CN113201006B - 一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚-1-酮类似物的方法 - Google Patents

一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚-1-酮类似物的方法 Download PDF

Info

Publication number
CN113201006B
CN113201006B CN202110551139.5A CN202110551139A CN113201006B CN 113201006 B CN113201006 B CN 113201006B CN 202110551139 A CN202110551139 A CN 202110551139A CN 113201006 B CN113201006 B CN 113201006B
Authority
CN
China
Prior art keywords
rhodium
substituted
silicon
acyl
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110551139.5A
Other languages
English (en)
Other versions
CN113201006A (zh
Inventor
吴勇
海俐
杨增豹
李江联
周荟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202110551139.5A priority Critical patent/CN113201006B/zh
Publication of CN113201006A publication Critical patent/CN113201006A/zh
Application granted granted Critical
Publication of CN113201006B publication Critical patent/CN113201006B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/083Syntheses without formation of a Si-C bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明公开了一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚‑1‑酮类化合物的方法。本发明以N‑取代苯甲酰胺和α,β‑不饱和酰基硅为原料,在添加剂的辅助下,通过过渡金属催化的碳氢活化反应高效地构建酰基硅取代的异吲哚‑1‑酮结构。该方法避免了传统的线性合成方法经济性低,反应条件苛刻的问题,是一种简单、温和的替代传统合成酰基硅烷的方法,并且具有广泛的底物适用性,具有广阔的应用前景。

Description

一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚-1-酮 类似物的方法
技术领域
本发明涉及一种铑催化的N-取代苯甲酰胺与α,β-不饱和酰基硅的C-H活化反应构建酰基硅取代的异吲哚-1-酮类似物的新方法,属于有机化学技术领域。
背景技术
C-H键活化一直是有机化学合成的研究热点之一。C-H键活化是在导向基团的辅助下,反应位点处的C-H和金属中心配位,形成较稳定的五元或六元环状金属中间体,从而使分子内C-H键选择性活化的过程。由于它具有原子经济性高、底物范围广、反应条件温和等特点,已经渐渐成为构建C-C键、C-杂键等最有吸引力的策略。1其中,铑催化剂因其高的官能团耐受性和广泛的合成用途而在通过C-H活化途径进行的C-C偶联反应领域中脱颖而出。2近年来,酰胺作为重要的C-H活化导向基团也已经被广泛关注3,如酰胺为导向基与α,β-不饱和羧酸酯和炔等都有C-H活化研究的报道。4
其次,酰基硅是一个重要的合成分子,在有机化学、材料化学以及光化学中有着广泛的使用。由于酰基硅烷的电子特性导致其反应性与其他羰基化合物不同,可以产生独一无二的反应特性,比如可以产生α-硅氧负离子、酰基负离子、α-硅氧卡宾。因此,在过去的几十年里,酰基硅烷的合成应用受到了很大的关注。虽然已有报道酰基硅烷的合成方法,但传统的线性合成方法既不经济,又面临反应条件苛刻的问题,这可能限制酰基硅烷的合成范围,特别是那些高度功能化的合成方法。因此,开发一种新的合成方法,简化功能化酰基硅烷的合成途径,仍然是非常可取的一种方法,具有重要的意义5
发明内容
针对传统的线性合成酰基硅烷方法,采用C-H活化反应构建异吲哚-1-酮类似物的新方法,本发明的目的是提供一种铑催化的N-取代苯甲酰胺与α,β-不饱和酰基硅的C-H活化反应构建酰基硅取代的异吲哚-1-酮类似物,该发明方法是一种简单、温和的替代传统合成酰基硅烷的方法,具有广阔的应用前景。
为实现上述目的,本发明采用以下技术方案:
N-取代苯甲酰胺与α,β不饱和酰基硅为起始原料,其化学反应式如下:
Figure 100002_DEST_PATH_IMAGE001
其中:
R1为氢、甲基、甲氧基、硝基、卤素中的一种;
R2为苯基,甲基、甲氧基、硝基、卤素取代的苯基中的一种;
其制备步骤如下:
在氩气保护下,在洁净的耐压瓶中依次加入N-取代苯甲酰胺、α,β-不饱和酰基硅、催化剂、添加剂和溶剂,放入100℃油浴中反应36h;
反应结束后,减压除去溶剂,用硅胶柱层析纯化得到产品。
其特征在于催化剂为二氯(五甲基环戊二烯基)合铑(Ⅲ)、(二(六氟锑酸)三乙腈(五甲基环戊二烯基)铑(III))、对伞花烃二氯化钌二聚体中的一种;
溶剂为乙腈、四氢呋喃、1,2-二氯乙烷、甲苯、丙酮的一种;
添加剂为碳酸银、乙酸银、醋酸铜、一水合醋酸铜的一种。步骤中N-取代苯甲酰胺:α,β不饱和酰基硅:催化剂:添加剂的摩尔比为1:(2.0-4.0):(0.05-0.1):(1.5-2.5)。
本发明采取以上技术方案,其具有以下优点:相比于传统的合成酰基硅取代的异吲哚-1-酮类似物,该发明方法是一种简单、温和的替代传统的合成方法,并且具有广泛的底物适用性,具有广阔的前景。
核磁共振氢谱(1H NMR)、碳谱(13C NMR)以及高分辨质谱证实了合成的化合物的结构。其中核磁共振图采用Varian INOVA-400型核磁共振仪测定,以四甲基硅烷(TMS)为内标(δ0 ppm),氘代氯仿为溶剂;高分辨质谱用Agilent 1946B质谱仪测定。
具体实施方式
下面结合具体实施方式对本发明作进一步描述,有助于对本发明的理解。但并不能以此来限制本发明的权利范围,而本发明的权利范围应以权利要求书阐述的为准。
实施案例1:化合物1的合成
Figure DEST_PATH_IMAGE002
氩气条件下,在洁净的耐压瓶中依次加入N-取代苯甲酰胺(21.1mg,0.1mmol)、1-(叔丁基二甲基甲硅烷基)丙-2-烯-1-酮(51mg,0.3mmol)、二氯(五甲基环戊二烯基)合铑(Ⅲ)(3.1mg,0.005mmol)、碳酸银(55.2mg、0.2mmol)、乙腈(1.5ml),置于100℃油浴中搅拌36h。
反应结束后,减压除去溶剂,用硅胶柱层析纯化得到产品即淡黄色固体,熔点范围为150.5-151.7℃,收率为83%。1H NMR (400 MHz, Chloroform-d) δ 7.79 (d, J = 7.8Hz, 1H), 7.55 (d, J = 7.4 Hz, 2H), 7.44 – 7.38 (m, 2H), 7.29 (d, J = 7.8 Hz,1H), 7.20 (t, J = 7.4 Hz, 1H), 7.17 (s, 1H), 5.82 (dd, J = 8.4, 3.2 Hz, 1H),3.13 (dd, J = 18.6, 3.2 Hz, 1H), 2.82 (dd, J = 18.6, 8.5 Hz, 1H), 2.44 (s,3H), 0.85 (s, 9H), 0.08 (d, J = 10.9 Hz, 6H);13C NMR (101 MHz, Chloroform-d) δ245.53, 167.03, 146.04, 143.01, 136.77, 129.51, 129.28, 129.20, 125.33,123.92, 123.25, 123.11, 54.92, 53.28, 26.27, 21.99, 16.58, -7.24, -7.36. HRMS(ESI): m/z计算值C23H30NO2Si+: 380.5825,实测值: 380.5823。
实施案例2:化合物2的合成
Figure DEST_PATH_IMAGE003
氩气条件下,在洁净的耐压瓶中依次加入N-取代苯甲酰胺(27.5mg,0.1mmol)、1-(叔丁基二甲基甲硅烷基)丙-2-烯-1-酮(51mg,0.3mmol)、二(六氟锑酸)三乙腈(五甲基环戊二烯基)铑(III))(8.3mg,0.01mmol)、碳酸银(55.2mg、0.2mmol)、乙腈(1.5ml),置于100℃油浴中搅拌36h。
反应结束后,减压除去溶剂,用硅胶柱层析纯化得到产品即淡黄色固体,熔点范围为169.5-171.3℃,收率为75%。1H NMR (400 MHz, Chloroform-d) δ 7.77 (d, J = 8.1Hz, 1H), 7.63 (dd, J = 8.1, 1.7 Hz, 1H), 7.56 (s, 1H), 7.52 (dd, J = 8.7, 1.2Hz, 2H), 7.45 – 7.40 (m, 2H), 7.26 – 7.20 (m, 1H), 5.81 (dd, J = 8.6, 3.1 Hz,1H), 3.16 (dd, J = 18.7, 3.2 Hz, 1H), 2.81 (dd, J = 18.7, 8.6 Hz, 1H), 0.85(s, 9H), 0.09 (d, J = 11.6 Hz, 6H).13C NMR (101 MHz, Chloroform-d) δ 245.13,165.96, 147.32, 136.28, 131.99, 130.80, 129.31, 126.95, 126.39, 125.78,125.54, 123.20, 54.88, 52.84, 26.26, 16.57, -7.25, -7.35。HRMS (ESI): m/z计算值C22H27BrNO2Si+: 444.0989,实测值: 444.0990。
实施案例3:化合物3的合成
Figure DEST_PATH_IMAGE004
氩气条件下,在洁净的耐压瓶中依次加入N-取代苯甲酰胺(22.7mg,0.1mmol)、1-(叔丁基二甲基甲硅烷基)丙-2-烯-1-酮(51mg,0.3mmol)、二氯(五甲基环戊二烯基)合铑(Ⅲ)(6.2mg,0.01mmol)、乙酸银(33.4mg、0.2mmol)、四氢呋喃(1.5ml),置于100℃油浴中搅拌36h。
反应结束后,减压除去溶剂,用硅胶柱层析纯化得到产品即淡黄色固体,熔点范围为94.9-96.3℃,收率为55%。1H NMR (400 MHz, Chloroform-d) δ 7.89 (d, J = 7.0 Hz,1H), 7.54 (td, J = 7.4, 1.4 Hz, 1H), 7.50 – 7.44 (m, 1H), 7.43 – 7.39 (m,2H), 7.37 (d, J = 6.4 Hz, 1H), 6.98 – 6.91 (m, 2H), 5.76 (dd, J = 8.2, 3.6Hz, 1H), 3.82 (s, 3H), 3.12 (dd, J = 18.6, 3.6 Hz, 1H), 2.80 (dd, J = 18.6,8.2 Hz, 1H), 0.84 (s, 9H), 0.08 (d, J = 14.6 Hz, 6H).13C NMR (101 MHz,Chloroform-d) δ 245.11, 166.91, 157.52, 145.65, 132.01, 131.94, 129.39,128.43, 125.39, 123.99, 122.77, 114.50, 55.64, 55.51, 53.16, 26.28, 16.54, -7.21, -7.34. HRMS (ESI): m/z计算值C23H30NO3Si+: 396.1989,实测值: 396.1986。
实施案例4:化合物4的合成
Figure DEST_PATH_IMAGE005
氩气条件下,在洁净的耐压瓶中依次加入N-取代苯甲酰胺(23.1mg,0.1mmol)、1-(叔丁基二甲基甲硅烷基)丙-2-烯-1-酮(51mg,0.3mmol)、二氯(五甲基环戊二烯基)合铑(Ⅲ)(3.1mg,0.005mmol)、碳酸银(55.2mg、0.2mmol)、乙腈(1.5ml),置于100℃油浴中搅拌36h。
反应结束后,减压除去溶剂,用硅胶柱层析纯化得到产品即淡黄色固体,熔点范围为161.2-162.3℃,收率为78%。1H NMR (400 MHz, Chloroform-d) δ 7.90 (d, J = 7.5Hz, 1H), 7.59 – 7.46 (m, 4H), 7.37 (t, J = 7.9 Hz, 3H), 5.83 (dd, J = 8.4,3.2 Hz, 1H), 3.19 – 3.04 (m, 1H), 2.85 (dd, J = 19.0, 8.7 Hz, 1H), 0.86 (s,9H), 0.10 (d, J = 9.7 Hz, 6H)。13C NMR (101 MHz, Chloroform-d) δ 245.02,166.92, 145.52, 135.25, 132.48, 131.51, 130.76, 129.29, 128.62, 124.18,122.78, 54.94, 53.12, 26.28, 16.56, -7.21, -7.30. HRMS (ESI): m/z计算值C22H27ClNO2Si+: 400.1494,实测值:400.1492。
实施案例5:化合物5的合成
Figure DEST_PATH_IMAGE006
氩气条件下,在洁净的耐压瓶中依次加入N-取代苯甲酰胺(21.1mg,0.1mmol)、1-(叔丁基二甲基甲硅烷基)丙-2-烯-1-酮(51mg,0.3mmol)、二氯(五甲基环戊二烯基)合铑(Ⅲ)(6.2mg,0.01mmol)、碳酸银(55.2mg、0.2mmol)、乙腈(1.5ml),置于100℃油浴中搅拌36h。
反应结束后,减压除去溶剂,用硅胶柱层析纯化得到产品即淡黄色固体,熔点范围为129.7-132.3℃,收率为92%。1H NMR (400 MHz, Chloroform-d) δ 7.91 (d, J = 7.4Hz, 1H), 7.59 – 7.46 (m, 2H), 7.38 (d, J = 7.5 Hz, 2H), 7.33 – 7.28 (m, 2H),7.07 – 7.00 (m, 1H), 5.83 (dd, J = 8.5, 3.2 Hz, 1H), 3.17 (dd, J = 18.7, 3.2Hz, 1H), 2.81 (dd, J = 18.7, 8.4 Hz, 1H), 2.38 (s, 3H), 0.85 (s, 9H), 0.08(d, J = 11.1 Hz, 6H).13C NMR (101 MHz, Chloroform-d) δ 245.18, 166.93, 145.71,139.10, 136.51, 132.17, 131.92, 129.03, 128.45, 126.42, 124.06, 122.82,120.34, 55.22, 53.23, 26.28, 21.57, 16.54, -7.25, -7.33. HRMS (ESI): m/z计算值C23H30NO2Si+: 380.2040,实测值:380.2043。
参考文献
1.Schröder, N.; Wencel-Delord, J.; Glorius, F., High-Yielding,Versatile, and Practical [Rh(III)Cp*]-Catalyzed Ortho Bromination andIodination of Arenes. Journal of the American Chemical Society 2012,134,8298-8301.
2.Colby, D. A.; Bergman, R. G.; Ellman, J. A., Rhodium-Catalyzed C−CBond Formation via Heteroatom-Directed C−H Bond Activation. Chemical Reviews 2010,110, 624-655.
3.a) Boele, M. D.; van Strijdonck, G. P.; de Vries, A. H.; Kamer, P.C.; de Vries, J. G.; van Leeuwen, P. W., Selective Pd-catalyzed oxidativecoupling of anilides with olefins through C-H bond activation at roomtemperature. J Am Chem Soc 2002,124, 1586-7. b) Wang, J.-R.; Yang, C.-T.;Liu, L.; Guo, Q.-X., Pd-catalyzed aerobic oxidative coupling of anilides witholefins through regioselective C–H bond activation. Tetrahedron Letters 2007,48, 5449-5453. c)Wan, X.; Ma, Z.; Li, B.; Zhang, K.; Cao, S.; Zhang, S.; Shi,Z., Highly Selective C−H Functionalization/Halogenation of Acetanilide.Journal of the American Chemical Society 2006,128, 7416-7417.
4.a) Wang, F.; Song, G.; Li, X., Rh(III)-Catalyzed Tandem OxidativeOlefination−Michael Reactions between Aryl Carboxamides and Alkenes. OrganicLetters 2010, 12, 5430-5433. b)Song, G.; Chen, D.; Pan, C.-L.; Crabtree, R.H.; Li, X., Rh-Catalyzed Oxidative Coupling between Primary and SecondaryBenzamides and Alkynes: Synthesis of Polycyclic Amides. The Journal ofOrganic Chemistry 2010, 75, 7487-7490. c)Shiota, H.; Ano, Y.; Aihara, Y.;Fukumoto, Y.; Chatani, N., Nickel-Catalyzed Chelation-AssistedTransformations Involving Ortho C–H Bond Activation: Regioselective OxidativeCycloaddition of Aromatic Amides to Alkynes. Journal of the American ChemicalSociety 2011, 133, 14952-14955. d) Rouquet, G.; Chatani, N., Ruthenium-catalyzed ortho-C–H bond alkylation of aromatic amides with α,β-unsaturatedketones via bidentate-chelation assistance. Chemical Science 2013, 4, 2201-2208. e). Aihara, Y.; Chatani, N., Nickel-Catalyzed Direct Arylation of C(sp3)–H Bonds in Aliphatic Amides via Bidentate-Chelation Assistance. Journalof the American Chemical Society 2014, 136, 898-901. f) Yokota, A.; Aihara,Y.; Chatani, N., Nickel(II)-Catalyzed Direct Arylation of C–H Bonds inAromatic Amides Containing an 8-Aminoquinoline Moiety as a Directing Group.The Journal of Organic Chemistry 2014, 79, 11922-11932.
5 a) Page, P. C. B.; Klair, S. S.; Rosenthal, S. Synthesis andChemistry of Acyl Silanes. Chem. Soc. Rev. 1990, 19, 147. b) Zhang, H.-J.;Priebbenow, D. L.; Bolm, C. Acylsilanes: Valuable Organosilicon Reagents inOrganic Synthesis. Chem. Soc. Rev. 2013, 42, 8540. c) Feng, J.-J.; Oestreich,M. Tertiary α-Silyl Alcohols by Diastereoselective Coupling of 1,3-Dienes andAcylsilanes Initiated by Enantioselective Copper-Catalyzed Borylation. Angew. Chem., Int. Ed. 2019, 58, 8211. d) Obora, Y.; Ogawa, Y.; Imai, Y.; Kawamura,T.; Tsuji, Y. Palladium Complex Catalyzed Acylation of Allylic Esters withAcylsilanes. J. Am. Chem. Soc. 2001, 123, 10489. (b) Mattson, A. E.;Bharadwaj, A. R.; Scheidt, K. A. The Thiazolium-Catalyzed Sila-StetterReaction:  Conjugate Addition of Acylsilanes to Unsaturated Esters andKetones. J. Am. Chem. Soc. 2004, 126, 2314. e) Ye, J.-H.; Quach, L.;Paulisch, T.; Glorius, F. Visible-Light-Induced, Metal-Free Carbene Insertioninto B−H Bonds between Acylsilanes and Pinacolborane. J. Am. Chem. Soc. 2019,141,16227. f) Lu, P.; Feng, C.; Loh, T.-P. Divergent Functionalization ofIndoles with Acryloyl Silanes via Rhodium-Catalyzed C−H Activation. Org. Lett. 2015, 17, 3210. g) Priebbenow, D. L. Insights into the Stability ofSiloxy Carbene Intermediates and Their Corresponding Oxocarbenium Ions. J. Org. Chem. 2019, 84, 11813。

Claims (4)

1.一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚-1-酮类似物的方法,其特征在于在过渡金属铑催化剂、添加剂的作用下,以N-取代苯甲酰胺的酰胺为导向基团,α,β-不饱和酰基硅作为偶联试剂构建酰基硅取代基团,合成酰基硅取代的异吲哚-1-酮类似物,其化学反应式为:
Figure DEST_PATH_IMAGE001
其中,
所述的过渡金属铑催化剂为二氯(五甲基环戊二烯基)合铑(Ⅲ)、(二(六氟锑酸)三乙腈(五甲基环戊二烯基)铑(III))中的一种;
R1为氢、甲基、甲氧基、硝基、卤素中的一种;
R2为苯基,甲基、甲氧基、硝基、卤素取代的苯基中的一种。
2.根据权利要求1所述合成酰基硅取代的异吲哚-1-酮类似物的方法,其特征在于采用如下制备步骤:
在氩气保护下,在洁净的耐压瓶反应器中依次加入N-取代苯甲酰胺、α,β-不饱和酰基硅、过渡金属铑催化剂、添加剂和溶剂,放入100℃油浴中反应36h;
反应结束后,减压除去溶剂,用硅胶柱层析纯化得到产品。
3.根据权利要求2所述的制备方法,其特征在于溶剂为乙腈、四氢呋喃、1,2-二氯乙烷、甲苯、丙酮的一种;
添加剂为碳酸银、乙酸银、醋酸铜、一水合醋酸铜的一种。
4.根据权利要求2所述的制备方法,步骤中N-取代苯甲酰胺 : α,β-不饱和酰基硅:过渡金属铑催化剂:添加剂的摩尔比为1 : (2.0-4.0) : (0.05-0.1) : (1.5-2.5)。
CN202110551139.5A 2021-05-20 2021-05-20 一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚-1-酮类似物的方法 Expired - Fee Related CN113201006B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110551139.5A CN113201006B (zh) 2021-05-20 2021-05-20 一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚-1-酮类似物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110551139.5A CN113201006B (zh) 2021-05-20 2021-05-20 一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚-1-酮类似物的方法

Publications (2)

Publication Number Publication Date
CN113201006A CN113201006A (zh) 2021-08-03
CN113201006B true CN113201006B (zh) 2022-05-17

Family

ID=77032168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110551139.5A Expired - Fee Related CN113201006B (zh) 2021-05-20 2021-05-20 一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚-1-酮类似物的方法

Country Status (1)

Country Link
CN (1) CN113201006B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292477B (zh) * 2021-06-01 2023-06-02 四川大学 一种铱催化的碳氢活化反应合成异吲哚-1-酮类化合物的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107840819B (zh) * 2017-12-06 2020-10-30 常州大学 一种多取代异吲哚啉酮衍生物的合成方法
CN109485647B (zh) * 2018-11-28 2021-04-13 浙江师范大学 一种抗焦虑药物帕戈隆或帕秦克隆的制备方法
CN111533764B (zh) * 2020-05-12 2023-06-06 杭州师范大学 一种利用多米诺反应制备硅氧基茚衍生物的方法

Also Published As

Publication number Publication date
CN113201006A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
Kopping et al. Tris (trimethylsilyl) silane: an efficient hydrosilylating agent of alkenes and alkynes
US20100076210A1 (en) Method for producing a ruthenium complex
Murakami et al. A Study of the Stereochemical Course of β‐Oxygen Elimination with a Rhodium (I) Complex
CN113201006B (zh) 一种铑催化的碳氢活化反应合成酰基硅取代的异吲哚-1-酮类似物的方法
Zhao et al. Nickel‐Catalyzed Intermolecular [3+ 2+ 2] and [2+ 2+ 2] Cocyclizations of Bicyclopropylidene and Alkynes
CN109265386B (zh) 一种通过c-h活化合成3-酰基化吲哚衍生物的新方法
EP2258707B1 (en) Ruthenium silyl-arene complexes, and method for production thereof
WO2005007662A2 (en) Biphosphine ruthenium complexes with chiral diamine ligande as catalysts
CN111099986B (zh) 氢化反应方法
US5591854A (en) Enantioselective synthesis of seven-membered carbocycles and tropanes
Bolm et al. A novel asymmetric synthesis of highly enantiomerically enriched norbornane-type diamine derivatives
Crotti et al. Rhodium-catalyzed enantioselective desymmetrization of bicyclic hydrazines with alkynylboronic esters
EP2607353B1 (fr) "Nouveau procédé de synthèse de l'ivabradine et de ses sels d'addition à un acide pharmaceutiquement acceptable"
JP3780218B2 (ja) 新規キラル銅触媒とそれを用いたn−アシル化アミノ酸誘導体の製造方法
CN113292477B (zh) 一种铱催化的碳氢活化反应合成异吲哚-1-酮类化合物的方法
JP3738225B2 (ja) 新規キラル銅触媒とそれを用いたn−アシル化アミノ酸誘導体の製造方法
JP7168161B2 (ja) ヘテロール多量体の製造方法
CN110294772B (zh) 一种2-烷基硅-苯甲酰胺类化合物及其合成方法
CN111018771B (zh) 一种合成3-(2-氰基乙烯基)吲哚衍生物的方法
Hanzawa et al. Rh (I)-catalyzed conjugate addition of alkenylzirconocene chloride: stereoselective formation of carbocycles through cascade reaction
WO2008030840A2 (en) Synthesis of sphingosines and their derivatives
JP4112110B2 (ja) アセチレン類とイソシアネート類との反応によるα,β−不飽和カルボキサミド類の製造方法
Xu et al. Synthesis of New Chiral [2‐(1‐Hydroxyalkyl) pyrrolidino] methyl‐ferrocenes and Application to the Catalytic Asymmetric Addition of Diethylzinc to Arylaldehydes
JP2004526741A (ja) キラリティーが高められたシクロプロパンの生成方法
JP5039271B2 (ja) 4−(トリアルキルシリルエチニル)フェナントレン誘導体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220517