CN113224148B - 具有氮化硅阻挡层的sgt器件及制备方法 - Google Patents

具有氮化硅阻挡层的sgt器件及制备方法 Download PDF

Info

Publication number
CN113224148B
CN113224148B CN202110477496.1A CN202110477496A CN113224148B CN 113224148 B CN113224148 B CN 113224148B CN 202110477496 A CN202110477496 A CN 202110477496A CN 113224148 B CN113224148 B CN 113224148B
Authority
CN
China
Prior art keywords
gate electrode
doped region
silicon nitride
barrier layer
control gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110477496.1A
Other languages
English (en)
Other versions
CN113224148A (zh
Inventor
李泽宏
莫家宁
王彤阳
叶俊
肖璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Wuxi China Resources Huajing Microelectronics Co Ltd
Original Assignee
University of Electronic Science and Technology of China
Wuxi China Resources Huajing Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China, Wuxi China Resources Huajing Microelectronics Co Ltd filed Critical University of Electronic Science and Technology of China
Priority to CN202110477496.1A priority Critical patent/CN113224148B/zh
Publication of CN113224148A publication Critical patent/CN113224148A/zh
Application granted granted Critical
Publication of CN113224148B publication Critical patent/CN113224148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66553Unipolar field-effect transistors with an insulated gate, i.e. MISFET using inside spacers, permanent or not
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种具有氮化硅阻挡层的SGT器件及制备方法,包括从下至上依次层叠设置的金属化漏极、N+衬底、N‑漂移区和金属化源极;N‑漂移区中具有沟槽栅结构、P型掺杂区、P+重掺杂区和N+重掺杂区;沟槽栅结构包括氧化层、控制栅电极、氮化硅阻挡层和屏蔽栅电极;当器件正向导通时,控制栅电极接正电位,金属化漏极接正电位,金属化源极接零电位;当器件反向阻断时,控制栅电极和金属化源极短接且接零电位,金属化漏极接正电位;本发明具有较大的正向电流、较小的阈值电压、较小的导通电阻等特性,并且有效解决了SGT击穿电压不稳定的可靠性问题。

Description

具有氮化硅阻挡层的SGT器件及制备方法
技术领域
本发明属于功率半导体技术领域,具体涉及一种具有氮化硅阻挡层的SGT器件及其制备方法。
背景技术
自2003年Fairchild半导体ZengJun博士提出Shield-gate VDMOS以来,这种具有低比导通电阻低栅电荷的器件便受到广泛关注。该器件在常规槽栅VDMOS槽内引入新的电极,可作为体内场板辅助耗尽器件漂移区载流子降低器件的比导通电阻,也可起屏蔽作用减小栅电极和漏电极的交叠面积从而降低器件的米勒电容降低栅电荷。相比传统VDMOS器件,屏蔽栅VDMOS器件具有功率损耗低、寄生电容小、开关速度快、高频特性好等优点,成为当前中低压应用领域的主流器件。
由于屏蔽栅的引入,SGT存在着与时间相关的雪崩击穿不稳定性,严重影响SGT器件的可靠性。雪崩击穿产生的热空穴破坏屏蔽栅氧化层和硅界面的Si-H键,分离的氢向屏蔽栅扩散,Si的悬空键作为空穴陷阱工作。这导致SGT器件雪崩击穿电压随着应力时间的增加而先增大后减小,随着应力时间增加,当器件的雪崩击穿电压低于系统工作电压,器件容易发生失效,影响整个系统的运行。本发明提出的一种具有氮化硅阻挡层的SGT器件可以有效抑制SGT器件雪崩击穿不稳定性,提高SGT器件在应用过程中的稳定性与可靠性。
发明内容
本发明所要解决的技术问题是针对现有技术存在的问题,提供一种具有氮化硅阻挡层的SGT器件及制备方法。
为实现上述发明目的,本发明技术方案如下:
一种具有氮化硅阻挡层的SGT器件,包括从下至上依次层叠设置的金属化漏极1、N+衬底2、N-漂移区3和金属化源极11;
所述N-漂移区3中具有沟槽栅结构、P型掺杂区4、P+重掺杂区6和N+重掺杂区5;
所述沟槽栅结构包括氧化层8、位于氧化层8内部的控制栅电极7及氮化硅阻挡层9和屏蔽栅电极10,氮化硅阻挡层9和屏蔽栅电极10位于控制栅电极7下方,控制栅电极7和屏蔽栅电极10不接触,氮化硅阻挡层9为U形,氮化硅阻挡层9位于屏蔽栅电极10左右两侧和底部的氧化层8中;
P型掺杂区4位于所述沟槽栅结构两侧的N-漂移区3的顶层,P+重掺杂区6和N+重掺杂区5并排位于所述P型掺杂区4的顶层,所述P型掺杂区4、N+重掺杂区5靠近控制栅电极7的侧面都与所述氧化层8接触;P型掺杂区4的垂直深度不超过控制栅电极7的深度;P+重掺杂区6和N+重掺杂区5的上表面都和金属化源极11接触,金属化源极11和控制栅电极7通过所述氧化层8相隔离;屏蔽栅电极10和金属化源极11短接;
当器件正向导通时,控制栅电极7接正电位,金属化漏极1接正电位,金属化源极11接零电位;当器件反向阻断时,控制栅电极7和金属化源极11短接且接零电位,金属化漏极1接正电位。
作为优选方式,所述氧化层8为二氧化硅,或者为二氧化硅和氮化硅的复合材料。
作为优选方式,所述控制栅电极7和屏蔽栅电极10为多晶硅。
作为优选方式,器件所使用的半导体材料为体硅、或碳化硅、或砷化镓或锗硅。
本发明还提供一种具有氮化硅阻挡层的SGT器件的制备方法,包括如下步骤:
(1)单晶硅准备及外延生长:采用重掺杂单晶硅N+衬底2,晶向为<100>,采用气相外延方法生长N-漂移区3;
(2)刻槽:淀积硬掩膜作为后续挖槽的阻挡层,利用光刻板进行槽刻蚀,刻蚀出槽栅区;
(3)二氧化硅的填充:去掉硬掩膜,在槽内生长氧化层8;
(4)氮化硅的淀积:采用淀积工艺,在氧化层8上形成氮化硅阻挡层9;
(5)二氧化硅的淀积:采用淀积工艺,在氮化硅阻挡层9上形成氧化层8;
(6)多晶硅的淀积与刻蚀:淀积屏蔽栅电极10;利用光刻板刻掉氧化层8、氮化硅阻挡层9和屏蔽栅电极10的上半部分;
(7)二氧化硅的淀积:采用淀积工艺,在槽栅底部形成氧化层8;
(8)热氧化层生长:对槽栅区进行氧化层热生长,形成侧壁栅氧化层8;
(9)多晶硅的淀积与刻蚀:淀积控制栅电极7,多晶硅的厚度要保证能够填满槽型区域;利用光刻板对控制栅电极7刻蚀,并在控制栅电极7上方淀积二氧化硅,刻蚀表面二氧化硅;
(10)离子注入:P型掺杂区4硼注入,P型掺杂区4的垂直深度不超过控制栅电极7的深度;
(11)离子注入:N型重掺杂区砷注入,形成N+重掺杂区5,P型重掺杂区硼注入,形成P+重掺杂区6;
(12)金属化:正面金属化,金属刻蚀,背面金属化,钝化。
下面从两个方面说明本发明的工作原理:
(1)器件的正向导通
本发明所提供的具有氮化硅阻挡层的SGT器件,其正向导通时的电极连接方式为:控制栅电极7接正电位,金属化漏极1接正电位,金属化源极11接零电位。当控制栅电极7施加的正偏电压达到阈值电压时,在P型掺杂区4中靠近氧化层8的一侧形成反型沟道;在金属化漏极1的正向偏压下,电子作为载流子从N+重掺杂区5经过P型掺杂区4中的反型沟道,注入N-漂移区3,并到达金属化漏极1形成正向电流,SGT器件导通。
(2)器件的反向阻断
本发明所提供的具有氮化硅阻挡层的SGT器件,其反向阻断时的电极连接方式为:控制栅电极7和金属化源极11短接且接零电位,金属化漏极1接正电位。
由于零偏压时P型掺杂区4中没有反型层沟道,多子电子的导电通路被夹断。增大反向电压时,耗尽层边界将向靠近金属化漏极1一侧的N-漂移区3扩展以承受反向电压。与普通的槽栅VDMOS相比,在N-漂移区3掺杂浓度相同的情况下,由于屏蔽栅电极10的存在,SGT的N-漂移区3内可以实现电荷平衡,形成横向电场,漂移区电场得到改善。在击穿电压相同时,SGT的导通电阻更小,且栅漏电流更小。
SGT雪崩击穿不稳定时发生的界面去钝化反应为:
Figure BDA0003047646630000031
去钝化生成的氢向屏蔽栅电极10扩散,随着反应的进行,界面的氢浓度增大,部分氢会重新与悬挂键形成硅氢键即发生逆向反应,反应达到平衡。氮化硅阻挡层9对氢的阻挡作用比二氧化硅大,可阻挡氢向屏蔽栅电极10扩散,提高界面的氢的浓度,促进逆向反应,抑制SGT雪崩击穿不稳定性。
本发明的有益效果是:本发明所提供的一种具有氮化硅阻挡层的SGT器件,具有较大的正向电流、较小的阈值电压、较小的导通电阻等特性,并且有效解决了SGT击穿电压不稳定的可靠性问题。
附图说明
图1为本发明实施例的一种具有氮化硅阻挡层的SGT器件的结构示意图;
图2-1至图2-12为本发明实施例的一种具有氮化硅阻挡层的SGT器件的制备方法的结构示意图。
1为金属化漏极,2为N+衬底,3为N-漂移区,4为P型掺杂区,5为N+重掺杂区,6为P+重掺杂区,7为控制栅电极,8为氧化层,9为氮化硅阻挡层,10为屏蔽栅电极,11为金属化源极。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例
一种具有氮化硅阻挡层的SGT器件,其特征在于:包括从下至上依次层叠设置的金属化漏极1、N+衬底2、N-漂移区3和金属化源极11;
所述N-漂移区3中具有沟槽栅结构、P型掺杂区4、P+重掺杂区6和N+重掺杂区5;
所述沟槽栅结构包括氧化层8、位于氧化层8内部的控制栅电极7及氮化硅阻挡层9和屏蔽栅电极10,氮化硅阻挡层9和屏蔽栅电极10位于控制栅电极7下方,控制栅电极7和屏蔽栅电极10不接触,氮化硅阻挡层9为U形,氮化硅阻挡层9位于屏蔽栅电极10左右两侧和底部的氧化层8中;
P型掺杂区4位于所述沟槽栅结构两侧的N-漂移区3的顶层,P+重掺杂区6和N+重掺杂区5并排位于所述P型掺杂区4的顶层,所述P型掺杂区4、N+重掺杂区5靠近控制栅电极7的侧面都与所述氧化层8接触;P型掺杂区4的垂直深度不超过控制栅电极7的深度;P+重掺杂区6和N+重掺杂区5的上表面都和金属化源极11接触,金属化源极11和控制栅电极7通过所述氧化层8相隔离;屏蔽栅电极10和金属化源极11短接;
当器件正向导通时,控制栅电极7接正电位,金属化漏极1接正电位,金属化源极11接零电位;当器件反向阻断时,控制栅电极7和金属化源极11短接且接零电位,金属化漏极1接正电位。
所述氧化层8为二氧化硅,或者为二氧化硅和氮化硅的复合材料。
所述控制栅电极7和屏蔽栅电极10为多晶硅。
器件所使用的半导体材料为体硅、或碳化硅、或砷化镓或锗硅。
本实施例还提供一种具有氮化硅阻挡层的SGT器件的制备方法,包括如下步骤:
(1)单晶硅准备及外延生长:如图2-1,采用重掺杂单晶硅N+衬底2,晶向为<100>,采用气相外延VPE等方法生长N-漂移区3;
(2)刻槽:如图2-2,淀积硬掩膜如氮化硅作为后续挖槽的阻挡层,利用光刻板进行槽刻蚀,刻蚀出槽栅区;具体刻蚀工艺可以使用反应离子刻蚀或等离子刻蚀。
(3)二氧化硅的填充:如图2-3,去掉硬掩膜,在槽内生长氧化层8;
(4)氮化硅的淀积:如图2-4,采用淀积工艺,在氧化层8上形成氮化硅阻挡层9;
(5)二氧化硅的淀积:如图2-5,采用淀积工艺,在氮化硅阻挡层9上形成氧化层8;
(6)多晶硅的淀积与刻蚀:如图2-6,淀积屏蔽栅电极10;利用光刻板刻掉氧化层8、氮化硅阻挡层9和屏蔽栅电极10的上半部分;
(7)二氧化硅的淀积:如图2-7,采用淀积工艺,在槽栅底部形成氧化层8;
(8)热氧化层生长:如图2-8,对槽栅区进行氧化层热生长,形成侧壁栅氧化层8;
(9)多晶硅的淀积与刻蚀:如图2-9,淀积控制栅电极7,多晶硅的厚度要保证能够填满槽型区域;利用光刻板对控制栅电极7刻蚀,并在控制栅电极7上方淀积二氧化硅,刻蚀表面二氧化硅;
(10)离子注入:如图2-10,P型掺杂区4硼注入,P型掺杂区4的垂直深度不超过控制栅电极7的深度;
(11)离子注入:如图2-11,N型重掺杂区砷注入,形成N+重掺杂区5;P型重掺杂区硼注入,形成P+重掺杂区6;
(12)金属化:如图2-12,正面金属化,金属刻蚀,背面金属化,钝化。
采用本发明所提供的具有氮化硅阻挡层的SGT器件,具有较大的正向电流、较小的阈值电压、较小的导通电阻等特性,并且有效解决了SGT击穿电压不稳定的可靠性问题。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (5)

1.一种具有氮化硅阻挡层的SGT器件,其特征在于:包括从下至上依次层叠设置的金属化漏极(1)、N+衬底(2)、N-漂移区(3)和金属化源极(11);
所述N-漂移区(3)中具有沟槽栅结构、P型掺杂区(4)、P+重掺杂区(6)和N+重掺杂区(5);
所述沟槽栅结构包括氧化层(8)、位于氧化层(8)内部的控制栅电极(7)及氮化硅阻挡层(9)和屏蔽栅电极(10),氮化硅阻挡层(9)和屏蔽栅电极(10)位于控制栅电极(7)下方,控制栅电极(7)和屏蔽栅电极(10)不接触,氮化硅阻挡层(9)为U形,氮化硅阻挡层(9)位于屏蔽栅电极(10)左右两侧和底部的氧化层(8)中;
P型掺杂区(4)位于所述沟槽栅结构两侧的N-漂移区(3)的顶层,P+重掺杂区(6)和N+重掺杂区(5)并排位于所述P型掺杂区(4)的顶层,所述P型掺杂区(4)、N+重掺杂区(5)靠近控制栅电极(7)的侧面都与所述氧化层(8)接触;P型掺杂区(4)的垂直深度不超过控制栅电极(7)的深度;P+重掺杂区(6)和N+重掺杂区(5)的上表面都和金属化源极(11)接触,金属化源极(11)和控制栅电极(7)通过所述氧化层(8)相隔离;屏蔽栅电极(10)和金属化源极(11)短接;
当器件正向导通时,控制栅电极(7)接正电位,金属化漏极(1)接正电位,金属化源极(11)接零电位;当器件反向阻断时,控制栅电极(7)和金属化源极(11)短接且接零电位,金属化漏极(1)接正电位。
2.根据权利要求1所述的一种具有氮化硅阻挡层的SGT器件,其特征在于:所述氧化层(8)为二氧化硅,或者为二氧化硅和氮化硅的复合材料。
3.根据权利要求1所述的一种具有氮化硅阻挡层的SGT器件,其特征在于:所述控制栅电极(7)和屏蔽栅电极(10)为多晶硅。
4.根据权利要求1所述的一种具有氮化硅阻挡层的SGT器件,其特征在于:器件所使用的半导体材料为体硅、或碳化硅、或砷化镓或锗硅。
5.权利要求1至4任意一项所述的一种具有氮化硅阻挡层的SGT器件的制备方法,其特征在于包括如下步骤:
(1)单晶硅准备及外延生长:采用重掺杂单晶硅N+衬底(2),晶向为<100>,采用气相外延方法生长N-漂移区(3);
(2)刻槽:淀积硬掩膜作为后续挖槽的阻挡层,利用光刻板进行槽刻蚀,刻蚀出槽栅区;
(3)二氧化硅的填充:去掉硬掩膜,在槽内生长氧化层(8);
(4)氮化硅的淀积:采用淀积工艺,在氧化层(8)上形成氮化硅阻挡层(9);
(5)二氧化硅的淀积:采用淀积工艺,在氮化硅阻挡层(9)上形成氧化层(8);
(6)多晶硅的淀积与刻蚀:淀积屏蔽栅电极(10);利用光刻板刻掉氧化层(8)、氮化硅阻挡层(9)和屏蔽栅电极(10)的上半部分;
(7)二氧化硅的淀积:采用淀积工艺,在槽栅底部形成氧化层(8);
(8)热氧化层生长:对槽栅区进行氧化层热生长,形成侧壁栅氧化层(8);
(9)多晶硅的淀积与刻蚀:淀积控制栅电极(7),多晶硅的厚度要保证能够填满槽型区域;利用光刻板对控制栅电极(7)刻蚀,并在控制栅电极(7)上方淀积二氧化硅,刻蚀表面二氧化硅;
(10)离子注入:P型掺杂区(4)硼注入,P型掺杂区(4)的垂直深度不超过控制栅电极(7)的深度;
(11)离子注入:N型重掺杂区砷注入,形成N+重掺杂区(5);P型重掺杂区硼注入,形成P+重掺杂区(6);
(12)金属化:正面金属化,金属刻蚀,背面金属化,钝化。
CN202110477496.1A 2021-04-29 2021-04-29 具有氮化硅阻挡层的sgt器件及制备方法 Active CN113224148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110477496.1A CN113224148B (zh) 2021-04-29 2021-04-29 具有氮化硅阻挡层的sgt器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110477496.1A CN113224148B (zh) 2021-04-29 2021-04-29 具有氮化硅阻挡层的sgt器件及制备方法

Publications (2)

Publication Number Publication Date
CN113224148A CN113224148A (zh) 2021-08-06
CN113224148B true CN113224148B (zh) 2022-04-08

Family

ID=77090107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110477496.1A Active CN113224148B (zh) 2021-04-29 2021-04-29 具有氮化硅阻挡层的sgt器件及制备方法

Country Status (1)

Country Link
CN (1) CN113224148B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344348A (zh) * 2023-05-29 2023-06-27 深圳辰达行电子有限公司 屏蔽栅沟槽sgt-mosfet半导体器件的制备方法
CN116646381A (zh) * 2023-07-27 2023-08-25 深圳市冠禹半导体有限公司 一种高效能的sgtmosfet器件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2629334A2 (en) * 2012-02-17 2013-08-21 International Rectifier Corporation Power transistor having segmented gate
CN106505106A (zh) * 2016-10-11 2017-03-15 东南大学 一种高雪崩耐量的屏蔽栅功率晶体管及其制备方法
US9761695B1 (en) * 2016-05-31 2017-09-12 Shanghai Huahong Grace Semiconductor Manufacturing Corporation Method for fabricating a shield gate trench MOSFET
CN109103259A (zh) * 2018-08-21 2018-12-28 电子科技大学 一种积累型dmos器件
CN111384153A (zh) * 2020-03-20 2020-07-07 电子科技大学 一种具有接地p型区的sgt器件及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11018127B2 (en) * 2019-10-02 2021-05-25 Nami Mos Co, Ltd. Shielded gate trench MOSFET with ESD diode manufactured using two poly-silicon layers process
US11114558B2 (en) * 2019-10-18 2021-09-07 Nami MOS CO., LTD. Shielded gate trench MOSFET integrated with super barrier rectifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2629334A2 (en) * 2012-02-17 2013-08-21 International Rectifier Corporation Power transistor having segmented gate
US9761695B1 (en) * 2016-05-31 2017-09-12 Shanghai Huahong Grace Semiconductor Manufacturing Corporation Method for fabricating a shield gate trench MOSFET
CN106505106A (zh) * 2016-10-11 2017-03-15 东南大学 一种高雪崩耐量的屏蔽栅功率晶体管及其制备方法
CN109103259A (zh) * 2018-08-21 2018-12-28 电子科技大学 一种积累型dmos器件
CN111384153A (zh) * 2020-03-20 2020-07-07 电子科技大学 一种具有接地p型区的sgt器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Enhanced shielded-gate trench MOSFETs for high-frequency, high-efficiency computing power supply application》;Sarkar;《2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC)》;20130527;507-511 *
《Optimization of vertical GaN SGT-MOSFET for Low Ron》;Nilesh Kumar Jaiswal;《2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia)》;20210224;1-5 *

Also Published As

Publication number Publication date
CN113224148A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
CN113224148B (zh) 具有氮化硅阻挡层的sgt器件及制备方法
CN109920839B (zh) P+屏蔽层电位可调碳化硅mosfet器件及制备方法
CN111384153A (zh) 一种具有接地p型区的sgt器件及其制备方法
CN115241286B (zh) 一种SiC半超结结型栅双极型晶体管器件及其制作方法
CN106158973A (zh) 一种积累型dmos
CN105932051A (zh) 一种槽栅mosfet器件
CN106098777A (zh) 一种分裂栅积累型dmos器件
CN106298939A (zh) 一种具有复合介质层结构的积累型dmos
CN111697078A (zh) 高雪崩耐量的vdmos器件及制备方法
CN115148820A (zh) 一种SiC沟槽MOSFET器件及其制造方法
CN110504260B (zh) 一种具有自偏置pmos的横向沟槽型igbt及其制备方法
US11837630B1 (en) Semiconductor device for reducing switching loss and manufacturing method thereof
CN115377200A (zh) 一种半导体器件及其制备方法
CN116230774A (zh) 一种非对称碳化硅槽栅mosfet及其制造方法
CN114005877A (zh) 一种超薄超结igbt器件及制备方法
CN110416295B (zh) 一种沟槽型绝缘栅双极晶体管及其制备方法
CN113990930B (zh) 击穿电压温度系数可调的sgt-mosfet器件及制备方法
CN106057906B (zh) 一种具有p型埋层的积累型dmos
CN103531621A (zh) 一种带有侧边多晶硅电极沟槽非穿通型绝缘栅双极晶体管
CN114141877A (zh) 一种碳化硅ldmos及其制造方法
CN113838914A (zh) 具有分离栅结构的ret igbt器件结构及制作方法
CN113990928B (zh) 低击穿电压温度系数的Trench MOSFET器件及制备方法
CN113990933B (zh) 一种半导体纵向器件及制备方法
CN113990929B (zh) 一种半导体纵向器件及制备方法
CN113990931B (zh) 击穿电压温度系数可调的Trench MOSFET器件及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant