110299392A CN 115125252 A CN115125252 A CN 115125252A
Authority
CN
China
Prior art keywords
gene
cucumber
cssh1
edited
editing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110299392.6A
Other languages
English (en)
Inventor
李季
陈劲枫
伍若彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN202110299392.6A priority Critical patent/CN115125252A/zh
Publication of CN115125252A publication Critical patent/CN115125252A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及CsSH1基因在提高黄瓜苗期耐徒长中的应用,通过CRISPR/Cas9系统编辑CsSH1基因,使CsSH1基因功能失活来提高黄瓜苗期的耐徒长性。本发明的有益效果在于:(1)利用基因编辑技术获得耐徒长的黄瓜植株,较传统的育种方法更经济、有效,是一种创建抗性材料的好方法,大大缩短了育种年限;(2)提供了耐徒长的黄瓜基因编辑植株,为选育苗期耐徒长黄瓜杂交种提供了新的育种材料。

Description

CsSH1基因在提高黄瓜苗期耐徒长中的应用和方法
一、技术领域
本发明涉及生物技术领域,具体涉及利用CRISPR/Cas9系统编辑CsSH1基因,进而获得苗期耐徒长黄瓜的黄瓜品种。
二、背景技术
黄瓜是重要的蔬菜作物。中国的黄瓜种植面积、产量和人均年消费量均居世界首位。我国黄瓜生产以设施栽培为主,基本实现了周年供应。在生产过程中,培育壮苗是黄瓜生产中防治病虫害,获得高产的基础,但由于秋冬茬育苗期(7-8月)的高温高湿,越冬茬和冬春茬育苗期(11月后)的光照不足等气候因素,经常造成秧苗徒长问题。徒长黄瓜幼苗茎秆纤细、节间长、叶片薄而色淡,这种秧苗根系弱小,抗性差,栽植后缓苗期长,成活率低,很难获得早熟与丰产。加强保护地内的温、湿、光照和水肥管理,甚至使用一些激素类制剂能够在一定程度上防治黄瓜幼苗徒长,但偶遇极端气候就会造成生产问题,同时增加了生产成本。因此,培育苗期耐徒长的黄瓜品种是彻底解决黄瓜育苗徒长问题的最佳途径。
发明人团队在前期研究发现,源自我国云南省西双版纳地区的半野生资源材料西双版纳黄瓜(Cucumis sativus L.var.xishuangbannanesis Qi et Yuan)表现为苗期下胚轴短、耐徒长的特点。发明人团队前期研究通过利用西双版纳黄瓜自交系(SWCC8)和栽培黄瓜自交系‘北京截头’(CC3)构建了遗传定位群体,进一步通过构建遗传图谱结合基因组重测序,完成了西双版纳黄瓜短下胚轴基因CsSH1的图位克隆,并研究发现该基因的突变是导致黄瓜幼苗下胚轴矮壮、耐徒长的原因(Bo等,SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation,Plant Physiology,2016)。CsSH1是一个极具商业价值的农艺性状基因,然而由于传统育种方法效率较低,CsSH1基因在黄瓜改良中应用不足。
基因编辑技术是利用靶向性的序列特异核酸酶对基因组进行定点突变或精准修饰的技术,其中CRISPR/Cas系统是一种具有核酸内切酶活性的复合体,识别特定的DNA序列,进行特定位点切割造成双链DNA断裂,在没有模板的条件下,发生非同源重组末端连接,造成移码突变,导致基因敲除。这一技术由于能快速、简便、高效地靶向基因组任何基因,从而引起了广泛的关注,在基因功能研究与作物的遗传改良中得到了广泛应用。目前随着CRISPR/Cas9基因编辑技术的发展完善,可以在基因组的特定位点产DNA双链断裂,实现基因敲除、定点插入或替换,可以定向的对植物基因组进行编辑,并且通过后代的分离可已将含有转基因成分的植株分离出去,达到精确快速改良品种的目的。
三、发明内容
本发明要解决的技术问题是解决不良栽培环境下黄瓜幼苗徒长的问题,提供一种培育耐徒长黄瓜的新方法。
为解决上述技术问题,本发明提供了一种利用CRISPR/Cas系统编辑黄瓜CsSH1基因从而制备苗期耐徒长黄瓜的方法。
本发明所编辑的与黄瓜下胚轴发育相关的基因,名称为CsSH1。CsSH1基因编码一个RAD5同源蛋白,在DNA修复过程中发挥功能。在西双版纳黄瓜中CsSH1携带了一个罕见的变异位点,这个变异可能导致了基因功能的丧失,从而使黄瓜幼苗矮壮、耐徒长。所述黄瓜CsSH1基因的蛋白编码区的核苷酸序列如SEQ ID NO.1所示。
进一步地,本发明分别在CsSH1基因第1外显子处设计2个sgRNA位点,分别记为sgRNAexon1-1、sgRNAexon1-2,均位于该基因的第1个外显子(见附图1),序列如下所示:
sgRNAexon1-1:ACCGACGGTACAAGTGAAGG AGG
sgRNAexon1-2:ACTCGCGGATGCAATGGGGCT TGG
斜体序列为19-20bp的sgRNA,加下划线非斜体碱基为PAM位点;sgRNAexon1-1和sgRNAexon2-1靶点均为正向序列,所述序列均是发明人通过创造性劳动筛选获得,非通过常规软件设计获得。
进一步地,本发明构建了含有上述sgRNA和Cas9蛋白的基因编辑载体;将所述含有的sgRNA和Cas9蛋白的基因编辑载体,利用农杆菌介导的遗传转化方法,转化到苗期不耐徒长黄瓜材料中,并进行PCR转基因鉴定。
进一步地,本发明采用PCR方法,扩增上述被鉴定为转基因黄瓜的CsSH1靶标序列,通过对PCR产物测序,检测靶标序列处的编辑效果,确定被成功编辑的黄瓜植株。
进一步地,将靶点获得成功编辑的植株进行自交加代,从加代植株中采用PCR和测序方法筛选编辑靶点纯合,且不含外源基因片段的基因编辑黄瓜。
这些纯合的黄瓜编辑植株在高温高湿等逆境条件下幼苗表现为矮壮,与耐徒长西双版纳黄瓜SWCC表型相似,而对照不耐徒长的黄瓜CCMC表现为徒长(附图2所示)。
本发明具有以下有益效果:
(1)利用基因编辑技术获得耐徒长的黄瓜植株,较传统的育种方法更经济、有效,是一种创建抗性材料的好方法,大大缩短了育种年限;
(2)提供了耐徒长的黄瓜基因编辑植株,为选育苗期耐徒长黄瓜杂交种提供了新的育种材料。
四、附图说明
图1:黄瓜CsSH1基因的结构和靶点sgRNAexon1-1、sgRNAexon1-2所在位置。
图2:高温高湿处理下的被编辑植株和对照植株幼苗下胚轴长度的比较(左图),以及苗期下胚轴生长曲线(右图)。
SWCC:耐徒长的西双版纳黄瓜,1和2号植株均表现为胚轴矮壮;
CCMC:不耐徒长的黄瓜品种,1和2号植株均表现为徒长;
被编辑植株:经测序验证靶点获得成功编辑的T0代黄瓜,进行自交加代的T1代植株材料,由于基因的自交分离,T1代植株表型也出现分离,其中编号SH1-3-4、SH1-3-5、SH1-3-6和SH1-3-19和SH1-3-19的植株表现为矮壮、耐徒长,而其他编号的植株表现为徒长。
图3:SH1-3-4、SH1-3-5、SH1-3-6和SH1-3-19和SH1-3-19这5个基因编辑黄瓜在CsSH1基因靶点位置的编辑结果。
五、具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
举例说明本发明的具体实施过程,使本领域技术人员按照其不需要创造性劳动就能完成该发明即可,实施例的限定不能作为限定发明人保护范围的局限。
实施例1 黄瓜CsSH1基因编辑靶点设计和编辑载体构建
在葫芦科作物基因组数据网站http://cucurbitgenomics.org/上找到CsSH1的DNA全长序列,其蛋白编码区的核苷酸序列如SEQ ID NO.1所示。将序列输入http://crispr.hzau.edu.cn/cgi-bin/CRISPR2/CRISPR在线工具,进行靶点设计及脱靶的预测。基于在线软件仅仅能用于辅助设计,因此为了提高打靶效率,本发明针对黄瓜CsSH1基因设计了两个基因编辑靶点(sgRNAexon1-1和sgRNAexon1-2),均位于该基因的第1个外显子(见附图1),序列如下所示:
sgRNAexon1-1:
Figure BSA0000236586850000031
sgRNAexon1-2:
Figure BSA0000236586850000032
(斜体序列为19-20bp的sgRNA,加下划线非斜体碱基为PAM位点;sgRNAexon1-1和sgRNAexon2-1靶点均为正向序列)。
基因编辑基础载体pYLCRISPR/CAS9-DN受赠于华南农业大学刘耀光院士研究团队,构建方法参照刘院士团队发表的实验技术论文Ma XL,Liu YG.CRISPR/Cas9-BasedMultiplex Genome Editing in Monocot and Dicot Plants:CRISPR/Cas9-BasedMultiplex Genome Editing in Plants.Current Protocols in MolecularBiology.John Wiley & Sons,Inc.2016.)。两个靶点对应的sgRNA分别由AtU3b和AtU61启动子驱动转录。最终构建的载体命名为pCRISPR/CAS9-sgRNASH1。
实施例2 基因编辑载体的黄瓜遗传转化
采用通用的热激法,将构建好的pCRISPR/CAS9-sgRNASH1重组载体转化至农杆菌GV3101中,并将pCRISPR/CAS9-sgRNASH1/GV3101重组农杆菌转化不耐徒长的黄瓜自交系CCMC(Cucumis sativus cv.CCMC,南京农业大学葫芦科作物遗传与种质创新实验室),具体方法为:
(1)取出保存较好的甘油pCRISPR/CAS9-sgRNASH1/GV3101重组农杆菌菌株置于冰上溶解,在YEB液体培养基(含有50mg/L Kan,50mg/L Rif,20mg/L Genta,10mg/L Tet)中,28℃、250rpm条件下避光培育20h左右,农杆菌浓度OD600的值达到0.5~1.0待用。
(2)选取CCMC无菌苗子叶节为转化外植体。将下胚轴纵切使子叶成均匀两片,子叶节处用刀尖轻刮造成伤口,正面向上接种于预培养基上,25℃、16小时光照条件下预培养1天。
(3)将预培养过后的外植体震荡重悬于重组农杆菌侵染液中孵育20min,用无菌滤纸吸除外植体表面的侵染液,正面朝上在共培养基上进行黑暗培养3天。
(4)将经过共培养的外植体转移到黄瓜再生诱导培养基上(100mg/L Kan抗生素),15天继代一次,可继代培养2-3次,切取抗性芽转移至含有100mg/L Kan的生根培养基,培养1周至生根,炼苗。
实施例3 转基因黄瓜分子鉴定
将实施例2中获得的抗性苗的幼叶去下,采用常用的CTAB法提取基因组DNA,设计载体所携带的卡那霉素抗性基因NPTII的特异性引物NPTII-F:CTGGGCACAACAGACAATC和NPTII-R:TACCGTAAAGCACGAGGAA,鉴定植株是插入外源T-DNA。以CCMC未转化植株的基因组DNA为阴性对照组,以pCRISPR/CAS9-sgRNASH1质粒DNA为阳性对照组,进行PCR扩增。PCR反应体系:模板DNA 1.0μL,上下游引物各1.0μL,Mix 4.2μL,加ddH2O补全至20μL。PCR设计程序为:94℃预变性5min;94℃变性30S,52℃退火40S,72℃延伸1min,35个循环;72℃10min。PCR的扩增产物在1%琼脂糖凝胶中电泳,如果扩增出38bp的目标DNA条带则表示该样本为转基因,在CCMC和非转基因植株中无法扩增出DNA条带,筛选到4株转基因植株。
实施例4 CsSH1基因编辑黄瓜的筛选鉴定
将4株已鉴定为转基因植株的黄瓜移栽至玻璃温室,常规栽培管理,采用单株自交方式分别收获种子200-500粒。每个编号取100粒种子播种于穴盘,待植株长至2叶1心状态,分别采集叶片,采用CTAB法提取基因组DNA。
在sgRNAexonl-1和sgRNAexon2-1靶点位置设计引物SH1-PCR12-F:GGTGACCCTGATGAGGCTATTA和SH1-PCR12-R:CCAATTATCAATGCCTTTATCTTC,进行PCR扩增,PCR扩增产物约为216bp,PCR产物送公司测序,筛选靶点序列发生编辑(包括杂合、纯合、双位点编辑等)的植株。同时采用实施例3中所述的转基因鉴定引物NPTII-F和NPTII-R鉴定被编辑植株中是否含有转基因序列。选择被编辑位点为纯合,且无转基因序列的植株,移栽至温室,进行自交留种。
实施例5 被编辑植株的耐徒长性鉴定
分别选取上述筛选到的被编辑位点为纯合,且无外源基因插入的被编辑植株,以及不耐徒长黄瓜CCMC、耐徒长西双版纳黄瓜SWCC作为对照,种子各30粒进行催芽,待种子露白后,播种到穴盘中。在人工气候箱中培养,设置高温高湿栽培条件:昼夜光周期16h/8h,温度36℃,相对湿度为80-100%,每周浇水4次,每次50mL/株。培养14天后,可以观察到SWCC植株在高温高湿逆境条件下植株矮壮、耐徒长,而对照植株CCMC在逆境下出现明显徒长,编号SH1-3-4、SH1-3-5、SH1-3-6和SH1-3-19和SH1-3-21的被编辑植株表现为胚轴矮壮,其他编号的植株表现为徒长,见附图2。编号SH1-3-4、SH1-3-5、SH1-3-6和SH1-3-19和SH1-3-21的被编辑植株的靶点序列被编辑的结果见附图3。
Figure ISA0000236586870000011
Figure ISA0000236586870000021
Figure ISA0000236586870000031
Figure ISA0000236586870000041
Figure ISA0000236586870000051
Figure ISA0000236586870000061
Figure ISA0000236586870000071
Figure ISA0000236586870000081
Figure ISA0000236586870000091

Claims (7)

1.CsSH1基因在提高黄瓜苗期耐徒长中的应用,其特征在于,所述CsSH1基因的蛋白编码区的核苷酸序列如SEQ ID NO.1所示。
2.用于编辑权利要求1中所述的CsSH1基因的两个靶点,其特征在于:所述靶点sgRNAexon1-1序列为ACCGACGGTACAAGTGAAGG AGG,靶点sgRNAexon1-2序列为ACTCGCGGATGCAATGGGGCT TGG。
3.一个用于编辑黄瓜CsSH1基因的CRISPR/Cas9载体,其特征在于,包含权利要求2中所述靶点。
4.一种编辑黄瓜CsSHI基因的方法,其特征在于,将权利要求3所述载体导入黄瓜中,通过CRISPR/Cas9蛋白的定点切割与随机性修复,制备得到CsSH1基因被编辑的黄瓜。
5.按照权利要求4中所述方法获得的5个纯合的基因编辑黄瓜,分别为纯合编辑材料SH1-3-4、SH1-3-5、SH1-3-6和SH1-3-19和SH1-3-21,其特征在于:(1)所述基因编辑黄瓜不含外源基因片段,(2)所述基因编辑黄瓜在高温高湿的栽培条件下幼苗表现为耐徒长,
纯合编辑材料SH1-3-4的被编辑CsSH1基因的核苷酸序列如SEQ ID NO.2所述,
纯合编辑材料SH1-3-5的被编辑CsSH1基因的核苷酸序列如SEQ ID NO.3所述,
纯合编辑材料SH1-3-6的被编辑CsSH1基因的核苷酸序列如SEQ ID NO.4所述,
纯合编辑材料SH1-3-19的被编辑CsSH1基因的核苷酸序列如SEQ ID NO.5所述,
纯合编辑材料SH1-3-21的被编辑CsSH1基因的核苷酸序列如SEQ ID NO.6所述。
6.按照权利要求4中所述的CsSH1基因被编辑的黄瓜在选育苗期耐徒长黄瓜杂交种的应用。
7.按照权利要求5中所述方法获得的CsSH1基因被编辑的黄瓜在选育苗期耐徒长黄瓜杂交种的应用。
CN202110299392.6A 2021-03-19 2021-03-19 CsSH1基因在提高黄瓜苗期耐徒长中的应用和方法 Pending CN115125252A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110299392.6A CN115125252A (zh) 2021-03-19 2021-03-19 CsSH1基因在提高黄瓜苗期耐徒长中的应用和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110299392.6A CN115125252A (zh) 2021-03-19 2021-03-19 CsSH1基因在提高黄瓜苗期耐徒长中的应用和方法

Publications (1)

Publication Number Publication Date
CN115125252A true CN115125252A (zh) 2022-09-30

Family

ID=83375113

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110299392.6A Pending CN115125252A (zh) 2021-03-19 2021-03-19 CsSH1基因在提高黄瓜苗期耐徒长中的应用和方法

Country Status (1)

Country Link
CN (1) CN115125252A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388756A (zh) * 2011-07-27 2012-03-28 南京农业大学 一种利用led光源控制黄瓜幼苗徒长的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102388756A (zh) * 2011-07-27 2012-03-28 南京农业大学 一种利用led光源控制黄瓜幼苗徒长的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BO K, ET AL: "SHORT HYPOCOTYL1 Encodes a SMARCA3-Like Chromatin Remodeling Factor Regulating Elongation", 《PLANT PHYSIOL》, vol. 172, no. 2, pages 1389 - 53 *
宋蒙飞等: "黄瓜株型性状分子基础研究进展", 《园艺学报》, vol. 49, no. 12 *
张明菊: "《精编分子生物学实验技术》", 世界图书出版公司, pages: 48 - 53 *

Similar Documents

Publication Publication Date Title
US20200140874A1 (en) Genome Editing-Based Crop Engineering and Production of Brachytic Plants
WO2022135246A1 (zh) 一种控制大豆-根瘤菌匹配性的r基因及其蛋白质和应用
CN109234310B (zh) 快速获得无转基因基因编辑植株的重组载体及使用方法
WO2023005160A1 (zh) 一种禾本科植物的遗传转化方法
CN102725414A (zh) 用于通过在转化过程中诱导bbm提供可育植物的方法
CN109486832B (zh) 一种创建有限生长株型棉花的方法
CN108795978B (zh) 一种通过基因编辑创制雄性不育番茄新种质的方法及其应用
US20230081632A1 (en) Immature inflorescence meristem editing
US12077764B2 (en) Delivery of developmental regulators to plants for the induction of meristematic tissue with genetic alterations
CN113088536B (zh) 一种提高白桦扦插生根率的转基因方法
CN115125252A (zh) CsSH1基因在提高黄瓜苗期耐徒长中的应用和方法
Hu et al. The application of the ‘Gene-deletor’technology in banana
BR112021014917A2 (pt) Métodos e composições para gerar alelos de estatura baixa dominantes usando edição de genoma
CN116286960B (zh) 玉米单倍体诱导系的遗传转化和基因编辑
CN116789785B (zh) 长雄蕊野生稻高产、高光效基因FarL1及其应用
CN113151352B (zh) 一种八倍体油菜转基因方法以及在基因编辑中的应用
CN110863006B (zh) 一种提高水稻分蘖和再生的方法
Sriskandarajah et al. Regeneration and transformation in adult plants of Campanula species
EP4019638A1 (en) Promoting regeneration and transformation in beta vulgaris
CN116751808A (zh) 调控植物开花和成熟时间的方法及其生物材料与应用
Zhang et al. Application of CRISPR-Based Technology in Plant Gene Editing and Agricultural Engineering
CN117721148A (zh) TaRVR1蛋白质或生物材料在调控小麦性状中的应用
CN115948451A (zh) LsARF3蛋白或其编码基因在调控叶用莴苣的高温抽薹性能中的应用
CN117946232A (zh) 长雄蕊野生稻大穗高产基因OlGn8.2及其应用
CN118581118A (zh) 过表达水稻SnRK1α基因在提高植物抗非生物胁迫以及产量中的用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220930