CN113166942A - 用于等离子体增强化学气相沉积的膜应力控制 - Google Patents

用于等离子体增强化学气相沉积的膜应力控制 Download PDF

Info

Publication number
CN113166942A
CN113166942A CN201980082054.8A CN201980082054A CN113166942A CN 113166942 A CN113166942 A CN 113166942A CN 201980082054 A CN201980082054 A CN 201980082054A CN 113166942 A CN113166942 A CN 113166942A
Authority
CN
China
Prior art keywords
substrate
bias
gas
chamber
showerhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980082054.8A
Other languages
English (en)
Other versions
CN113166942B (zh
Inventor
高建德
元泰景
卡尔·A·索伦森
桑杰伊·D·雅达夫
李永东
栗田真一
崔寿永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Priority to CN202310780628.7A priority Critical patent/CN116970926A/zh
Publication of CN113166942A publication Critical patent/CN113166942A/zh
Application granted granted Critical
Publication of CN113166942B publication Critical patent/CN113166942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45559Diffusion of reactive gas to substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

本公开内容的多个实施方式包括用于在大面积基板上沉积多个层的方法与设备。在一个实施方式中,提供一种用于等离子体沉积的处理腔室。处理腔室包括喷头与基板支撑组件。喷头耦接至射频功率源并且接地,并且喷头包括多个穿孔气体扩散构件。多个等离子体施加器设置于喷头内,其中多个等离子体施加器中的一个等离子体施加器对应于多个穿孔气体扩散构件中的一个穿孔气体扩散构件。进一步地,直流偏压电源耦接至基板支撑组件。

Description

用于等离子体增强化学气相沉积的膜应力控制
背景
技术领域
本公开内容的多个实施方式通常涉及用于处理大面积基板的方法和设备。更具体地,本公开内容的多个实施方式涉及用于器件制造的化学气相沉积系统及其方法。
背景技术
在显示器的制造中,采用许多工艺来沉积薄膜于基板上,例如液晶显示器(LCD)和/或有机发光二极管(OLED)基板,以形成电子器件于所述基板上。一般而言,沉积通过将前驱物气体引入具有设置于温度受控基板支撑件上的基板的真空腔室来实现。前驱物气体一般通常被引导通过位于真空室顶部附近的气体分配板。通过从一个或多个耦接至腔室的射频源(RF sources)向设置于腔室中的导电喷头施加的射频(RF)功率,真空腔室中的前驱物气体可被激发(excited)为等离子体。被激发的气体反应以在位于温度受控基板支撑件上的基板的表面上形成材料层。
传统上,等离子体是使用电容性耦合电极布置在用于在大面积的基板上沉积的传统腔室中形成的。近来,人们对于多线圈电感耦合等离子体(inductively coupledplasma;ICP)布置的兴趣已被探讨用于这些大面积基板的沉积工艺中,多线圈电感耦合等离子体布置历来用在圆基板或晶片的沉积中。在这种用在大面积高密度等离子体化学气相沉积(high density plasma chemical vapor deposition;HDP-CVD)中的电感耦合等离子体布置中,射频功率可能施加在基板之下,以便调节所制造的半导体器件的各个膜层的本征膜应力(intrinsic film stress)。对于完成的器件来说,较低的本征膜应力是期望的,以降低膜的损伤(例如膜的破裂与剥离)。然而,传统的电感耦合布置利用介电材料,所述介电材料能够使施加于基板之下的射频功率能够贯穿等离子体处理区域并且耦接设置于上方的导电喷头框架。射频功率贯穿处理区域导致直接沉积在喷头线圈的下方的膜的区域和直接沉积在喷头框架下方的膜的区域之间的应力特性不同。
因此,在所属技术领域中,需要的是用于在大面积高密度等离子体气相沉积期间调节膜应力的改良方法和设备。
发明内容
本公开内容的多个实施方式涉及用于处理大面积基板的方法和设备。更具体地,本公开内容的多个实施方式涉及用于器件制造的化学气相沉积系统及其方法。
在一个实施方式中,提供了一种等离子体沉积腔室。所述等离子体沉积腔室包括喷头、多个介电板、多个感应线圈和基板支撑组件。喷头包括多个穿孔构件,每一个穿孔构件耦接至多个支撑构件中的一个或多个支撑构件。所述支撑构件提供前驱物气体至感应线圈与穿孔构件之间的空间。基板支撑组件包括静电卡盘组件、绝缘层和基板偏压板。基板偏压板耦接至直流电源(DC type power source)与低通滤波器(low pass filter)。
在一个实施方式中,提供了一种用于在基板上沉积膜的方法。所述方法包括:将前驱物气体流到喷头的多个气体空间;改变流入多个气体空间中的每一个气体空间的前驱物气体的流动;向喷头的感应线圈施加射频功率以对前驱物气体进行激励;使被激励的(energized)前驱物气体流入处理腔室的处理区域;以及将直流偏压功率((DC biaspower)施加至基板支撑件内的偏压板,以调节基板上的膜沉积。
附图说明
为了使本公开内容的上述特征可以被更详细地理解,可以参照多个实施方式对本公开内容有更加具体的描述,其中一些实施方式在附图中示出。然而,应当注意的是,附图仅示出了本公开内容的示例性实施方式,因此不应被理解为对本公开内容的范围的限制,并且本公开内容可以允许其他同样有效的实施方式。
图1示出了根据本公开内容的一个实施方式的处理腔室的截面图。
图2A示出了图1的盖组件的一部分的放大图。
图2B示出了线圈的一个实施方式的俯视平面图。
图3示出了根据本公开内容的一个实施方式的喷头的面板的底部平面图,所述面板具有与喷头相关的基板的叠加轮廓(superimposed profile)。
图4示出了根据本公开内容的一个实施方式的处理腔室的截面图。
图5示出了图4中形成沉积的膜时所进行操作的流程图。
为了便于理解,在可能的情况下,使用相同的附图标记来代表图中共有的相同元件。可预期的是,在一个实施方式中公开内容的元件和特征可以有益地用于其他实施方式中,而无需进一步叙述。
具体实施方式
本公开内容的多个实施方式包括用于在大面积基板上沉积多个层的方法与设备。在一个实施方式中,提供一种用于等离子体沉积的处理腔室。处理腔室包括喷头与基板支撑组件。喷头耦接至射频功率源并且接地,并且喷头包括多个穿孔气体扩散构件。多个等离子体施加器(applicators)设置于喷头内,其中多个等离子体施加器中的一个等离子体施加器对应于多个穿孔气体扩散构件中的一个穿孔气体扩散构件。进一步地,直流偏压电源(DC bias power source)耦接至基板支撑组件。
如本文中使用的大面积基板是具有通常为约1平方米或更大的表面积的基板。然而,基板不限于任意特定的尺寸或形状。在一方面中,术语“基板”代表任意多边形、正方形、长方形、曲线的或其他非圆形的工件,例如用于制造平板显示器的玻璃或聚合物基板。
本文中,将喷头构造为使气体流过喷头,并且使气体流入许多独立控制区中的腔室的处理空间,以便提高暴露于处理区中气体的大面积基板的表面的处理均匀性。此外,每一个区被构造有气室(plenum)、介于气室与腔室的处理空间之间的一个或多个的穿孔构件、以及一个区或单个穿孔板专用的线圈或线圈的一部分。所述气室形成于介电窗、穿孔构件与围绕框结构之间。每一个气室被构造成使处理气体能够流过气室并且被分配,从而造成流过穿孔构件并进入处理空间的气体的相对均匀的流量,或在一些情况下经调整的(tailored)流量。所述气室具有的厚度小于所述气室中的处理气体在压力下形成的等离子体的暗间隔(dark space)的厚度的两倍。电感耦合器,优选地为线圈形状,位于介电窗的后面,并且通过介电窗、气室与穿孔构件电感耦合能量以撞击并维持处理空间中的等离子体。控制每一个区中的处理气体的流动以得到均匀或经调整的气体流,从而在大面积基板上实现期望的处理结果。
本公开内容的多个实施方式包括高密度等离子体化学气相沉积(HDP-CVD)处理腔室,所述处理腔室是可操作的以形成一个或多个层或膜在基板上,基板包括大面积基板。如本文公开内容的处理腔室可适用于输送产生于等离子体中的前驱物气体的被激励的物质(energized species)。等离子体可通过在真空下使感应耦合能量进入气体来产生。本文公开内容的多个实施方式可适于使用在可以自加利福尼亚州圣塔克拉拉的应用材料公司(Applied Materials,Inc.,Santa Clara,California)的子公司美商业凯科技公司(AKTAmerica,Inc.)取得的腔室。应理解的是,本文所述的多个实施方式也可以在从其他制造商处可以获取的腔室中实行。
图1示出了根据本公开内容的一个实施方式的示例性处理腔室100的截面图。基板102设置于腔室本体104内,在基座或基板支撑组件108的基板接收表面120上。基板支撑组件108耦接至轴110,轴110延伸通过腔室本体104。轴110耦接至致动器112,致动器112在腔室本体104内沿垂直方向(沿Z方向)移动基板支撑组件108。例如,在处理位置示出图1所示的处理腔室100的基板支撑组件108。然而,基板支撑组件108可以沿Z方向下降至相邻于传送端口114的位置。在这个位置,终端受动器或机械叶片(未示出)通过传送端口114插入,并且介于基板102与基板接收表面120之间,以将基板102传送出腔室本体104。
处理腔室100还包括被设置于基板支撑组件108上方的盖组件106。盖组件106可包括靠在腔室本体104上的背板122。盖组件106包括气体分配组件或喷头组件124,气体分配组件或喷头组件124被构造成将处理气体从气体源运送至处理区域126,处理区域126介于喷头组件124与基板102之间。喷头组件124还可以耦接至清洁气体(cleaning gas)源,清洁气体源向处理区域126提供清洁气体,例如含氟(fluorine)气体。
喷头组件124还可以作为等离子体源128。喷头组件124包括一个或多个电感耦合等离子体产生构件或线圈130。一个或多个线圈130中的每一个线圈可以是单个线圈130、两个线圈130或共同运作的多于两个线圈130,并且在下文中简单描述为线圈130。一个或多个线圈130中的每一个线圈耦接至电源148和接地133。在一个些实施方式中,电源148是电感耦合射频电源(inductively coupled radio frequency(RF)power source)。电源148被构造成以任意合适的频率与功率级(power level)提供功率信号,以通过喷头组件124产生等离子体。第一电源可包括用于调整线圈130的电气特性的匹配电路或调谐能力(tuningcapability)。
喷头组件124还进一步包括面板132,面板132具有多个气体流扩散器134。多个气体流扩散器134中的每一个气体流扩散器通过以网格状(grid-like)构造的多个支撑构件136加以支撑,并且包括可供气体流过的多个开口220(图2A)。多个线圈130中的每一个线圈、或者一个或多个线圈130的各部分设置在相应的介电板138上或所述介电板138之上。图2A更清楚地示出了设置在盖组件106内的介电板138之上的线圈130的示例。多个气体空间140由介电板138、气体流扩散器134与支撑构件136的表面来界定。一个或多个线圈130中的每一个线圈被构造为从电源148接收射频信号并且创建电磁场,所述电磁场将处理气体激励成气体空间140中的等离子体。气体空间140中被激励的处理气体流过气体流扩散器134并且流入处理区域126,并且朝向基板102。
来自气体源的处理气体经由支撑构件136中的管道200、205提供至多个气体空间140中的每一个气体空间。在喷头组件124的不同区中控制进入与离开喷头组件124的气体的体积或流量。流向多个气体空间140中的每一个气体空间的气体流可由多个流量控制器来控制,例如流量控制器142、143和144,如图1所示。例如,流向喷头组件124的外部区或边缘区的气体的流量可由流量控制器142、143来控制,而流向喷头组件的内部区或中央区的气体流量可由流量控制器144来控制。当进行腔室清洁时,来自清洁气体源的清洁气体可流向多个气体空间140的每一个气体空间并且流入该处理空间140,清洁气体在该处理空间140内被激励成为离子、自由基(radicals)或这两者。被激励的清洁气体可流过气体流扩散器134并且流入处理区域126以便清洁腔室部件。
图2A是图1的盖组件106的一部分的放大图。如前所述,来自气体源的前驱物气体通过形成在背板122中的第一管道200流向气体空间140。多个第一管道200中的每一个第一管道耦接至通过喷头框架136形成的第二管道205。第二管道205在开口210处向气体空间140提供前驱物气体。在一些实施方式中,一些第二管道205可将气体提供给两个相邻气体空间140(这些第二管道205之一如图2A中的虚像(phantom)所示)。在一些实施方式中,第二管道205可包括流量限制器(flow restrictor)215以控制流向气体空间140的气体流。流量限制器215的尺寸可被变化(varied)以便控制流过的气体流。例如,多个流量限制器215中的每一个流量限制器包括用于控制气体流的特定尺寸(例如直径)的孔口(orifice)。此外,多个流量限制器215中的每一个流量限制器可依需求改变,以依需求提供更大的孔口尺寸或更小的孔口尺寸,以控制流过的气体流。
如图2A所示,气体流扩散器134设置在气体空间140的下端,并且包括延伸通过气体流扩散器134的多个开口220。由于在气体空间140与处理区域126之间延伸的多个开口220的直径缘故,多个开口220中的每一个开口使被线圈130激励的气体得以以等离子体的形式从气体空间140以期望的流量流入处理区域126。开口220和/或开口220的行和列具有的尺寸和/或间隔可以不同,以便在一个或多个的气体流扩散器134中均衡流过多个开口220中的每一个开口的气体流。或者,根据期望的气体流特性,来自多个开口220的中的每一个开口的气体流可以是不均匀的。
支撑构件136通过紧固件240耦接至背板122,紧固件240诸如螺栓或螺丝。多个支撑构件136中的每一个支撑构件在接口部245处物理性地支撑和分离单个气体流扩散器134。多个接口部245中的每一个接口部可以是壁架(ledge)或架(shelf),支撑气体流扩散器134的周边(perimeter)或边缘。在一些实施方式中,接口部245包括可拆装片250。可拆装片250通过紧固件(未示出)紧固于支撑构件136,紧固件诸如螺栓或螺丝。接口部245的一部分为L形,而接口部245的另一部分为T形。一个或多个的密封件265用以密封气体空间140。例如,所述密封件265为弹性材料,例如O形环(O-ring)密封件或聚四氟乙烯(polytetrafluoroethylene;PTFE)填缝剂(joint sealant)材料。一个或多个的密封件265可被提供于支撑构件136与气体流扩散器134之间。可拆装片250用来将气体流扩散器134支撑在支撑构件136上。如有必要,可拆装片250可被拆除,以单独替换每一个气体流扩散器134。
此外,多个支撑构件136中的每一个支撑构件利用从支撑构件延伸的架270支撑介电板138(如图2A所示)。在喷头组件124/等离子体源128的个实施方式中,与整个喷头组件124/等离子体源128的表面面积相比,介电板138的侧向表面面积(X-Y平面)更小。为了支撑介电板138,架270被利用。多个介电板138的减小的侧向表面面积使介电材料得以被使用为在气体空间140及处理区域126中的真空环境及等离子体与大气环境之间的物理阻障物,相邻的线圈130通常位于大气环境中,而不用基于支撑大气压负载的大面积而施加大应力于其中。
在处理期间,密封件265被用来密封空间275(于大气压或接近大气压)使空间275和气体空间140(于毫托(millitorr)或更低的范围的亚大气压(sub atmosphericpressure))隔开。接口构件280显示为从支撑构件136延伸,并且紧固件285被用来将介电板138固定(即推)抵靠密封件265和架270。密封件265也可以被用来密封气体流扩散器134的外周边与支撑构件136之间的空间。
用于喷头组件124/等离子体源128的材料是基于电气特性、强度与化学稳定性中的一个或多个来选择的。线圈130由导电材料制成。背板122和支撑构件136由能够支撑被支撑部件的重量和大气压负载的材料制成,所述材料可包括金属或其他类似材料。背板122和支撑构件136可以由非磁性材料(例如,非顺磁性或非铁磁性材料)制成,诸如铝材料。可拆装片250也由非磁性材料(诸如金属材料,诸如铝)或陶瓷材料(诸如氧化铝(alumina;Al2O3)或蓝宝石(sapphire;Al2O3))所形成的。气体流扩散器134由陶瓷材料制成,诸如石英(quartz)、氧化铝或其他类似材料。介电板138由石英、氧化铝或蓝宝石材料制成。
在一些实施方式中,喷头框架136包括框架中的一个或多个的冷却剂通道255。一个或多个的冷却剂通道255与构造为向冷却剂通道255提供冷却剂介质的流体源260流体耦接。
图2B示出了盖组件106中位于介电板138上的线圈130的一个实施方式的俯视平面图。在一些实施方式中,可以使用图2B所示的线圈130构造,以使得所述线圈构造分别形成于多个介电板138中的每一个介电板上,以在整个喷头组件124上使每一个平面线圈以期望的图案和相邻配置的线圈130以期望的模式串联连接。线圈130包括导体图案290,导体图案290为长方螺旋形状。然而,导体图案的其他形态也是可被预期的。电连接包括电输入端295A与电输出端295B。喷头组件124的一个或多个的线圈130中的每一个线圈串联和/或并联连接。
图3示出了喷头组件124的面板132的一个实施方式的底部平面图。根据本公开内容的一个实施方式,图3包括在处理腔室100内处理的期间,与喷头组件124相关的基板102在基板接收表面120上的位置的叠加轮廓。如上所述,喷头组件124被构造为包括一个或多个的气体流扩散器134,一个或多个气体流扩散器134以网格状框架布置的多个支撑构件136支撑与分离。气体从气体空间140经由穿过每一个气体流扩散器134的多个开口220流入基板102上方的处理区域126。喷头组件124内的线圈130、气体空间140和气体流扩散器134的数量取决于基板102上用于膜沉积的总面积。
图4是示出了根据本公开内容的一个实施方式的处理腔室400的截面图。除了如上所述的处理腔室100的特征之外,处理腔室400还包括具有静电卡盘组件158、基板偏压板160和绝缘层162的基板支撑组件108。
在一个实施方式中,静电卡盘组件158设置于基板支撑组件108的最高顶部位置,以使得基板接收表面120对应于静电卡盘组件158的上表面。静电卡盘组件158耦接至设置于腔室本体104的外部的静电卡盘电源152。静电卡盘电源可以是任意合适的电源,这种电源构造成在处理期间为基板102的静电吸附提供期望的电压。此外,静电卡盘组件158可包括两个或更多的电极,两个或更多的电极可选择设置为任意合适的布置以用于吸附特定基板装置。例如,静电卡盘组件158可包括以矩形螺旋布置的两个电极,一个电极包围另外一个电极。在另一示例中,静电卡盘组件158可包括形成圆形形状的两个交错的电极。静电卡盘组件158中的每一个电极可通过静电卡盘电源158分离供电,从而使电极能够以不同的极性带电。
绝缘层162设置在基板支撑组件108的最底部位置。绝缘层162可由诸如二氧化硅(silicon dioxide;SiO2)的介电材料形成。绝缘层162屏蔽基板偏压板160所形成的电场到腔室本体104的视线(line-of-sight)路径,从而使基板偏压板160与腔室本体104之间产生电弧的可能性降至最低。
基板偏压板160设置于静电卡盘组件158与绝缘层162之间。基板偏压板进一步耦接至基板偏压电源156和低通滤波器154,基板偏压电源156与低通滤波器154以线性连接(linear connection)布置。如图4所示,基板偏压电源156与低通滤波器154可设置于腔室本体104的外部。基板偏压板162和基板偏压电源156被构造为在基板102之下提供电偏压,以便从处理区域126中的等离子体朝向基板支撑组件108上的基板102的期望的区域提取离子。当在处理期间使用时,朝向基板102的期望的区域提取等离子体离子调节膜沉积,从而膜特性可以被控制(例如膜厚度与膜应力)。例如,从等离子体中提取的离子量(例如,密度)可以通过调整供应至基板表面的特定区域的基板偏压功率来调节,从而得以控制基板102上沉积的膜的张应力(tensile stress)与压缩应力(compressive stress)特性。
基板偏压电源156是一种直流电源(direct current(DC)type power source),供应正极性或负极性的直流电压。在一个实施方式中,基板偏压电源156被构造为供应恒定直流偏压(constant DC bias)。在另一些实施方式中,基板偏压电源156被构造为供应脉冲直流偏压(pulsed DC bias)。低通滤波器154可被构造为防止来自电源148的射频信号和基板支撑组件108耦接并传递至基板偏压电源156。
图5是一个流程图,示出了使用图4的处理腔室400进行大面积膜沉积的期间,控制本征膜应力的方法500。在操作510中,基板102被传送至基板支撑组件108的基板接收表面120上。基板102可以通过任意合适的方法被传送进入处理腔室100并且传送至基板支撑组件108上,例如,借助通过位于腔体本体104的侧壁中的传送端口114的机械叶片。然后,借助致动器112可将基板支撑组件108调整到处理位置,如图1所示。
在操作520中,来自气体源的前驱物气体经由管道200、205提供给气体空间140,管道200、205设置于支撑构件136中。前驱物气体的流动可通过数个流量控制器142、143加以控制,数个流量控制器142、143控制提供给每一个气体空间140的气体的量与速度。
在操作530中,电源148将射频功率供应给盖组件106内的感应耦合线圈130。射频功率可以以任何合适的频率或功率级供应,以产生等离子体。例如,可以施加56千瓦(kW)的射频功率与13.56兆赫(MHz)的信号频率。在另一示例中,可施加56千瓦的功率和2兆赫(MHz)频率射频信号。多个线圈130中的每一个线圈接收电源148供应的射频功率,并且创建电磁场,所述电磁场对气体空间140内的前驱物气体进行激励。然后,被激励的前驱物气体流过多个开口220并且朝向基板102进入处理区域126,这些开口设置为通过气体流扩散器134。
在操作540中,当被激励的处理气体流入处理区域126时,直流偏压被施加于基板偏压板160。直流偏压是由基板偏压电源156供应,并且由低通滤波器154过滤。直流偏压输出可以是脉冲的或恒定的,具有正电位(positive potential)或负电位(negativepotential)。可以以任意合适的脉冲率(pulse rate)或功率级供应直流偏压至基板偏压板160。例如,可供应具有脉冲率约50千赫兹(kHz)至约500千赫兹(例如约100千赫兹至约400千赫兹)的脉冲直流偏压。例如,可以供应具有约250千赫兹至约300千赫兹的脉动的脉冲直流偏压。在约50瓦特(W)至约1000瓦特(例如约250瓦特至约750瓦特)功率级范围内提供脉冲或恒定直流偏压。例如,以约400瓦特至约600瓦特的功率级供应直流偏压功率。
通过创建局部电容耦合电场(local capacitively-coupled electric field),在整个基板偏压板160上应用直流功率使得等离子体向基板102偏压,从而增加基板表面上的离子撞击(ion bombardment),并且使得能在操作550中形成具有调节的本征膜应力的膜层。在利用多线圈电感耦合等离子体(IPC)系统的大面积高密度等离子体化学气相沉积(HDP-CVD)的期间,操作540中直流基板偏压的使用使本征膜应力性质得以改变。尤其,直流偏压使大面积基板膜层得以形成,并且具有整个沉积膜层降低并且均匀的膜应力水平。
膜应力控制的其他方法不涉及基板偏压,或涉及将射频基板偏压功率应用于调节基板表面上的离子撞击。然而,当施行于具有多线圈电感耦合等离子体系统的高密度等离子体腔室中时,这些方法会导致沉积的膜层具有不被期望的膜应力特性。例如,当不施加基板偏压时,沉积的膜层倾向于展现出不被期望的高张膜应力水平(high tensile filmstress levels)。
或者,当施加射频基板偏压时,沉积的膜层倾向于展现不均匀的膜应力水平。尤其,基板中直接设置于多线圈电感耦合等离子体系统的线圈下方的区域的膜应力倾向于通过射频偏压功率来调节,而基板中设置于喷头结构框架下方的区域在很大的程度上不受影响。这种不均匀性是射频偏压功率贯穿等离子体并且耦接至设置于上方的接地喷头结构框架的结果。因此,当施加射频基板偏压时,膜应力是位置相关的(position dependent)。
相对地,当施加直流基板偏压,膜应力的调节与位置无关。更确切地说,由于直流偏压功率不耦接到上方的接地喷头结构框架,因此所得到的膜层展现出均匀的膜应力性质。从而,等离子体鞘(plasma sheath)被直流偏压功率影响,并且喷头结构框架下方的区域与多线圈电感耦合等离子体系统的线圈下方的区域皆被实质均等地调节。
本公开内容的实施方式包括能够在大面积基板上形成一层或多层的膜的方法与设备。等离子体均匀性以及气体(或前驱物)流动是通过单个气体流扩散器134、线圈130和/或流量控制器142、143和144的构造的组合加以控制的。膜应力均匀性是通过对基板支撑组件108内的基板偏压台160施加直流基板偏压来加以控制。
在一个示例中,提供了一种等离子沉积腔室。所述等离子沉积腔室包括具有多个穿孔构件的喷头与多个穿孔构件中的一个或多个穿孔构件相对应的电感耦合器、用于支撑每个穿孔构件的多个支撑构件以及基板支撑组件。一个或多个支撑构件向电感耦合器和穿孔构件之间的空间提供前驱物气体。基板支撑组件包括静电卡盘组件、绝缘层和基板偏压板。基板偏压板耦接到直流电源和低通滤波器。
在所述示例中,低通滤波器选择性地防止提供给感应线圈的射频功率源与直流电源耦接。
在所述示例中,直流电源可选地被构造为以正极性或负极性向偏压板提供恒定的直流偏压。
在所述示例中,直流电源可选地被构造为以正极性或负极性向偏压板提供脉冲直流偏压。
在所述示例中,多个穿孔构件和多个支撑构件中的每一个支撑构件可选地包括接口部分,并且每个接口部包括一个或多个可拆装片。
尽管上述内容是针对本公开内容的多个实施方式,但是可以在不脱离基本范围的情况下设计本公开内容的其他和进一步的实施方式,并且范围由随后的权利要求来确定。

Claims (15)

1.一种等离子体沉积腔室,所述等离子体沉积腔室包括:
喷头,所述喷头具有多个穿孔构件,所述多个穿孔构件中的每一个穿孔构件耦接至多个支撑构件中的一个或多个支撑构件;
多个介电板,所述多个介电板中的每一个介电板对应于所述多个穿孔构件中的一个穿孔构件;
多个感应线圈,其中所述多个感应线圈中的一个感应线圈对应于所述多个介电板中的一个介电板,其中所述多个支撑构件提供多个前驱物气体给所述多个感应线圈与所述多个穿孔构件之间形成的空间;以及
基板支撑组件,所述基板支撑组件包括:
静电卡盘组件,所述静电卡盘组件耦接至静电卡盘电源,所述静电卡盘组件设置于所述基板支撑组件的最顶部位置;
绝缘层,所述绝缘层设置于所述基板支撑组件的最底部位置;和
基板偏压板,所述基板偏压板耦接至以线性连接布置的低通滤波器和直流电源,所述基板偏压板设置在所述静电卡盘组件与所述绝缘层之间。
2.根据权利要求1所述的腔室,其中所述多个支撑构件包括在所述多个支撑构件中形成的用以供所述前驱物气体流动的多个管道。
3.根据权利要求2所述的腔室,其中所述多个支撑构件还包括在所述多个支撑构件中形成的用以供冷却剂流动的冷却剂通道。
4.根据权利要求1所述的腔室,还包括介电板,所述介电板与所述多个感应线圈中的每一个感应线圈相关联,所述介电板以所述空间的一侧为界。
5.根据权利要求1所述的腔室,其中所述多个支撑构件被布置为网格状构造以使所述多个穿孔构件、介电板与感应线圈中的每一个分离。
6.根据权利要求1所述的腔室,其中所述多个感应线圈中的每一个感应线圈耦接至射频功率源。
7.根据权利要求1所述的腔室,其中所述直流电源被构造为以正极性或负极性向所述基板偏压板提供恒定的直流偏压。
8.根据权利要求7所述的腔室,其中所述直流偏压是以从约50W至约1000W的功率级提供的。
9.根据权利要求1所述的腔室,其中所述直流电源被构造为以正极性或负极性向所述基板偏压板提供脉冲直流偏压。
10.根据权利要求9所述的等离子体沉积腔室,其中所述脉冲直流偏压是以从约50kHz至约500kHz的频率脉动的。
11.一种用于在基板上沉积多层膜的方法,所述方法包括:
使前驱物气体流动至处理腔室内的喷头的多个气体空间,所述多个气体空间中的每一个气体空间包括穿孔构件和与各自的气体空间电气通信(electrical communication)感应线圈;
改变流入所述多个气体空间中的每一个气体空间内的所述前驱物气体的流动;
向所述感应线圈施加射频功率,以产生电磁场,并且所述多个气体空间中的每一个气体空间内的所述前驱物气体进行激励;
使被激励的前驱物气体流入所述处理腔室的处理区域中;和
将直流偏压功率施加至基板支撑件内的偏压板,以调节所述多层膜在所述基板上的沉积。
12.根据权利要求11所述的方法,其中所述喷头包括多个区,并且所述多个区中的每一个区内的气体流是不同的。
13.根据权利要求11所述的方法,其中所述偏压板耦接至直流电源。
14.根据权利要求13所述的方法,其中所述直流偏压功率是正极性或负极性的恒定直流偏压。
15.根据权利要求13所述的方法,其中所述直流偏压功率是正极性或负极性的脉冲直流偏压。
CN201980082054.8A 2018-12-14 2019-11-26 用于等离子体增强化学气相沉积的膜应力控制 Active CN113166942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310780628.7A CN116970926A (zh) 2018-12-14 2019-11-26 用于等离子体增强化学气相沉积的膜应力控制

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/221,322 US11094508B2 (en) 2018-12-14 2018-12-14 Film stress control for plasma enhanced chemical vapor deposition
US16/221,322 2018-12-14
PCT/US2019/063375 WO2020123150A1 (en) 2018-12-14 2019-11-26 Film stress control for plasma enhanced chemical vapor deposition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310780628.7A Division CN116970926A (zh) 2018-12-14 2019-11-26 用于等离子体增强化学气相沉积的膜应力控制

Publications (2)

Publication Number Publication Date
CN113166942A true CN113166942A (zh) 2021-07-23
CN113166942B CN113166942B (zh) 2023-07-14

Family

ID=71072851

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310780628.7A Pending CN116970926A (zh) 2018-12-14 2019-11-26 用于等离子体增强化学气相沉积的膜应力控制
CN201980082054.8A Active CN113166942B (zh) 2018-12-14 2019-11-26 用于等离子体增强化学气相沉积的膜应力控制

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310780628.7A Pending CN116970926A (zh) 2018-12-14 2019-11-26 用于等离子体增强化学气相沉积的膜应力控制

Country Status (5)

Country Link
US (3) US11094508B2 (zh)
JP (1) JP2022511922A (zh)
KR (3) KR102649738B1 (zh)
CN (2) CN116970926A (zh)
WO (1) WO2020123150A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102360733B1 (ko) * 2019-11-19 2022-02-10 세메스 주식회사 기판 처리 방법 및 기판 처리 장치
JP7450455B2 (ja) * 2020-05-13 2024-03-15 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
CN113889391B (zh) * 2020-07-02 2024-03-12 中微半导体设备(上海)股份有限公司 等离子体处理装置及其绝缘窗组件
US20230162947A1 (en) * 2021-11-23 2023-05-25 Applied Materials, Inc. High density plasma enhanced process chamber
US20230317416A1 (en) * 2022-04-01 2023-10-05 Applied Materials, Inc. Plasma showerhead with improved uniformity
CN115537781A (zh) * 2022-10-27 2022-12-30 上海埃延半导体有限公司 一种弥漫层流反应腔体及控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693770A1 (en) * 1994-07-18 1996-01-24 Applied Materials, Inc. Electrostatic chuck for magnetic flux processing
CN101978474A (zh) * 2008-03-20 2011-02-16 应用材料股份有限公司 等离子体室中的可调式接地平面
US20110204023A1 (en) * 2010-02-22 2011-08-25 No-Hyun Huh Multi inductively coupled plasma reactor and method thereof
CN102934203A (zh) * 2010-04-28 2013-02-13 应用材料公司 用于短生命周期物种的具有内建等离子体源的处理腔室盖设计
CN103843465A (zh) * 2011-10-13 2014-06-04 韩国科学技术院 等离子体装置和基板处理装置
US20160372307A1 (en) * 2015-06-17 2016-12-22 Applied Materials, Inc. Multiple electrode substrate support assembly and phase control system
JP2016225018A (ja) * 2015-05-27 2016-12-28 東京エレクトロン株式会社 ガス処理装置およびそれに用いる多分割シャワーヘッド
CN106575634A (zh) * 2014-08-15 2017-04-19 应用材料公司 在等离子体增强化学气相沉积系统中于高温下使用压缩应力或拉伸应力处理晶片的方法和装置
US20170213758A1 (en) * 2016-01-26 2017-07-27 Applied Materials, Inc. Wafer edge ring lifting solution
JP2017147204A (ja) * 2016-02-19 2017-08-24 東京エレクトロン株式会社 プラズマ処理装置
US20170314132A1 (en) * 2016-04-29 2017-11-02 Retro-Semi Technologies, Llc. Plasma reactor having divided electrodes
CN107919263A (zh) * 2016-10-06 2018-04-17 细美事有限公司 基板支撑单元、包括其的基板处理装置及其控制方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653137A (ja) 1992-07-31 1994-02-25 Canon Inc 水素化アモルファスシリコン膜の形成方法
EP0706425A4 (en) 1994-04-08 1997-12-29 Mark A Ray SELECTIVE PLASMA DEPOSIT
US5580385A (en) * 1994-06-30 1996-12-03 Texas Instruments, Incorporated Structure and method for incorporating an inductively coupled plasma source in a plasma processing chamber
US5716451A (en) * 1995-08-17 1998-02-10 Tokyo Electron Limited Plasma processing apparatus
US6089182A (en) * 1995-08-17 2000-07-18 Tokyo Electron Limited Plasma processing apparatus
TW279240B (en) * 1995-08-30 1996-06-21 Applied Materials Inc Parallel-plate icp source/rf bias electrode head
KR100471728B1 (ko) * 1996-04-12 2005-03-14 가부시끼가이샤 히다치 세이사꾸쇼 플라즈마 처리장치
US6209480B1 (en) * 1996-07-10 2001-04-03 Mehrdad M. Moslehi Hermetically-sealed inductively-coupled plasma source structure and method of use
JP2000331993A (ja) * 1999-05-19 2000-11-30 Mitsubishi Electric Corp プラズマ処理装置
EP1089319B1 (en) 1999-09-29 2009-01-07 European Community Uniform gas distribution in large area plasma treatment device
US6537421B2 (en) 2001-07-24 2003-03-25 Tokyo Electron Limited RF bias control in plasma deposition and etch systems with multiple RF power sources
US6926926B2 (en) 2001-09-10 2005-08-09 Applied Materials, Inc. Silicon carbide deposited by high density plasma chemical-vapor deposition with bias
KR100712124B1 (ko) 2005-01-18 2007-04-27 삼성에스디아이 주식회사 용량결합형 플라즈마 처리 장치
JP4454514B2 (ja) 2005-02-14 2010-04-21 三洋電機株式会社 光起電力素子および光起電力素子を含む光起電力モジュールならびに光起電力素子の製造方法
US7341959B2 (en) 2005-03-21 2008-03-11 Tokyo Electron Limited Plasma enhanced atomic layer deposition system and method
US7422636B2 (en) 2005-03-25 2008-09-09 Tokyo Electron Limited Plasma enhanced atomic layer deposition system having reduced contamination
WO2007089216A1 (en) 2005-09-01 2007-08-09 Gorokhovsky Vladimir I Plasma vapor deposition method and apparatus utilizing bipolar bias controller
US8012306B2 (en) * 2006-02-15 2011-09-06 Lam Research Corporation Plasma processing reactor with multiple capacitive and inductive power sources
US20090107955A1 (en) * 2007-10-26 2009-04-30 Tiner Robin L Offset liner for chamber evacuation
KR101139829B1 (ko) * 2010-02-22 2012-04-30 (주)젠 다중 가스공급장치 및 이를 구비한 플라즈마 처리장치
US20110278260A1 (en) * 2010-05-14 2011-11-17 Applied Materials, Inc. Inductive plasma source with metallic shower head using b-field concentrator
KR101504532B1 (ko) * 2012-03-09 2015-03-24 주식회사 윈텔 플라즈마 처리 방법 및 기판 처리 장치
US20170092470A1 (en) * 2015-09-28 2017-03-30 Applied Materials, Inc. Plasma reactor for processing a workpiece with an array of plasma point sources
JP2019054164A (ja) * 2017-09-15 2019-04-04 株式会社東芝 シャワーヘッド、処理装置、及びシャワープレート

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693770A1 (en) * 1994-07-18 1996-01-24 Applied Materials, Inc. Electrostatic chuck for magnetic flux processing
CN101978474A (zh) * 2008-03-20 2011-02-16 应用材料股份有限公司 等离子体室中的可调式接地平面
US20110204023A1 (en) * 2010-02-22 2011-08-25 No-Hyun Huh Multi inductively coupled plasma reactor and method thereof
CN102934203A (zh) * 2010-04-28 2013-02-13 应用材料公司 用于短生命周期物种的具有内建等离子体源的处理腔室盖设计
CN103843465A (zh) * 2011-10-13 2014-06-04 韩国科学技术院 等离子体装置和基板处理装置
CN106575634A (zh) * 2014-08-15 2017-04-19 应用材料公司 在等离子体增强化学气相沉积系统中于高温下使用压缩应力或拉伸应力处理晶片的方法和装置
JP2016225018A (ja) * 2015-05-27 2016-12-28 東京エレクトロン株式会社 ガス処理装置およびそれに用いる多分割シャワーヘッド
US20160372307A1 (en) * 2015-06-17 2016-12-22 Applied Materials, Inc. Multiple electrode substrate support assembly and phase control system
US20170213758A1 (en) * 2016-01-26 2017-07-27 Applied Materials, Inc. Wafer edge ring lifting solution
JP2017147204A (ja) * 2016-02-19 2017-08-24 東京エレクトロン株式会社 プラズマ処理装置
US20170314132A1 (en) * 2016-04-29 2017-11-02 Retro-Semi Technologies, Llc. Plasma reactor having divided electrodes
CN107919263A (zh) * 2016-10-06 2018-04-17 细美事有限公司 基板支撑单元、包括其的基板处理装置及其控制方法

Also Published As

Publication number Publication date
KR20240038158A (ko) 2024-03-22
KR20240037384A (ko) 2024-03-21
US20240105427A1 (en) 2024-03-28
JP2022511922A (ja) 2022-02-01
US20210280392A1 (en) 2021-09-09
US11854771B2 (en) 2023-12-26
CN113166942B (zh) 2023-07-14
WO2020123150A1 (en) 2020-06-18
KR102649738B1 (ko) 2024-03-19
KR20210092322A (ko) 2021-07-23
US20200194233A1 (en) 2020-06-18
TW202037750A (zh) 2020-10-16
US11094508B2 (en) 2021-08-17
CN116970926A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
CN113166942B (zh) 用于等离子体增强化学气相沉积的膜应力控制
JP7175339B2 (ja) 周期的かつ選択的な材料の除去及びエッチングのための処理チャンバ
CN101557885B (zh) 具有多个电容性和电感性电源的等离子处理反应器
KR20230151076A (ko) 성형된 dc 펄스 플라즈마 프로세스 디바이스에서의 에지 링 제어를 위한 회로들
US20110059615A1 (en) Hybrid rf capacitively and inductively coupled plasma source using multifrequency rf powers and methods of use thereof
US20060254518A1 (en) Plasma source
TW201611082A (zh) 用於電漿處理反應器中電磁均勻度和歪斜調諧的系統與方法
WO2013128361A1 (en) Hybrid plasma processing systems
JP2023507111A (ja) 高密度プラズマ化学気相堆積チャンバ
JP7121446B2 (ja) 高密度プラズマ化学気相堆積チャンバ
KR100862686B1 (ko) 플라즈마 조절기 및 이를 구비한 플라즈마 처리 장치
KR101585893B1 (ko) 복합형 플라즈마 반응기
TWI829156B (zh) 電漿源陣列、電漿處理設備、電漿處理系統以及用於在電漿處理設備中加工工件的方法
TWI839420B (zh) 電漿沉積腔室及用以在基板上沉積多層膜之方法
US20150279623A1 (en) Combined inductive and capacitive sources for semiconductor process equipment
US20230162947A1 (en) High density plasma enhanced process chamber
US20230162948A1 (en) Multi-antenna unit for large area inductively coupled plasma processing apparatus
TW202407751A (zh) 用於電漿處理期間邊緣控制的設備

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant