CN113186328B - Identification method of microsatellite DNA marker fingerprint of flammulina velutipes xujin 18 strain and construction method and application thereof - Google Patents
Identification method of microsatellite DNA marker fingerprint of flammulina velutipes xujin 18 strain and construction method and application thereof Download PDFInfo
- Publication number
- CN113186328B CN113186328B CN202110383020.1A CN202110383020A CN113186328B CN 113186328 B CN113186328 B CN 113186328B CN 202110383020 A CN202110383020 A CN 202110383020A CN 113186328 B CN113186328 B CN 113186328B
- Authority
- CN
- China
- Prior art keywords
- flammulina velutipes
- primer
- strains
- microsatellite dna
- xujin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 240000006499 Flammulina velutipes Species 0.000 title claims abstract description 47
- 235000016640 Flammulina velutipes Nutrition 0.000 title claims abstract description 47
- 108091092878 Microsatellite Proteins 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 13
- 239000003550 marker Substances 0.000 title claims abstract description 11
- 238000010276 construction Methods 0.000 title abstract description 6
- 239000012634 fragment Substances 0.000 claims description 15
- 108700028369 Alleles Proteins 0.000 claims description 13
- 238000004321 preservation Methods 0.000 claims 1
- 108020004414 DNA Proteins 0.000 abstract description 34
- 238000001514 detection method Methods 0.000 abstract description 16
- 238000012360 testing method Methods 0.000 abstract description 8
- 230000008485 antagonism Effects 0.000 abstract description 4
- 238000000605 extraction Methods 0.000 abstract description 4
- 230000003321 amplification Effects 0.000 abstract description 3
- 238000005251 capillar electrophoresis Methods 0.000 abstract description 3
- 230000000877 morphologic effect Effects 0.000 abstract description 3
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract 1
- 239000010931 gold Substances 0.000 abstract 1
- 229910052737 gold Inorganic materials 0.000 abstract 1
- 239000003147 molecular marker Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 13
- 238000012546 transfer Methods 0.000 description 10
- 238000012408 PCR amplification Methods 0.000 description 9
- 238000001962 electrophoresis Methods 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000000706 filtrate Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 241000233866 Fungi Species 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000001965 potato dextrose agar Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 3
- 238000007405 data analysis Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 239000012160 loading buffer Substances 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 2
- 102000016911 Deoxyribonucleases Human genes 0.000 description 2
- 108010053770 Deoxyribonucleases Proteins 0.000 description 2
- 241001537207 Flammulina Species 0.000 description 2
- 101001122597 Homo sapiens Ribonuclease P protein subunit p20 Proteins 0.000 description 2
- 102100028674 Ribonuclease P protein subunit p20 Human genes 0.000 description 2
- 238000000246 agarose gel electrophoresis Methods 0.000 description 2
- 238000012197 amplification kit Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000002798 spectrophotometry method Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 230000002929 anti-fatigue Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 230000002155 anti-virotic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Botany (AREA)
- Mycology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种金针菇徐金18菌种的微卫星DNA标记指纹图谱的鉴定方法及其构建方法与应用,包括该指纹图谱由6对微卫星DNA标记组成。构建方法包括:(1)菌丝培养;(2)基因组DNA的提取;(3)微卫星DNA分子标记的检测;(4)毛细管电泳检测。应用包括:对金针菇菌种进行微卫星DNA标记扩增,将得到的带型与指纹图谱对照,与该组指纹图谱一致即为金针菇徐金18菌种。本发明与常规形态学检测、拮抗试验、出菇试验相比,具有检测时间短、准确性高、可重复性好的优点,在收集的国内外105个金针菇栽培主栽菌种中具有金针菇徐金18菌种的专一性。
The invention discloses an identification method of a microsatellite DNA marker fingerprint of Flammulina velutipes 18 strains, a construction method and application thereof, including that the fingerprint is composed of 6 pairs of microsatellite DNA markers. The construction method includes: (1) mycelia culture; (2) extraction of genome DNA; (3) detection of microsatellite DNA molecular marker; (4) capillary electrophoresis detection. The application includes: carrying out microsatellite DNA marker amplification on Flammulina velutipes strains, and comparing the obtained band patterns with fingerprints, and if they are consistent with the fingerprints of this group, it is Flammulina velutipes Xujin 18 strains. Compared with conventional morphological detection, antagonism test and fruiting test, the present invention has the advantages of short detection time, high accuracy and good repeatability. Among the 105 main cultivated strains of Flammulina velutipes collected at home and abroad, Flammulina velutipes has Xu Specificity of gold 18 strains.
Description
技术领域technical field
本发明属于金针菇菌种的检测技术领域,具体涉及一种金针菇徐金18菌种的微卫星DNA标记指纹图谱的鉴定方法及其构建方法与应用。The invention belongs to the technical field of detection of Flammulina velutipes strains, and specifically relates to an identification method of a microsatellite DNA marker fingerprint of Flammulina velutipes 18 strains, a construction method and an application thereof.
背景技术Background technique
金针菇(Flammulinafiliformis)是一种普遍栽培的食用菌,通常分为白色和黄色品种。其栽培历史悠久,生产总量逐年提升,目前已成为我国工厂化食用菌企业中发展速度最快、规模最大的一个品种。我国工厂化栽培金针菇的日产量约占我国食用菌工厂化总产量的47.12%。金针菇营养丰富、味道鲜美且兼具药用价值,不仅富含蛋白质、矿物质和维生素等各种营养成分,而且具有抗肿瘤、增强免疫调节、抗病毒、降血脂、抗疲劳和护肝等多种药用保健作用,深受消费者喜爱。Flammulina filiformis is a commonly cultivated edible fungus, usually divided into white and yellow varieties. It has a long history of cultivation, and its total production volume has increased year by year. It has become the fastest growing and largest variety among industrialized edible fungus enterprises in my country. The daily output of my country's industrialized cultivation Flammulina velutipes accounts for about 47.12% of the total industrialized output of edible fungi in my country. Flammulina velutipes is rich in nutrients, delicious and has medicinal value. It is not only rich in various nutrients such as protein, minerals and vitamins, but also has anti-tumor, enhanced immune regulation, anti-virus, lowering blood fat, anti-fatigue and liver protection. This kind of medicinal health care effect is deeply loved by consumers.
优质菌种在金针菇单产和质量中的贡献率举足轻重。我国的金针菇工厂化栽培菌株以国外选育的首潮产量高、生长周期短和耐储藏的白色菌株为主导。金针菇育种工作相对滞后,也是导致目前国产菌株市场占有率小的原因。但是相对于目前主导的工厂化菌株而言,我国有着丰富的金针菇野生和自然栽培资源,高效利用这些优质的资源,拓展菌株的遗传基础,有利于国内高产、优质、特色金针菇菌株的选育。High-quality strains play an important role in the yield and quality of Flammulina velutipes. The factory-cultivated strains of Flammulina velutipes in my country are dominated by white strains bred abroad with high first tide yield, short growth cycle and storage resistance. The breeding work of Flammulina velutipes is relatively lagging behind, which is also the reason for the small market share of domestic strains. However, compared with the current dominant industrial strains, my country has abundant wild and natural cultivation resources of Flammulina velutipes. Efficient use of these high-quality resources and expansion of the genetic basis of strains are conducive to the breeding of domestic high-yield, high-quality, and characteristic Flammulina velutipes strains.
为了建立食用菌新品种登记制度来真正保护我国的品种产权,必须首先建立成熟的品种鉴定技术,为新品种登记奠定基础。金针菇栽培菌种多样性低导致的产品同质化现象,不仅给生产企业带来了经济损失,也极大地影响了中国金针菇产业的快速发展;另一方面,工厂化栽培方式和菌株退化现象对金针菇栽培菌株质量的要求越来越高,需要发展更为简便、快速、精准的菌株鉴定技术,以保证每批次使用的都是优质、准确的菌种。In order to establish a registration system for new varieties of edible fungi to truly protect the property rights of varieties in our country, we must first establish a mature variety identification technology to lay the foundation for new variety registration. The product homogeneity phenomenon caused by the low diversity of Flammulina velutipes cultivation not only brings economic losses to the production enterprises, but also greatly affects the rapid development of China’s Flammulina velutipes industry; The quality requirements for the cultivated strains of Flammulina velutipes are getting higher and higher, and it is necessary to develop a simpler, faster and more accurate strain identification technology to ensure that each batch uses high-quality and accurate strains.
针对上述金针菇产业发展现状,利用现代分子生物学技术开发精准有效的金针菇菌种鉴定体系是一项极为重要的工作。In view of the above-mentioned development status of Flammulina velutipes industry, it is extremely important to develop an accurate and effective identification system of Flammulina velutipes using modern molecular biology techniques.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种金针菇“徐金18”菌种的微卫星DNA标记指纹图谱及其构建方法与应用,该指纹图谱与常规形态学检测、拮抗试验、出菇试验相比,具有检测时间短,准确性高,重复性好的优点。The technical problem to be solved by the present invention is to provide a microsatellite DNA-marked fingerprint of Flammulina velutipes "Xujin 18" strain and its construction method and application. Compared with conventional morphological detection, antagonism test and fruiting test , has the advantages of short detection time, high accuracy and good repeatability.
金针菇(Flammulinafiliformis)徐金18,于2021年2月8日保藏于广东省微生物菌种保藏中心,地址为广州市先烈中路100号大院59号楼5楼,广东省微生物研究所(Building59,No.100 Central Xian Lie Road,Guangzhou,China),保藏编号为GDMCCNo:61514。Flammulina filiformis (Flammulinafiliformis) Xu Jin 18 was preserved in the Guangdong Provincial Microbial Culture Collection Center on February 8, 2021. The address is 5th Floor, Building 59, Compound, No. 100, Xianlie Middle Road, Guangzhou City, Guangdong Institute of Microbiology (Building 59, No. .100 Central Xian Lie Road, Guangzhou, China), the deposit number is GDMCCNo: 61514.
本发明的一种金针菇“徐金18”菌种的微卫星DNA标记指纹图谱,该指纹图谱由6对微卫星DNA标记组成,是基于金针菇基因组简单重复序列片段开发SSR引物,扩增带型好,重复性高的SSR引物,标记详细信息如表1:A microsatellite DNA marker fingerprint of Flammulina velutipes mushroom "Xujin 18" bacterial strain of the present invention, the fingerprint is composed of 6 pairs of microsatellite DNA markers, and SSR primers are developed based on simple repeat sequence fragments of Flammulina velutipes genome, and the amplification band pattern is good , SSR primers with high repeatability, the detailed information of the markers is shown in Table 1:
表1微卫星DNA标记详细信息列表Table 1 Detailed information list of microsatellite DNA markers
本发明的一种金针菇“徐金18”菌种的微卫星DNA标记指纹图谱的构建方法,包括:A method for constructing a microsatellite DNA marker fingerprint of Flammulina velutipes "Xujin 18" strain of the present invention, comprising:
(1)菌丝培养:将金针菇菌种转接到马铃薯葡萄糖琼脂固体培养基(PDA)上,25℃培养8d后收集菌丝;(1) Mycelia culture: transfer Flammulina velutipes strains to potato dextrose agar solid medium (PDA), collect mycelia after cultivating at 25°C for 8 days;
(2)基因组DNA的提取:用TAKARA公司的TaqHotStart扩增试剂盒提取上述菌丝的基因组DNA,紫外分光光度法检测总基因组DNA浓度和纯度,调整样品DNA的浓度一致;(2) Extraction of genomic DNA: extract the genomic DNA of the above-mentioned hyphae with the TaqHotStart amplification kit of TAKARA company, detect the concentration and purity of the total genomic DNA by ultraviolet spectrophotometry, and adjust the concentration of the sample DNA to be consistent;
(3)微卫星DNA分子标记的检测:对上述提取的DNA进行基因微卫星DNA标记的PCR扩增;(3) Detection of microsatellite DNA molecular markers: PCR amplification of gene microsatellite DNA markers is carried out to the above-mentioned extracted DNA;
(4)电泳检测:将上述PCR扩增得到的产物与甲酰胺加样缓冲液混匀,变性,上机检测;(4) Electrophoresis detection: the product obtained by the above-mentioned PCR amplification is mixed with formamide loading buffer, denatured, and tested on the machine;
(5)GeneMapper数据分析。(5) GeneMapper data analysis.
所述步骤(2)中的试剂盒法提取菌丝的基因组DNA具体工艺包括:The kit method in the described step (2) extracts the genome DNA specific technique of mycelium comprising:
(1)将菌丝样本加入液氮充分研磨;(1) adding liquid nitrogen to the mycelium sample and fully grinding;
(2)向研磨好的粉末中迅速加入360μLBufferSTE和40μLBufferSDS,迅速涡旋混匀后,将离心管放在65℃水浴15min,水浴过程中颠倒离心管以混合样本数次;(2) Quickly add 360 μL BufferSTE and 40 μL BufferSDS to the ground powder, vortex and mix quickly, then place the centrifuge tube in a 65°C water bath for 15 minutes, and invert the centrifuge tube during the water bath to mix the sample several times;
(3)加入5μLRNaseSolution至裂解液中,涡旋混匀,室温静置15-30min;(3) Add 5 μL RNaseSolution to the lysate, vortex and mix well, and let stand at room temperature for 15-30 minutes;
(4)加入140μLBufferPS,涡旋震荡30s,冰上放置10min;(4) Add 140 μL BufferPS, vortex for 30 seconds, and place on ice for 10 minutes;
(5)室温下,13000g离心5min,小心转移400μL上清液至新的离心管中;(5) Centrifuge at 13,000 g for 5 min at room temperature, and carefully transfer 400 μL of the supernatant to a new centrifuge tube;
(6)加入600μLBufferPBD(已用无水乙醇稀释)至样品中,涡旋混匀30s;(6) Add 600 μL BufferPBD (diluted with absolute ethanol) to the sample, vortex and mix for 30 seconds;
(7)把DNA结合柱装在收集管,转移一半混合液至柱子中,8000g离心1min;(7) Put the DNA-binding column in a collection tube, transfer half of the mixture to the column, and centrifuge at 8000 g for 1 min;
(8)倒弃滤液把柱子装回收集管,转移剩余混合液至柱子中,8000g离心1min;(8) Discard the filtrate, put the column back into the collection tube, transfer the remaining mixture to the column, and centrifuge at 8000 g for 1 min;
(9)倒弃滤液把柱子装回收集管,加入600μLBufferGW2(已用无水乙醇稀释)至柱子中,8000g离心1min;(9) Discard the filtrate, put the column back into the collection tube, add 600 μL BufferGW2 (diluted with absolute ethanol) to the column, and centrifuge at 8000 g for 1 min;
(10)重复步骤9;(10) Repeat
(11)倒弃滤液把柱子装回收集管,10000g离心2min去除柱子中残留的乙醇;(11) Discard the filtrate, put the column back into the collection tube, and centrifuge at 10000g for 2min to remove the residual ethanol in the column;
(12)将柱子转移至新的1.5ml离心管中,加入30μL预热至65℃的BufferAE至柱子的膜中央,室温静置2min,10000g离心1min;(12) Transfer the column to a new 1.5ml centrifuge tube, add 30 μL of BufferAE preheated to 65°C to the center of the membrane of the column, let it stand at room temperature for 2 minutes, and centrifuge at 10,000 g for 1 minute;
(13)取2μLDNA用于1.2%琼脂糖凝胶电泳检测,取2μLDNA用于NanoDrop分光光度计测浓度,剩余DNA保存于-20℃。(13) Take 2 μL DNA for detection by 1.2% agarose gel electrophoresis, take 2 μL DNA for NanoDrop spectrophotometer concentration measurement, and store the remaining DNA at -20°C.
所述步骤(3)中的PCR扩增体系为:总体积10μL,包括:10×PCRbuffer1μL,2.5mmol/LdNTP0.8μL,5U/μLHSTaqDNA酶0.1μL,5μmol/L微卫星DNA标记正向引物和反向引物总体积各0.6μL,浓度20ng~30ng/μL提取的模板DNA1μL,ddH2O5.9μL;The PCR amplification system in the step (3) is: a total volume of 10 μL, including: 10×PCRbuffer 1 μL, 2.5 mmol/LdNTP 0.8 μL, 5U/μL HSTaq DNase 0.1 μL, 5 μmol/L microsatellite DNA labeled forward primer and reverse primer Add 0.6 μL of total primer volume, 1 μL of extracted template DNA at a concentration of 20 ng to 30 ng/μL, and 5.9 μL of ddH 2 O;
PCR反应条件:95℃5min;95℃30second,60℃30second,72℃30second,35个循环;60℃30min。PCR reaction conditions: 95°C for 5 minutes; 95°C for 30 seconds, 60°C for 30 seconds, 72°C for 30 seconds, 35 cycles; 60°C for 30 minutes.
所述步骤(4)中的加样缓冲液为分子量内标和甲酰胺混合液(0.5:8.5)9μL;PCR扩增产物加样量1μL。The loading buffer in the step (4) is 9 μL of a mixture of molecular weight internal standard and formamide (0.5:8.5); the loading volume of the PCR amplification product is 1 μL.
所述步骤(4)中的变性的具体工艺为于95℃变性3min,结束后置于冰水混合物中冷却3min。The specific process of the denaturation in the step (4) is to denature at 95° C. for 3 minutes, and place it in an ice-water mixture to cool for 3 minutes after completion.
所述步骤(4)中的电泳的工艺参数为:变性聚丙烯酰胺凝胶为商用POP7胶,电泳缓冲液为3730bufferEDTA,注入电压2000V,运行电压15000V,进样时间10s,温度60℃,毛细管长度50cm,功率200W,电泳20min,电流和功率均为动态。The process parameters of the electrophoresis in the step (4) are: the denatured polyacrylamide gel is a commercial POP7 gel, the electrophoresis buffer is 3730bufferEDTA, the injection voltage is 2000V, the operating voltage is 15000V, the injection time is 10s, the temperature is 60°C, the capillary length 50cm, power 200W, electrophoresis 20min, current and power are dynamic.
所述步骤(5)中的数据分析具体为:将检测得到的原始数据文件导入到分析软件genemapperID3.2中,运用POPGENE、NTSYS等软件进行群体结构分析、聚类及杂合度的分析,核心种质资源计算分析。分析等位基因数(Na,Ne)、Nei’s遗传多样性指数(He)、shannon’s多样性信息指数(I)和基因观测杂合度(Ho)。The data analysis in the described step (5) is specifically: the original data file that detects is imported in the analysis software genemapperID3.2, uses software such as POPGENE, NTSYS to carry out the analysis of population structure, clustering and heterozygosity, core species Quantitative resource calculation and analysis. The number of alleles (Na, Ne), Nei’s genetic diversity index (He), Shannon’s diversity information index (I) and gene observation heterozygosity (Ho) were analyzed.
表2 SSR引物扩增的等位片段信息汇总表Table 2 Summary of allelic fragment information amplified by SSR primers
本发明的一种金针菇“徐金18”菌种的微卫星DNA标记指纹图谱的应用,是利用金针菇基因组简单重复序列片段开发的6对SSR引物,本发明对大量的SSR引物进行了筛选,通过对收集的105份金针菇主要栽培品种的SSR引物带型扩增,确定了6对SSR引物在各个金针菇栽培品种中扩增出的等位片段的数量并编号(表2),通过不同SSR等位位点的编号组合能够在所收集的105份主栽品种中有效识别“徐金18”菌种。通过毛细管电泳结合软件分析可确定各SSR引物扩增的等位位点的相对分子量,存在“徐金18”菌种特异SSR等位片段组合的菌种即是金针菇“徐金18”菌种,该菌种的编号组合为:6/5/(4+7)/(2+3)/(7+10)/(2+10)。The application of the microsatellite DNA marker fingerprint of a kind of Flammulina velutipes "Xujin 18" bacterial strain of the present invention is to utilize 6 pairs of SSR primers developed by the simple repeat sequence fragments of the Flammulina velutipes genome. The present invention has screened a large number of SSR primers and passed To the SSR primer band type amplification of 105 pieces of Flammulina velutipes main cultivars collected, the quantity and numbering (table 2) of the amplified allelic fragments amplified by 6 pairs of SSR primers in each Flammulina velutipes cultivars were determined, through different SSR alleles The number combination of loci can effectively identify the "Xu Jin 18" strain among the 105 main cultivars collected. The relative molecular weight of the allelic sites amplified by each SSR primer can be determined by capillary electrophoresis combined with software analysis. The strain with the specific SSR allelic fragment combination of "Xujin 18" strain is the "Xujin 18" strain of Flammulina velutipes. The number combination of the strain is: 6/5/(4+7)/(2+3)/(7+10)/(2+10).
本发明的有益效果:本发明与常规形态学检测、拮抗试验、出菇试验相比,具有检测时间短,准确性高,重复性好的优点。检测所需的操作时间在24h以内(包括提取基因组DNA、PCR扩增、电泳分析、数据分析),而常规的拮抗试验所需时间至少需要两周时间,出菇试验则需要至少3个月的时间;本发明方法在所收集的105个市售金针菇主栽培菌种(包括Fv-DY、Fv-FY、Fv-SB、Fv-CYS、Fv-YH、Fv-KL、Fv-MG、Fv-MH、Fv-MI、Fv-MJ、Fv-SY、Fv-FM、Fv-WC、Fv-GF、Fv-BY、Fv-HL、Fv-RYJ、Fv-XH、Fv-HTC、Fv-GR等)中具有“徐金18”菌种的专一性,具有良好的应用前景。Beneficial effects of the present invention: compared with conventional morphological detection, antagonism test, and fruiting test, the present invention has the advantages of short detection time, high accuracy and good repeatability. The operation time required for the detection is within 24 hours (including extraction of genomic DNA, PCR amplification, electrophoresis analysis, data analysis), while the conventional antagonism test takes at least two weeks, and the fruiting test takes at least 3 months. Time; The present invention method is in collected 105 commercially available Flammulina velutipes main cultivars (comprising Fv-DY, Fv-FY, Fv-SB, Fv-CYS, Fv-YH, Fv-KL, Fv-MG, Fv- MH, Fv-MI, Fv-MJ, Fv-SY, Fv-FM, Fv-WC, Fv-GF, Fv-BY, Fv-HL, Fv-RYJ, Fv-XH, Fv-HTC, Fv-GR, etc. ) has the specificity of "Xu Jin 18" strain and has a good application prospect.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings without any creative effort. in:
图1为引物FfSSR1分别在所选金针菇栽培材料“徐金18”和几种主栽商业品种中依次检测得到的等位位点相对分子量峰图;Figure 1 is the relative molecular weight peak diagram of the allelic sites detected sequentially by the primer FfSSR1 in the selected Flammulina velutipes cultivation material "
图2为引物FfSSR3分别在所选金针菇栽培材料“徐金18”和几种主栽商业品种中依次检测得到的等位位点相对分子量峰图;Figure 2 is the relative molecular weight peak diagram of the allelic sites detected sequentially by the primer FfSSR3 in the selected Flammulina velutipes cultivation material "
图3为引物FfSSR10分别在所选金针菇栽培材料“徐金18”和几种主栽商业品种中依次检测得到的等位位点相对分子量峰图;Figure 3 is the relative molecular weight peak diagram of the allelic sites detected sequentially by the primer FfSSR10 in the selected Flammulina velutipes cultivation material "
图4为引物FfSSR11分别在所选金针菇栽培材料“徐金18”和几种主栽商业品种中依次检测得到的等位位点相对分子量峰图;Figure 4 is the relative molecular weight peak diagram of the allelic sites detected sequentially by the primer FfSSR11 in the selected Flammulina velutipes cultivation material "
图5为引物FfSSR13分别在所选金针菇栽培材料“徐金18”和几种主栽商业品种中依次检测得到的等位位点相对分子量峰图;Figure 5 is the relative molecular weight peak diagram of the allelic sites detected sequentially by the primer FfSSR13 in the selected Flammulina velutipes cultivation material "
图6为引物FfSSR15分别在所选金针菇栽培材料“徐金18”和几种主栽商业品种中依次检测得到的等位位点相对分子量峰图。Fig. 6 is the relative molecular weight peak diagram of the allelic sites detected sequentially by the primer FfSSR15 in the selected Flammulina velutipes cultivation material "
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施例对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, the specific implementation of the present invention will be described in detail below in conjunction with specific examples.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, a lot of specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways different from those described here, and those skilled in the art can do it without departing from the meaning of the present invention. By analogy, the present invention is therefore not limited to the specific examples disclosed below.
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。Second, "one embodiment" or "an embodiment" referred to herein refers to a specific feature, structure or characteristic that may be included in at least one implementation of the present invention. "In one embodiment" appearing in different places in this specification does not all refer to the same embodiment, nor is it a separate or selective embodiment that is mutually exclusive with other embodiments.
实施例1:Example 1:
(1)菌丝培养:将金针菇菌种转接到马铃薯葡萄糖琼脂固体培养基(PDA)上,25℃培养8d后收集菌丝;(1) Mycelia culture: transfer Flammulina velutipes strains to potato dextrose agar solid medium (PDA), collect mycelia after cultivating at 25°C for 8 days;
(2)基因组DNA的提取:用TAKARA公司的TaqHotStart扩增试剂盒提取上述菌丝的基因组DNA,紫外分光光度法检测总基因组DNA浓度和纯度,调整样品DNA的浓度一致;(2) Extraction of genomic DNA: extract the genomic DNA of the above-mentioned hyphae with the TaqHotStart amplification kit of TAKARA company, detect the concentration and purity of the total genomic DNA by ultraviolet spectrophotometry, and adjust the concentration of the sample DNA to be consistent;
CTAB法提取菌丝的基因组DNA工艺包括:The CTAB method for extracting the genomic DNA from mycelium includes:
①将菌丝样本加入液氮充分研磨;①Add the mycelium sample into liquid nitrogen and grind it thoroughly;
②向研磨好的粉末中迅速加入360μLBufferSTE和40μLBufferSDS,迅速涡旋混匀后,将离心管放在65℃水浴15min,水浴过程中颠倒离心管以混合样本数次;② Quickly add 360 μL BufferSTE and 40 μL BufferSDS to the ground powder, vortex quickly and mix well, then place the centrifuge tube in a 65°C water bath for 15 minutes, invert the centrifuge tube during the water bath to mix the sample several times;
③加入5μLRNaseSolution至裂解液中,涡旋混匀,室温静置15-30min;
④加入140μLBufferPS,涡旋震荡30s,冰上放置10min;④ Add 140 μL BufferPS, vortex for 30 seconds, and place on ice for 10 minutes;
⑤室温下,13000g离心5min,小心转移400μL上清液至新的离心管中;⑤Centrifuge at 13000g for 5min at room temperature, carefully transfer 400μL supernatant to a new centrifuge tube;
⑥加入600μLBufferPBD(已用无水乙醇稀释)至样品中,,涡旋混匀30s;⑥Add 600μL BufferPBD (diluted with absolute ethanol) to the sample, and vortex for 30s;
⑦把DNA结合柱装在收集管,转移一半混合液至柱子中,8000g离心1min;⑦Put the DNA binding column in the collection tube, transfer half of the mixture to the column, and centrifuge at 8000g for 1min;
⑧倒弃滤液把柱子装回收集管,转移剩余混合液至柱子中,8000g离心1min;⑧ Discard the filtrate, put the column back into the collection tube, transfer the remaining mixture to the column, and centrifuge at 8000g for 1min;
⑨倒弃滤液把柱子装回收集管,加入600μLBufferGW2(已用无水乙醇稀释)至柱子中,8000g离心1min;⑨ Discard the filtrate, put the column back into the collection tube, add 600μL BufferGW2 (diluted with absolute ethanol) to the column, and centrifuge at 8000g for 1min;
⑩重复步骤9;
倒弃滤液把柱子装回收集管,10000g离心2min去除柱子中残留的乙醇; Pour off the filtrate, put the column back into the collection tube, and centrifuge at 10000g for 2min to remove the residual ethanol in the column;
将柱子转移至新的1.5ml离心管中,加入30μL预热至65℃的BufferAE至柱子的膜中央,室温静置2min,10000g离心1min; Transfer the column to a new 1.5ml centrifuge tube, add 30 μL of BufferAE preheated to 65°C to the center of the membrane of the column, let it stand at room temperature for 2 minutes, and centrifuge at 10,000g for 1 minute;
取2μLDNA用于1.2%琼脂糖凝胶电泳检测,取2μLDNA用于NanoDrop分光光度计测浓度,剩余DNA保存于-20℃。 Take 2 μL of DNA for 1.2% agarose gel electrophoresis detection, take 2 μL of DNA for NanoDrop spectrophotometer concentration, and store the remaining DNA at -20°C.
(3)微卫星DNA分子标记的检测:对上述提取的DNA进行基因微卫星DNA标记的PCR扩增;(3) Detection of microsatellite DNA molecular markers: PCR amplification of gene microsatellite DNA markers is carried out to the above-mentioned extracted DNA;
PCR扩增体系为:总体积10μL,包括:10×PCRbuffer1μL,2.5mmol/LdNTP0.8μL,5U/μLHSTaqDNA酶0.1μL,5μmol/L微卫星DNA标记正向引物和反向引物总体积各0.6μL,浓度20ng~30ng/μL提取的模板DNA1μL,ddH2O5.9μL;The PCR amplification system is: a total volume of 10 μL, including: 10×PCR buffer 1 μL, 2.5mmol/LdNTP 0.8 μL, 5U/μL HSTaq DNase 0.1 μL, 5 μmol/L microsatellite DNA labeled forward primer and reverse primer total volume 0.6 μL each, Concentration 20ng~30ng/μL extracted template DNA 1μL, ddH 2 O 5.9μL;
PCR反应条件:95℃5min;95℃30second,60℃30second,72℃30second,35个循环;60℃30min。PCR reaction conditions: 95°C for 5 minutes; 95°C for 30 seconds, 60°C for 30 seconds, 72°C for 30 seconds, 35 cycles; 60°C for 30 minutes.
(4)电泳检测:将上述PCR扩增得到的产物与1μL加样缓冲液混匀,95℃变性3min,结束后置于冰水混合物中冷却3min;点样3μL于变性聚丙烯酰胺凝胶上电泳,变性聚丙烯酰胺凝为商用POP7胶,电泳缓冲液为3730bufferEDTA,注入电压2000V,运行电压15000V,进样时间10s,温度60℃,毛细管长度50cm,功率200W,电泳20min,电流和功率均为动态,(4) Electrophoresis detection: Mix the product obtained by the above PCR amplification with 1 μL loading buffer, denature at 95°C for 3 minutes, and then place it in ice-water mixture for 3 minutes to cool; spot 3 μL on denatured polyacrylamide gel For electrophoresis, denatured polyacrylamide was coagulated into commercial POP7 gel, the electrophoresis buffer was 3730bufferEDTA, the injection voltage was 2000V, the operating voltage was 15000V, the injection time was 10s, the temperature was 60°C, the capillary length was 50cm, the power was 200W, and the electrophoresis was 20min. dynamic,
(5)结果分析(5) Analysis of results
采用6对SSR引物对金针菇菌株进行PCR扩增和毛细管电泳,通过分析等位基因数(Na,Ne)、Nei’s遗传多样性指数(He)、shannon’s多样性信息指数(I)和基因观测杂合度(Ho),结合等位位点的相对分子量峰图,找到符合编号组合为:FfSSR1、FfSSR3、FfSSR10、FfSSR11、FfSSR13、FfSSR15,相应带型为:6/5/(4+7)/(2+3)/(7+10)/(2+10)的菌种,即可确定该菌种为金针菇“徐金18”菌种。为保证鉴定的准确性,建议进行三次重复实验。Six pairs of SSR primers were used for PCR amplification and capillary electrophoresis of Flammulina velutipes strains, and the heterozygosity was observed by analyzing the number of alleles (Na, Ne), Nei's genetic diversity index (He), shannon's diversity information index (I) and genes (Ho), combined with the relative molecular weight peak diagram of the allelic site, find the matching number combination: FfSSR1, FfSSR3, FfSSR10, FfSSR11, FfSSR13, FfSSR15, and the corresponding band pattern is: 6/5/(4+7)/(2 +3)/(7+10)/(2+10), it can be determined that the strain is Flammulina velutipes "
以几种主栽商业品种为例,给出6对引物依次检测得到的等位位点相对分子量峰图,如图1~6所示(依次为①徐金18②Fv-SY③Fv-FM④Fv-WC⑤Fv-GF⑥Fv-BY⑦Fv-HL⑧Fv-RYJ⑨Fv-XH⑩Fv-HTCFv-GR)。Taking several main commercial varieties as examples, the relative molecular weight peaks of allelic sites detected by 6 pairs of primers are given, as shown in Figures 1 to 6 (the order is ①Xujin 18②Fv-SY③Fv-FM④Fv-WC⑤Fv-GF⑥Fv -BY⑦Fv-HL⑧Fv-RYJ⑨Fv-XH⑩Fv-HTC Fv-GR).
本发明所述指纹图谱,是指所述引物及其带型组合。The fingerprint in the present invention refers to the combination of the primers and their band patterns.
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation, although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements without departing from the spirit and scope of the technical solution of the present invention shall be covered by the claims of the present invention.
序列表sequence listing
<110> 上海市农业科学院<110> Shanghai Academy of Agricultural Sciences
<120> 一种金针菇徐金18菌种的微卫星DNA标记指纹图谱的鉴定方法及其构建方法与应用<120> Identification method, construction method and application of microsatellite DNA marker fingerprint of Flammulina velutipes 18 strains
<130> 2021040905-zf-wjn<130> 2021040905-zf-wjn
<141> 2021-04-09<141> 2021-04-09
<160> 12<160> 12
<170> SIPOSequenceListing 1.0<170> SIP Sequence Listing 1.0
<210> 1<210> 1
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 1<400> 1
tctgaatgtc ccggagcgt 19tctgaatgtc ccggagcgt 19
<210> 2<210> 2
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 2<400> 2
gatacgagca gcactcgcg 19gatacgagca gcactcgcg 19
<210> 3<210> 3
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 3<400> 3
cgtgcgcgtt acaatccat 19cgtgcgcgtt acaatccat 19
<210> 4<210> 4
<211> 19<211> 19
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 4<400> 4
taggcccccc aagaaacat 19taggcccccc aagaaacat 19
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 5<400> 5
ggtgcacgct cctaaaccta 20ggtgcacgct cctaaaccta 20
<210> 6<210> 6
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 6<400> 6
cttgtcgagg aagatccatg 20cttgtcgagg aagatccatg 20
<210> 7<210> 7
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 7<400> 7
agtgatgacg aggacagtga 20agtgatgacg aggacagtga 20
<210> 8<210> 8
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 8<400> 8
ccttcctcct ccatagcaaa 20ccttcctcct ccatagcaaa 20
<210> 9<210> 9
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 9<400> 9
atttcttcgg atgctttgga 20atttcttcgg atgctttgga 20
<210> 10<210> 10
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 10<400> 10
ttctctttgc acacgtcgaa 20ttctctttgc acacgtcgaa 20
<210> 11<210> 11
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 11<400> 11
agtcgtcgtt caaggtgtcg 20agtcgtcgtt caaggtgtcg 20
<210> 12<210> 12
<211> 20<211> 20
<212> DNA<212>DNA
<213> 人工序列(Artificial Sequence)<213> Artificial Sequence
<400> 12<400> 12
cggttgtttg ttccactttt 20cggttgtttg ttccactttt 20
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110383020.1A CN113186328B (en) | 2021-04-09 | 2021-04-09 | Identification method of microsatellite DNA marker fingerprint of flammulina velutipes xujin 18 strain and construction method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110383020.1A CN113186328B (en) | 2021-04-09 | 2021-04-09 | Identification method of microsatellite DNA marker fingerprint of flammulina velutipes xujin 18 strain and construction method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113186328A CN113186328A (en) | 2021-07-30 |
CN113186328B true CN113186328B (en) | 2023-02-28 |
Family
ID=76975330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110383020.1A Active CN113186328B (en) | 2021-04-09 | 2021-04-09 | Identification method of microsatellite DNA marker fingerprint of flammulina velutipes xujin 18 strain and construction method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113186328B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104131007A (en) * | 2014-07-04 | 2014-11-05 | 上海市农业科学院 | SSR labeled fingerprint of flammulina velutipes "chuanhuang" strain and applications thereof |
CN104131085A (en) * | 2014-07-04 | 2014-11-05 | 上海市农业科学院 | SSR marker fingerprint spectrum of golden mushroom Sanming BX3 bacterial classification and application thereof |
CN105506124A (en) * | 2016-01-12 | 2016-04-20 | 浙江省农业科学院 | SSR labeling primer of flammulina velutipes F101 culture and fingerprint application thereof |
-
2021
- 2021-04-09 CN CN202110383020.1A patent/CN113186328B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104131007A (en) * | 2014-07-04 | 2014-11-05 | 上海市农业科学院 | SSR labeled fingerprint of flammulina velutipes "chuanhuang" strain and applications thereof |
CN104131085A (en) * | 2014-07-04 | 2014-11-05 | 上海市农业科学院 | SSR marker fingerprint spectrum of golden mushroom Sanming BX3 bacterial classification and application thereof |
CN105506124A (en) * | 2016-01-12 | 2016-04-20 | 浙江省农业科学院 | SSR labeling primer of flammulina velutipes F101 culture and fingerprint application thereof |
Non-Patent Citations (1)
Title |
---|
Development and characterization of simple sequence repeat (SSR) markers for the mushroom Flammulina velutipes;Ruiying Zhang等;《Journal of Bioscience and Bioengineering》;20101231;第110卷(第3期);第274页右栏第2-3段-第275页左栏第1-2段、表1-2、图1 * |
Also Published As
Publication number | Publication date |
---|---|
CN113186328A (en) | 2021-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113186327B (en) | Identification method of microsatellite DNA marker fingerprint of flammulina velutipes FC89 strain, construction method and application thereof | |
CN113186328B (en) | Identification method of microsatellite DNA marker fingerprint of flammulina velutipes xujin 18 strain and construction method and application thereof | |
CN112980995B (en) | An identification method of a microsatellite DNA marker fingerprint of Flammulina velutipes 1754 strain and its construction method and application | |
CN112961934B (en) | Identification method and construction method and application of a microsatellite DNA marker fingerprint of Flammulina velutipes SCY12 strain | |
CN112961933B (en) | Identification method of microsatellite DNA marker fingerprint spectrum of flammulina velutipes FL159 strain and construction method and application thereof | |
CN112980992B (en) | Identification method and construction method and application of a microsatellite DNA marker fingerprint of Flammulina velutipes FW178 strain | |
CN112813193B (en) | Identification method of microsatellite DNA marker fingerprint of flammulina velutipes X995 strain and construction method and application thereof | |
CN112795690A (en) | Identification method of SSR marker fingerprint of Flammulina velutipes J3931 strain, construction method and application | |
CN113005220B (en) | Identification method of microsatellite DNA marker fingerprint of flammulina velutipes J1011 strain, construction method and application thereof | |
CN113151547B (en) | Identification method of microsatellite DNA marker fingerprint of flammulina velutipes FL1980 strain, construction method and application thereof | |
CN112980994B (en) | Identification method of SSR marker fingerprint of needle mushroom strain and construction method and application thereof | |
CN113151548B (en) | Identification method of microsatellite DNA marker fingerprint of flammulina velutipes FV1923 strain and construction method and application thereof | |
CN112941223A (en) | Golden needle mushroom 6168 strain and identification method and construction method and application of SSR marker fingerprint spectrum thereof | |
CN112725522A (en) | Golden needle mushroom 1767 strain and identification method and construction method and application of SSR marker fingerprint spectrum thereof | |
CN112941224A (en) | Identification method of SSR (simple sequence repeat) marker fingerprint of golden 6046 strain of flammulina velutipes, construction method and application thereof | |
CN112695130B (en) | SSR marker fingerprint of hypsizigus marmoreus Huzhen No. 22 strain and construction method and application thereof | |
CN112795688B (en) | SSR (simple sequence repeat) marker fingerprint spectrum of hypsizigus marmoreus HM13 strain as well as construction method and application thereof | |
CN112813182B (en) | A SSR-marked fingerprint of the genus Jiji mushroom Huzhen No. 23 strain and its construction method and application | |
CN112746128B (en) | SSR (simple sequence repeat) marker fingerprint of hypsizigus marmoreus HM3 strain, and construction method and application thereof | |
CN112795687B (en) | SSR (simple sequence repeat) marker fingerprint spectrum of hypsizigus marmoreus HM21 strain as well as construction method and application thereof | |
CN112760407B (en) | SSR (simple sequence repeat) marker fingerprint of hypsizigus marmoreus HM37 strain, and construction method and application thereof | |
CN112795686B (en) | A SSR-marked fingerprint of jiji mushroom Huzhen No. 18 strain and its construction method and application | |
CN112877458B (en) | SSR (simple sequence repeat) marker fingerprint spectrum of hypsizigus marmoreus HM36 strain as well as construction method and application thereof | |
CN112760406B (en) | SSR (simple sequence repeat) marker fingerprint spectrum of hypsizigus marmoreus HM22 strain as well as construction method and application thereof | |
CN112795681B (en) | A kind of SSR marker fingerprint of jiji mushroom HM18 strain and its construction method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |