CN113135750B - 一种提高晶界层电容器电阻的绝缘化剂及其使用方法 - Google Patents

一种提高晶界层电容器电阻的绝缘化剂及其使用方法 Download PDF

Info

Publication number
CN113135750B
CN113135750B CN202010045548.3A CN202010045548A CN113135750B CN 113135750 B CN113135750 B CN 113135750B CN 202010045548 A CN202010045548 A CN 202010045548A CN 113135750 B CN113135750 B CN 113135750B
Authority
CN
China
Prior art keywords
capacitor
cbi
agent
insulating agent
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010045548.3A
Other languages
English (en)
Other versions
CN113135750A (zh
Inventor
胡竞楚
杨昌平
李慧娟
徐玲芳
余昌昊
梁世恒
王瑞龙
肖海波
胡季帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Yifang Juren New Energy Technology Co ltd
Hubei University
Taiyuan University of Science and Technology
Original Assignee
Nanjing Yifang Juren New Energy Technology Co ltd
Hubei University
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Yifang Juren New Energy Technology Co ltd, Hubei University, Taiyuan University of Science and Technology filed Critical Nanjing Yifang Juren New Energy Technology Co ltd
Priority to CN202010045548.3A priority Critical patent/CN113135750B/zh
Publication of CN113135750A publication Critical patent/CN113135750A/zh
Application granted granted Critical
Publication of CN113135750B publication Critical patent/CN113135750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5049Zinc or bismuth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明涉及半导体、电子功能材料领域,公开了一种提高晶界层电容器电阻的绝缘化剂及其使用方法,所述绝缘化剂中包括Pb3O4、CuO、B2O3,并用新的氧化剂CBi2O5替代了Bi2O3,将CBi2O5、Pb3O4、CuO、B2O3按一定质量比混合制成新的绝缘化剂,并通过瓷片绝缘化的过程,使用绝缘化剂,得到电阻值更高的电容器瓷片,提高电容器的性能。

Description

一种提高晶界层电容器电阻的绝缘化剂及其使用方法
技术领域
本发明属于半导体、电子功能材料领域,具体涉及一种提高晶界层电容器电阻的绝缘化剂及其使用方法。
背景技术
STO晶界层电容的电阻取决于位于晶界处的绝缘层,国内一般采用二次烧结法法技术获得高阻值晶界层电容瓷片,因此在瓷片绝缘化时选择适当氧化剂涂覆物至关重要。同时由于在二次烧结法中,氧化剂涂覆物经过热扩散进入晶界形成第二相绝缘层,氧扩散进入晶粒表层形成扩散层,绝缘层和扩散层的厚度和形态很难控制,因此最终瓷片的电阻值大小和均匀性很难保证。目前国内市场的STO III类瓷,尺寸为1mm(长)×1mm(宽),厚0.25mm,电容值为900-1000pF(介电常数25000–30000),加载电压为50V时,电阻值一般在1G–5GΩ,耐压值小于100V,选择还有优良性质氧化剂的绝缘化剂,能有效的提升电容器瓷片的电阻,提升电容器的性能,因此,研发一种优良的绝缘化剂,对于提高电容器瓷片的阻值有着重要的意义。
发明内容
针对上述情况,本发明提供了一种提高晶界层电容器电阻的绝缘化剂及其使用方法,用在载体(包含溶解剂和黏合剂)溶解度更高的氧化剂CBi2O5代替常用的Bi2O3得到更优良的绝缘化剂。
为实现上述目的,本发明提供的技术方案如下:
一种提高晶界层电容器电阻的绝缘化剂,其特征在于,由CBi2O5、Pb3O4、CuO、B2O3按一定质量比混合制成。
优选的,所述绝缘化剂各组分重量比分别为CBi2O535-45、Pb3O425-31.9、CuO20-25.4、B2O310-12.7,其中,所述Pb3O4、CuO、B2O3重量比固定为25:20:10。
进一步优选的,所述绝缘化剂各组分重量比分别为CBi2O545、Pb3O425、CuO20、B2O310。
上述任一种绝缘化剂的使用方法,其特征在于,包括以下步骤:
步骤一、将CBi2O5、Pb3O4、CuO、B2O3按照一定的质量比充分混合后放入球磨机中球磨12h得到绝缘化剂;
步骤二、在匀胶机上,将得到的绝缘化剂在电容器瓷片上涂抹均匀;
步骤三、再将电容器瓷片放入管式炉中,在空气氛围下,在1180℃温度下保温2-4h后降温,经过0.5-1h降至900-930℃,再自然降温降至室温,得到阻值提高的电容器瓷片。
本发明所具有的有益效果为:
氧化剂混合需要在载体中进行,氧化物在载体中的溶解度很大程度上决定了氧化剂的浓度,进而决定热处理过程中可以渗透进晶界层的受主离子浓度。在新的氧化剂CBi2O5中,Pb3O4、CuO这两种金属氧化物作为受主离子源产生势垒电阻,用在载体(包含溶解剂和黏合剂)溶解度更高的CBi2O5代替常用的Bi2O3来进行O2的传导,B2O3作为分散剂使用,制备出的STO晶界层电容器瓷片。
附图说明
图1是两种不同配方的氧化剂处理后的瓷片电阻值的统计图;
图2是CBi2O5在氧化剂中的质量占比升高时(0.3,0.35,0.4,0.45)电阻值的统计图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明具体实施例如下:
实施例1:选取化学纯SrCO3和TiO2作为主料,在其中加入质量分数1%的消泡剂(型号AKM-0531)和质量分数1%的分散剂(型号TSF),放入装有乙醇的球磨罐中在行星式球磨机中球磨24h得到浆料。再经过流延、干燥、叠片和热压(流延厚60um,叠4层,压强100MP)后得到45mm×45mm,厚度为0.24mm的初步瓷片。
将生胚放入箱式炉中,在空气气氛中排胶一小时,其中排胶温度为600℃,将排胶后的陶瓷片放入管式炉中,在N2/H2气氛中进行还原工艺,其中还原温度为1380℃,时间为2h。
瓷片绝缘化:使用本发明制作的氧化剂涂覆在瓷片表面,氧化剂由CBi2O5、Pb3O4、CuO、B2O3按照质量比45:25:20:10的配比充分混合后放入球磨机中球磨12h得到,涂覆过程在匀胶机上完成,再将瓷片放入管式炉中,在空气氛围1180℃条件下s,保温2h后降温,经过0.5h降至930℃,再自然降温降至室温。
将做好的瓷片放在丝网上,用印刷工艺在瓷片表面镀上厚度均匀的银浆,在700℃下烧结0.5h形成银电极,即可用来测试性能。
将40x 40mm的大瓷片切成1×1mm样品,最后得到最终的STO晶界层陶瓷电容器产品。
本实验还配置了多组成分的氧化剂,其中不改变的Pb3O4、CuO、B2O3质量比,只改变了CBi2O5在总体的质量占比。
实施例2:所述实施例2与实施例1基本相同,其不同之处在于:将瓷片绝缘化中CBi2O5、Pb3O4、CuO、B2O3按照质量比40:27.3:21.8:10.9的配比进行实验,最后在空气氛围1180℃条件下,保温2.5h后降温,经过0.6h降至920℃,再自然降温降至室温。
实施例3:所述实施例3与实施例1基本相同,其不同之处在于:将瓷片绝缘化中CBi2O5、Pb3O4、CuO、B2O3按照质量比35:29.6:23.6:11.8的配比进行实验,最后在空气氛围1180℃条件下,保温3h后降温,经过0.7h降至910℃,再自然降温降至室温。
实施例4:所述实施例4与实施例1基本相同,其不同之处在于:将瓷片绝缘化中CBi2O5、Pb3O4、CuO、B2O3按照质量比30:31.9:25.4:12.7的配比进行实验,最后在空气氛围1180℃条件下,保温4h后降温,经过1h降至900℃,再自然降温降至室温。
将最终的产品在室温下放置3天后,用同惠TH2681型绝缘电阻测试仪测试一系列产品的绝缘电阻。测量选择单次非连续测量,测量电压为50V,充电时间设为30s,并与使用常规氧化剂Bi2O3制得的电容器瓷片进行比较,得到如下图所示的结果:
根据图1可知:两种不同配方的氧化剂处理后的瓷片电阻值的统计图。我们从两种不同的氧化剂处理后的瓷片成品上的不同区域各挑选了50个1mm×1mm的样品进行测量,测试结果表明,在50V下,经过Bi2O3、Pb3O4、CuO、B2O3(质量比为45:25:20:10)氧化剂处理后的STO电容器电阻值分布在3—4GΩ之间,而经过CBi2O5、Pb3O4、CuO、B2O3(质量比为45:25:20:10)氧化剂处理后的STO电容器电阻值分布在8—15GΩ之间。可以得出,新型氧化剂较常用氧化剂制得的电容器瓷片电阻值提高了3—5倍。
根据图2可知:测量电压为50V,测量时间为30s。从图中可以看出,随着CBi2O5含量的增大,STO晶界层电容器的电阻值也跟着增大,表明在绝缘化过程中CBi2O5有着很好的导通氧的作用,随着质量比的增加,这种作用变得十分显著。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (3)

1.一种提高晶界层电容器电阻的绝缘化剂,其特征在于,由CBi2O5、Pb3O4、CuO、B2O3按一定质量比混合制成;
所述绝缘化剂各组分重量比分别为CBi2O535-45、Pb3O425-31.9、CuO20-25.4、B2O310-12.7,其中,所述Pb3O4、CuO、B2O3重量比固定为25:20:10。
2.根据权利要求1所述的一种提高晶界层电容器电阻的绝缘化剂,其特征在于,所述绝缘化剂各组分重量比分别为CBi2O545、Pb3O425、CuO20、B2O310。
3.权利要求1-2所述的任一种绝缘化剂的使用方法,其特征在于,包括以下步骤:
步骤一、将CBi2O5、Pb3O4、CuO、B2O3按照一定的质量比充分混合后放入球磨机中球磨12h得到绝缘化剂;
步骤二、在匀胶机上,将得到的绝缘化剂在电容器瓷片上涂抹均匀;
步骤三、再将电容器瓷片放入管式炉中,在空气氛围下,在1180℃温度下保温2-4h后降温,经过0.5-1h降至900-930℃,再自然降温降至室温,得到阻值提高的电容器瓷片。
CN202010045548.3A 2020-01-16 2020-01-16 一种提高晶界层电容器电阻的绝缘化剂及其使用方法 Active CN113135750B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010045548.3A CN113135750B (zh) 2020-01-16 2020-01-16 一种提高晶界层电容器电阻的绝缘化剂及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010045548.3A CN113135750B (zh) 2020-01-16 2020-01-16 一种提高晶界层电容器电阻的绝缘化剂及其使用方法

Publications (2)

Publication Number Publication Date
CN113135750A CN113135750A (zh) 2021-07-20
CN113135750B true CN113135750B (zh) 2023-05-09

Family

ID=76808349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010045548.3A Active CN113135750B (zh) 2020-01-16 2020-01-16 一种提高晶界层电容器电阻的绝缘化剂及其使用方法

Country Status (1)

Country Link
CN (1) CN113135750B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098052A (zh) * 2019-04-18 2019-08-06 湖北大学 一种晶界层电容器的制作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1029688A (en) * 1964-02-20 1966-05-18 American Cyanamid Co Solid oxidant and method for deodorizing air therewith
DE3914844A1 (de) * 1989-05-05 1990-11-08 Heraeus Gmbh W C Pyrochlorverwandte oxide und sie enthaltende widerstandsmassen
JPH0785459B2 (ja) * 1991-01-31 1995-09-13 太陽誘電株式会社 粒界絶縁型半導体磁器コンデンサ
US5720859A (en) * 1996-06-03 1998-02-24 Raychem Corporation Method of forming an electrode on a substrate
US6093600A (en) * 1999-10-29 2000-07-25 United Silicon, Inc. Method of fabricating a dynamic random-access memory device
CN101784486A (zh) * 2007-09-07 2010-07-21 旭硝子株式会社 氧化物晶体微粒的制造方法
EP2156860A1 (en) * 2008-08-20 2010-02-24 Centre National De La Recherche Scientifique-CNRS Method for producing insulated electrodes for applying electric fields into conductive material
ES2360781B1 (es) * 2009-11-13 2012-05-25 Vidres S.A. Composición y procedimiento para la obtención de materiales para el recubrimiento de cuerpos cerámicos y los artículos así obtenidos.
CN103601488B (zh) * 2013-12-03 2015-04-08 广州天极电子科技有限公司 一种调控陶瓷电介质微观结构及介电性能的方法
CN110189929B (zh) * 2019-04-18 2020-12-25 湖北大学 一种提高芯片电容器绝缘电阻值的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098052A (zh) * 2019-04-18 2019-08-06 湖北大学 一种晶界层电容器的制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
沈文琪.电容器中的绝缘材料.《电力电容器与无功补偿》.1976,第29-33+35-38页. *
肖倩等.CuO和B2O3复合掺杂对BaTi2O5陶瓷的降温烧结与电性能研究.《陶瓷学报》.2015,第27-30页. *

Also Published As

Publication number Publication date
CN113135750A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
CN110098052B (zh) 一种晶界层电容器的制作方法
CN111908914B (zh) 一种晶界层陶瓷材料、晶界层陶瓷基片的制备方法及其应用
CN106505144A (zh) 多层电卡陶瓷元件及其制备方法
CN110467457A (zh) 一种基于轧膜工艺的铪酸铅基反铁电材料及其制备与应用
CN103529107B (zh) 一种极限电流型氧传感器及其制备方法
KR100289207B1 (ko) 산화아연배리스터용 측면고저항제와 그것을 사용한 산화아연배리스터와 이산화아연배리스터의 제조방법
CN110808163B (zh) 一种晶界层电容器的制备方法
CN113135750B (zh) 一种提高晶界层电容器电阻的绝缘化剂及其使用方法
RU2758588C1 (ru) Керамический нагревательный элемент, способ его изготовления и его применение
CN109020541B (zh) 一种高性能环保电容器电介质及其制备方法
CN109721348B (zh) 低介电常数介电瓷粉组合物制备方法及其制成的电容器
CN110189929B (zh) 一种提高芯片电容器绝缘电阻值的方法
CN113248252A (zh) 一种稳定型mlcc用介质材料及其制备方法
CN112811901B (zh) 一种高介晶界层陶瓷材料及晶界层陶瓷基板的制备方法
CN104112487A (zh) 一种导电铜浆料及其制备方法和应用
CN112794717A (zh) 一种导电性较强的高性能陶瓷材料及其制备方法
Jiao et al. Performance of an anode support solid oxide fuel cell manufactured by microwave sintering
CN108682478B (zh) 一种复合氧化物微晶玻璃、绝缘介质浆料及其制备方法和应用
CN113149644A (zh) 一种低温烧结的锑锰酸铅-锆钛酸铅低介电损耗压电陶瓷及其制备方法
CN102531579B (zh) 陶瓷介质材料及其制备方法和陶瓷电容器及其制备方法
CN107986631A (zh) 一种压敏铝浆用无铅玻璃粉及其制备方法
CN113024246B (zh) 一种导电陶瓷及其烧结工艺
CN113674994B (zh) 一种钛酸锶单晶基晶界层电容器材料及其制备方法和应用
CN109942291B (zh) 一种SrTiO3基晶界层陶瓷电容器及制备方法
CN101635364B (zh) 阳极支撑体电解质复合膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant