CN113024246B - 一种导电陶瓷及其烧结工艺 - Google Patents

一种导电陶瓷及其烧结工艺 Download PDF

Info

Publication number
CN113024246B
CN113024246B CN202110553639.2A CN202110553639A CN113024246B CN 113024246 B CN113024246 B CN 113024246B CN 202110553639 A CN202110553639 A CN 202110553639A CN 113024246 B CN113024246 B CN 113024246B
Authority
CN
China
Prior art keywords
conductive ceramic
tio
gel
powder
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110553639.2A
Other languages
English (en)
Other versions
CN113024246A (zh
Inventor
韩祥龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingzhou Oriental Special Ceramics Co ltd
Original Assignee
Qingzhou Oriental Special Ceramics Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingzhou Oriental Special Ceramics Co ltd filed Critical Qingzhou Oriental Special Ceramics Co ltd
Priority to CN202110553639.2A priority Critical patent/CN113024246B/zh
Publication of CN113024246A publication Critical patent/CN113024246A/zh
Application granted granted Critical
Publication of CN113024246B publication Critical patent/CN113024246B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种导电陶瓷,按重量份计含有55‑90份的导电陶瓷复合材料,1‑5份的粘结剂,0‑5份的烧结助剂,导电陶瓷复合材料的组成通式为:La(1‑x)SrxTiO3·yZrO2,其中x,y为摩尔数0.5≤x<1,0<y≤0.4,x+y≤1,首先通过溶胶‑凝胶法制备纳米级的SrTiO3粉末并对其进行气相扩渗稀土化处理,然后结合Zr(NO34进行烘干磨粉和煅烧,得到纳米级的La(1‑x)SrxTiO3·yZrO2粉末复合材料,所述粘结剂为聚乙烯醇,烧结助剂为CaO、Y2O3、TiO2,本发明还提供了这种导电陶瓷的烧结工艺,采用该方法制备的导电陶瓷具有高致密性、高机械强度、低电阻的特点,并可显著降低烧结过程中的温度,减少能耗,具有广阔的发展前景。

Description

一种导电陶瓷及其烧结工艺
技术领域
本发明涉及陶瓷制备技术领域,具体为一种导电陶瓷及其烧结工艺。
背景技术
导电陶瓷属于新型功能特种陶瓷,它是一类基础性材料。它既具有陶瓷的各种性质,如抗氧化、耐高温、耐腐蚀、低成本、机械性能好等特点,又具有金属态的导电特性,导电陶瓷在一定条件下能够产生电子(空穴)、离子(空位)等,而在电场的作用下,能发生电荷定向运动。导电陶瓷具有导电性好、化学性能稳定、抗腐蚀、耐高温等特点,因此导电陶瓷的研究日益得到重视,应用也越来越广泛。
钛酸锶是一种立方钙钛矿型复合氧化物,在室温下满足化学计量比的钛酸锶晶体是绝缘体,但在强制还原或掺杂金属离子的情况下可实现半导化;氧化锆热导率低(1000℃,2 .09W/(m·K)),线膨胀系数大 (25~1500℃9 .4×10-6/℃) ,高温结构强度高,1000℃时耐压强度可达1200~ 1400MPa,导电性好,具有负的电阻温度系数,电阻率1000℃时104Ω·cm,1700℃时6~7 Ω·cm,二者常被用来作为制备导电陶瓷的基体材料。
由于陶瓷的导电机制比较复杂,参与导电的粒子可以是电子、正离子或负离子,陶瓷导电能力与材料中载流子浓度及其迁移率有关,或者说材料的导电性能与材料组成、掺杂、微结构、晶体缺陷、制备工艺及后处理过程密切相关。然而,这些导电陶瓷都具有这样或那样的缺陷,如需要的导电温度过高;或所需要的物质中含有如 SiC,Si3N4 等难以制备的材料,使成本过高;或者耐高温能力差,使用寿命过短;或者电导率太低并难以在较大的范围内进行调制,因此本发明一种新型导电陶瓷可解决上述问题。
在钙钛矿型复合氧化物中引入稀土元素取代部分金属元素可提高其导电性和催化活性,在这类导电材料中La(1-x)SrxTiO3尤为引人注意,这主要与其晶体结构和单子结构有关,而晶体结构又主要取决于x,即Sr的含量。当0 < x < 0.5时,晶体结构为正交晶系,随着x含量的增加,正交晶系的畸变逐渐消失,直到0.5 ≤ x < 1而成为立体结构,目前国内对La(1-x)SrxTiO3材料的研究较少,作为导电陶瓷的研究更少,本发明将La(1-x)SrxTiO3复合ZrO2制备纳米级的导电陶瓷材料,再结合烧结助剂和粘结剂共同作用并配合特定的工艺流程制备的新型导电陶瓷,具有传统导电陶瓷所不具备的多项优势。
发明内容
本发明的目的在于提供一种导电陶瓷及其烧结工艺,该导电陶瓷将纳米级的SrTiO3和ZrO2陶瓷复合作为基体材料,通过对其进行稀土改性处理降低基体材料的电阻率,并结合烧结助剂进一步提高陶瓷材料的导电性能,本发明还提供了该导电陶瓷的烧结工艺,通过烧结获得一种烧结温度低、机械强度高、电导率大、致密性好的新型导电陶瓷。
为实现上述目的,本发明提供如下技术方案:一种导电陶瓷,包括导电陶瓷复合材料、粘结剂、烧结助剂,所述导电陶瓷按重量份计含有导电陶瓷复合材料55-90份,粘结剂1-5份,烧结助剂0-5份,所述导电陶瓷复合材料的组成通式为:La(1-x)SrxTiO3·yZrO2,其中x,y为摩尔数0.5 ≤ x < 1,0 < y ≤ 0.4,x+y ≤ 1。
优选的,一种导电陶瓷中导电陶瓷复合材料的制备方法包括以下步骤:
L1:纳米级SrTiO3制备:采用溶胶-凝胶法,将12-14质量份的钛酸四丁酯溶解于30-40体积份的异丙醇溶液中,然后制备等摩尔数的醋酸锶水溶液,在剧烈搅拌的条件下将醋酸锶水溶液滴加到钛酸四丁酯溶液中,继续搅拌15-20min后静置3-5h,得到乳白色的凝胶,待凝胶老化析出异丙醇和水后,在60-80℃下加热烘干磨粉,最后于800-1000℃条件下煅烧即制得纳米级的钛酸锶粉末;
L2:稀土改性SrTiO3:采用气相扩渗改性的方法,首先以LaCl3·7H20为渗剂配制5%稀土La的甲醇渗液,将扩渗炉升温至860℃并排气后把S1制得的粉末放入其中,然后向扩渗炉中加入稀土La的甲醇渗液,按照1-x的摩尔数计算加入量,滴加速度为70d/min,扩渗时间为3-5h,得到La(1-x)SrxTiO3溶液;
L3:La(1-x)SrxTiO3·yZrO2混合粉末的制备:在La(1-x)SrxTiO3溶液中加入y摩尔的Zr(NO34溶液并搅拌均匀,将溶液转移至蒸发皿中,在80℃条件下搅拌蒸发直至溶液变为凝胶,然后放入真空干燥箱中干燥24h,取出后研磨均匀,于200目过筛后在900-1000℃条件下煅烧2-3h后得到La(1-x)SrxTiO3·yZrO2粉末。
优选的,所述粘结剂为聚乙烯醇,所述烧结助剂为CaO、Y2O3、TiO2
本发明的另一个目的在于提供该导电陶瓷的烧结工艺,具体包括以下步骤:
S1:将导电陶瓷复合材料、粘结剂、烧结助剂按照质量份进行湿法球磨混合24h,制备浆料,然后将浆料进行喷雾造粒,制备粉料;
S2:将S1中制备的粉料陈化10-20h后在10-30MPa的条件下干压制成2mm厚的圆片,并于250-300MPa条件下进行冷等静压成形并脱脂脱胶得到坯体;
S3:将S2中的坯体置于烧结炉中,在氮气或真空状态下于800-1300℃条件下保温3-5h,得到导电陶瓷烧结体。
优选的,上述步骤S2中的脱胶步骤为将坯体依次在450-500℃保温10min、500-600℃保温5min、600-800℃保温10min,实现导电陶瓷的脱脂脱胶。
优选的,所述步骤S3中的升温速率为10℃/min,先加热至800℃并保温1-2h,然后继续升温至1250-1350℃并保温2-3h。
优选的,所制得的La(1-x)SrxTiO3·yZrO2粉末的平均粒径为50-80nm。
与现有技术相比,本发明的有益效果是:
1.本发明选用稀土氧化物和金属氧化物组成烧结助剂,可在高温下熔融生成液相促进烧结,填充气孔提高致密性和力学性能;
2.本发明本发明采用SrTiO3和ZrO2进行复合,并通过气相扩渗改性的方法在SrTiO3中添加稀土元素,通过Y2O3来稳定ZrO2,可有效优化导电陶瓷的微观结构,提高晶体的稳定性,降低陶瓷的电阻,提高其机械强度;
3.本发明制备的La(1-x)SrxTiO3·yZrO2粉末为纳米级的高纯超细粉,可改变原粉的性质,降低熔点,使之在烧结过程中产生更加明显的活性;
4.本发明采用的烧结工艺包括混料-球磨-喷雾造粒-干压-冷等静压成形-脱脂脱胶后在氮气或真空气氛下进行烧结,实现在800-1300℃范围内导电陶瓷就可以烧结致密,有效的降低成本。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
下面将结合具体实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。
本发明实施例的一个方面提供了一种导电陶瓷,包括导电陶瓷复合材料、粘结剂、烧结助剂,所述导电陶瓷按重量份计含有导电陶瓷复合材料55-90份,粘结剂1-5份,烧结助剂0-5份,所述导电陶瓷复合材料的组成通式为:La(1-x)SrxTiO3·yZrO2,其中x,y为摩尔数0.5 ≤ x < 1,0 < y ≤ 0.4,x+y ≤ 1。
本发明还提供了该导电陶瓷中导电陶瓷复合材料的制备方法,包括以下步骤:
L1:纳米级SrTiO3制备:采用溶胶-凝胶法,将12-14质量份的钛酸四丁酯溶解于30-40体积份的异丙醇溶液中,然后制备等摩尔数的醋酸锶水溶液,在剧烈搅拌的条件下将醋酸锶水溶液滴加到钛酸四丁酯溶液中,继续搅拌15-20min后静置3-5h,得到乳白色的凝胶,待凝胶老化析出异丙醇和水后,在60-80℃下加热烘干磨粉,最后于800-1000℃条件下煅烧即制得纳米级的钛酸锶粉末。
传统固相法制备的钛酸锶,存在元素分布不均匀、颗粒间接触面积小等问题,即使在1100 ℃下制备仍含有很多杂相。本发明利用溶胶-凝胶方法可形成核壳结构来提高烧结时两固相混合均匀度和接触面积来制备高纯度纳米钛酸锶。
L2:稀土改性SrTiO3:采用气相扩渗改性的方法,首先以LaCl3·7H20为渗剂配制5%稀土La的甲醇渗液,将扩渗炉升温至860℃并排气后把S1制得的粉末放入其中,然后向扩渗炉中加入稀土La的甲醇渗液,按照1-x的摩尔数计算加入量,滴加速度为70d/min,扩渗时间为3-5h,得到La(1-x)SrxTiO3溶液;
扩渗温度为450-550℃,稀土La在对SrTiO3进行气相扩渗的过程中,La3+进入SrTiO3体系,在发生晶格取代时导致了晶格畸变,形成La(1-x)SrxTiO3体系。
L3:La(1-x)SrxTiO3·yZrO2混合粉末的制备:在La(1-x)SrxTiO3溶液中加入y摩尔的Zr(NO34溶液并搅拌均匀,将溶液转移至蒸发皿中,在80℃条件下搅拌蒸发直至溶液变为凝胶,然后放入真空干燥箱中干燥24h,取出后研磨均匀,于200目过筛后在900-1000℃条件下煅烧2-3h后得到La(1-x)SrxTiO3·yZrO2粉末;
二氧化锆具有优良的低导热率和高的热膨胀系数,钛酸锶具有高介电常数和高的折射常数,有显著的压电性能,对其进行稀土元素掺杂又可提高其压电性能,采用二氧化锆包覆钛酸镧锶的核壳结构复合方式,可改变材料的性质,结合两种材料的优点,得到比单一材料性能更加优良的复合材料。
在具体实施例中,所述粘结剂为聚乙烯醇,所述烧结助剂为CaO、Y2O3、TiO2
钛酸镧锶作为陶瓷的基体材料,通过在本来就有晶格缺陷的钛酸镧锶晶格中掺杂碱土金属元素,使其晶格缺陷发生较大变动,从而产生更多的氧空位,有利于氧离子导电;二氧化锆作为另一基体材料,利用稀土氧化物进行晶型稳定,因为稀土元素的离子半径与锆元素的离子半径相差不大,二者更容易形成固溶体,这种固溶体形成的四方晶体比较稳定,反映在物化特性上则具有硬度大、热膨胀系数小的特点。
本发明的另一个目的在于提供该导电陶瓷的烧结工艺,具体包括以下步骤:
S1:将导电陶瓷复合材料、粘结剂、烧结助剂按照质量份进行湿法球磨混合24h,制备浆料,然后将浆料进行喷雾造粒,制备粉料;
S2:将S1中制备的粉料陈化10-20h后在10-30MPa的条件下干压制成2mm厚的圆片,并于250-300MPa条件下进行冷等静压成形并脱脂脱胶得到坯体,干压之后再进行冷等静压处理可使得颗粒间的接触更加紧密,密度进一步提高且分布更加均匀,减少烧结时的扩散阻力;
S3:将S2中的坯体置于烧结炉中,在氮气或真空状态下于800-1300℃条件下保温3-5h,得到导电陶瓷烧结体。
具体的,上述步骤S2中的脱胶步骤为将坯体依次在450-500℃保温10min、500-600℃保温5min、600-800℃保温10min,实现导电陶瓷的脱脂脱胶。
进一步的,所述步骤S3中的升温速率为10℃/min,先加热至800℃并保温1-2h,然后继续升温至1250-1350℃并保温2-3h,在800-1350℃的范围内流动传质速率比扩散传质快,因此致密化速率更高且液相生成量也明显升高。
更进一步的,所制得的La(1-x)SrxTiO3·yZrO2粉末的平均粒径为50-80nm。
制备超细粒度的纳米级La(1-x)SrxTiO3·yZrO2粉末,其表面原子数所占比例增大,因此可改变超细粉的性质,促使固体原子间扩散加快颗粒间的合并与连接从而降低烧结过程中的温度。
为了更好地说明本发明,本发明还提供了以下的具体实施例。
实施例1:
一种导电陶瓷,包括导电陶瓷复合材料、粘结剂、烧结助剂,所述导电陶瓷按重量份计含有导电陶瓷复合材料55-90份,粘结剂1-5份,烧结助剂0-5份,所述导电陶瓷复合材料的组成通式为:La(1-x)SrxTiO3·yZrO2,其中x,y为摩尔数0.5 ≤ x < 1,0 < y ≤ 0.4,x+y ≤ 1。
实施例2:
一种导电陶瓷,包括导电陶瓷复合材料、粘结剂、烧结助剂,所述导电陶瓷按重量份计含有导电陶瓷复合材料55-90份,粘结剂1-5份,烧结助剂0-5份,所述导电陶瓷复合材料的组成通式为:La(1-x)SrxTiO3·yZrO2,其中x,y为摩尔数0.5 ≤ x < 1,0 < y ≤ 0.4,x+y ≤ 1。
所述导电陶瓷复合材料的制备步骤如下:
L1:纳米级SrTiO3制备:采用溶胶-凝胶法,将12-14质量份的钛酸四丁酯溶解于30-40体积份的异丙醇溶液中,然后制备等摩尔数的醋酸锶水溶液,在剧烈搅拌的条件下将醋酸锶水溶液滴加到钛酸四丁酯溶液中,继续搅拌20min后静置5h,得到乳白色的凝胶,待凝胶老化析出异丙醇和水后,在80℃下加热烘干磨粉,最后于1000℃条件下煅烧即制得纳米级的钛酸锶粉末。
L2:稀土改性SrTiO3:采用气相扩渗改性的方法,首先以LaCl3·7H20为渗剂配制5%稀土La的甲醇渗液,将扩渗炉升温至860℃并排气后把S1制得的粉末放入其中,然后向扩渗炉中加入稀土La的甲醇渗液,按照1-x的摩尔数计算加入量,滴加速度为70d/min,扩渗时间为4h,得到La(1-x)SrxTiO3溶液;
L3:La(1-x)SrxTiO3·yZrO2混合粉末的制备:在La(1-x)SrxTiO3溶液中加入y摩尔的Zr(NO34溶液并搅拌均匀,将溶液转移至蒸发皿中,在80℃条件下搅拌蒸发直至溶液变为凝胶,然后放入真空干燥箱中干燥24h,取出后研磨均匀,于200目过筛后在1000℃条件下煅烧2h后得到La(1-x)SrxTiO3·yZrO2粉末;
在此实施例中分别按照x=0.5,y=0.4;x=0.7,y=0.2;x=0.8,y=0.1的取值计算配料添加量,所得产物利用沉降法进行粒度测定,其平均粒径为40nm。将粉末在研钵中仔细研磨,然后压片后进行电导率测定,其平均电导率为10.5S/cm。
实施例3:
一种导电陶瓷,包括导电陶瓷复合材料、粘结剂、烧结助剂,所述导电陶瓷按重量份计含有导电陶瓷复合材料55-90份,粘结剂1-5份,烧结助剂0-5份,所述导电陶瓷复合材料的组成通式为:La(1-x)SrxTiO3·yZrO2,其中x,y为摩尔数0.5 ≤ x < 1,0 < y ≤ 0.4,x+y ≤ 1。
所述粘结剂为聚乙烯醇,所述烧结助剂为CaO、Y2O3、TiO2,烧结助剂的总体添加份数为0-5份。
实施例4:
一种导电陶瓷,包括导电陶瓷复合材料、粘结剂、烧结助剂,所述导电陶瓷按重量份计含有导电陶瓷复合材料55-90份,粘结剂1-5份,烧结助剂0-5份,所述导电陶瓷复合材料的组成通式为:La(1-x)SrxTiO3·yZrO2,其中x,y为摩尔数0.5 ≤ x < 1,0 < y ≤ 0.4,x+y ≤ 1。
该导电陶瓷的烧结工艺,具体包括以下步骤:
S1:将导电陶瓷复合材料、粘结剂、烧结助剂按照质量份进行湿法球磨混合24h,制备浆料,然后将浆料进行喷雾造粒,制备粉料;
S2:将S1中制备的粉料陈化20h后在25MPa的条件下干压制成2mm厚的圆片,并于250MPa条件下进行冷等静压成形并脱脂脱胶得到坯体,干压之后再进行冷等静压处理可使得颗粒间的接触更加紧密,密度进一步提高且分布更加均匀,减少烧结时的扩散阻力;
S3:将S2中的坯体置于烧结炉中,在氮气或真空状态下于800-1300℃条件下保温3-5h,得到导电陶瓷烧结体。
步骤S2中的脱胶步骤为将坯体依次在450-500℃保温10min、500-600℃保温5min、600-800℃保温10min,实现导电陶瓷的脱脂脱胶。
步骤S3中的升温速率为10℃/min,先加热至800℃并保温1-2h,然后继续升温至1250-1350℃并保温2-3h。
实施例5:
按照导电陶瓷复合材料70kg,聚乙烯醇3kg份,CaO 1kg、Y2O3 2kg、TiO2 1kg进行实验,导电陶瓷复合材料的制备工艺同实施例2,其中x=0.5,y=0.4,导电陶瓷的烧结工艺同实施例4,制得导电陶瓷的性能测试结果如表 1 所示。
实施例6:
按照导电陶瓷复合材料50kg,聚乙烯醇1kg份,CaO 2kg、Y2O3 2kg、TiO2 1kg进行实验,导电陶瓷复合材料的制备工艺同实施例3,其中x=0.5,y=0.4,导电陶瓷的烧结工艺同实施例5,制得导电陶瓷的性能测试结果如表 1 所示。
实施例7:
按照导电陶瓷复合材料90kg,聚乙烯醇5kg份,CaO 1kg、Y2O3 1kg、TiO2 1kg进行实验,导电陶瓷复合材料的制备工艺同实施例2,其中x=0.5,y=0.4,导电陶瓷的烧结工艺同实施例4,制得导电陶瓷的性能测试结果如表 1 所示。
表1 实施例5-7所制得的导电陶瓷性能测试结果
Figure 458645DEST_PATH_IMAGE002
通过测试结果可以看出,实施例7制备的导电陶瓷的致密度、硬度和抗弯强度高,韧性好且电阻低,可实现其导电性能,同时相比于传统导电陶瓷具有更加优良的性能。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种导电陶瓷,包括导电陶瓷复合材料、粘结剂、烧结助剂,其特征在于:所述导电陶瓷按重量份计含有导电陶瓷复合材料55-90份,粘结剂1-5份,烧结助剂0-5份但不包括0,所述导电陶瓷复合材料的组成通式为:La(1-x)SrxTiO3·yZrO2,其中x,y为摩尔数x=0.5,y=0.4,所述粘结剂为聚乙烯醇,所述烧结助剂为CaO、Y2O3和TiO2,其中导电陶瓷复合材料的制备方法包括以下步骤:
L1:纳米级SrTiO3制备:采用溶胶-凝胶法,将12-14质量份的钛酸四丁酯溶解于30-40体积份的异丙醇溶液中,然后制备等摩尔数的醋酸锶水溶液,在剧烈搅拌的条件下将醋酸锶水溶液滴加到钛酸四丁酯溶液中,继续搅拌15-20min后静置3-5h,得到乳白色的凝胶,待凝胶老化析出异丙醇和水后,在60-80℃下加热烘干磨粉,最后于800-1000℃条件下煅烧即制得纳米级的钛酸锶粉末;
L2:稀土改性SrTiO3:采用气相扩渗改性的方法,首先以LaCl3·7H2O为渗剂配制5%稀土La的甲醇渗液,将扩渗炉升温至860℃并排气后把L1制得的粉末放入其中,然后向扩渗炉中加入稀土La的甲醇渗液,按照1-x的摩尔数计算加入量,滴加速度为70d/min,扩渗时间为3-5h,得到La(1-x)SrxTiO3溶液;
L3:La(1-x)SrxTiO3·yZrO2混合粉末的制备:采用二氧化锆包覆钛酸镧锶的核壳结构复合方式,具体为在La(1-x)SrxTiO3溶液中加入y摩尔的Zr(NO34溶液并搅拌均匀,将溶液转移至蒸发皿中,在80℃条件下搅拌蒸发直至溶液变为凝胶,然后放入真空干燥箱中干燥24h,取出后研磨均匀,于200目过筛后在900-1000℃条件下煅烧2-3h后得到La(1-x)SrxTiO3·yZrO2粉末;
所述的导电陶瓷还包括烧结工艺,具体为:
S1:将导电陶瓷复合材料、粘结剂、烧结助剂按照质量份进行湿法球磨混合24h,制备浆料,然后将浆料进行喷雾造粒,制备粉料;
S2:将S1中制备的粉料陈化10-20h后在10-30MPa的条件下干压制成2mm厚的圆片,并于250-300MPa条件下进行冷等静压成形并脱脂脱胶得到坯体;
S3:将S2中的坯体置于烧结炉中,在氮气或真空状态下于800-1300℃条件下保温3-5h,得到导电陶瓷烧结体。
2.根据权利要求1所述的导电陶瓷,其特征在于:所述步骤S2中的脱胶步骤为将坯体依次在450-500℃保温10min、500-600℃保温5min、600-800℃保温10min,实现导电陶瓷的脱脂脱胶。
3.根据权利要求1所述的导电陶瓷,其特征在于:所述步骤S3中的升温速率为10℃/min,先加热至800℃并保温1-2h,然后继续升温至1250-1300℃并保温2-3h。
4.根据权利要求1所述的导电陶瓷,其特征在于:所制得的导电陶瓷复合材料La(1-x)SrxTiO3·yZrO2粉末的平均粒径为50-80nm。
CN202110553639.2A 2021-05-20 2021-05-20 一种导电陶瓷及其烧结工艺 Active CN113024246B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110553639.2A CN113024246B (zh) 2021-05-20 2021-05-20 一种导电陶瓷及其烧结工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110553639.2A CN113024246B (zh) 2021-05-20 2021-05-20 一种导电陶瓷及其烧结工艺

Publications (2)

Publication Number Publication Date
CN113024246A CN113024246A (zh) 2021-06-25
CN113024246B true CN113024246B (zh) 2021-08-10

Family

ID=76455439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110553639.2A Active CN113024246B (zh) 2021-05-20 2021-05-20 一种导电陶瓷及其烧结工艺

Country Status (1)

Country Link
CN (1) CN113024246B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239076A (zh) * 1998-06-12 1999-12-22 中国科学院青海盐湖研究所 纳米钛酸锶的制备方法
US20060175289A1 (en) * 2005-02-07 2006-08-10 Hyung-Suk Jung Method of fabricating semiconductor device
CN106145938A (zh) * 2015-04-27 2016-11-23 深圳市商德先进陶瓷有限公司 氧化锆复合陶瓷及其制备方法
CN107986776A (zh) * 2017-12-06 2018-05-04 河北工业大学 一种导电陶瓷的制备方法
CN109516497A (zh) * 2018-12-24 2019-03-26 广州天极电子科技有限公司 一种锆掺杂钛酸锶钡纳米粉体的制备方法
CN111960819A (zh) * 2020-08-14 2020-11-20 东莞信柏结构陶瓷股份有限公司 一种ZrO2基导电陶瓷及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239076A (zh) * 1998-06-12 1999-12-22 中国科学院青海盐湖研究所 纳米钛酸锶的制备方法
US20060175289A1 (en) * 2005-02-07 2006-08-10 Hyung-Suk Jung Method of fabricating semiconductor device
CN106145938A (zh) * 2015-04-27 2016-11-23 深圳市商德先进陶瓷有限公司 氧化锆复合陶瓷及其制备方法
CN107986776A (zh) * 2017-12-06 2018-05-04 河北工业大学 一种导电陶瓷的制备方法
CN109516497A (zh) * 2018-12-24 2019-03-26 广州天极电子科技有限公司 一种锆掺杂钛酸锶钡纳米粉体的制备方法
CN111960819A (zh) * 2020-08-14 2020-11-20 东莞信柏结构陶瓷股份有限公司 一种ZrO2基导电陶瓷及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Investigation of chemical compatibility between B-site doped La substituted SrTiO3 anode and stabilized zirconia electrolyte;Gang Chen et al.;《Journal of Power Sources》;20160810;第328卷;第212-218页 *

Also Published As

Publication number Publication date
CN113024246A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
Mori et al. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method
Li et al. Thermal, electrical, and electrochemical properties of Nd-doped Ba0. 5Sr0. 5 Co0. 8Fe0. 2O3− δ as a cathode material for SOFC
Zheng et al. Effect of Sm and Mg co-doping on the properties of ceria-based electrolyte materials for IT-SOFCs
Li et al. Sinterability and electrical properties of ZnO-doped Ce0. 8Y0. 2O1. 9 electrolytes prepared by an EDTA–citrate complexing method
Dong et al. High sintering activity Cu–Gd co-doped CeO2 electrolyte for solid oxide fuel cells
CN108793987B (zh) 一种锂离子传导氧化物固体电解质及其制备方法
KR101963980B1 (ko) 중·저온형 고체산화물연료전지용 공기극 분말 및 이의 제조방법
CN108649235A (zh) 一种a位层状钙钛矿型电极材料及其制备方法
JP2009140730A (ja) 固体酸化物形燃料電池用の燃料極材料およびその製造方法
CN109817997A (zh) 一种钙钛矿混合导体材料及其制备方法
Jin et al. Evaluation of Fe and Mn co-doped layered perovskite PrBaCo2/3Fe2/3Mn1/2O5+ δ as a novel cathode for intermediate-temperature solid-oxide fuel cell
Wu et al. Effect of Ca2+ and Sr2+ doping on the microstructure and cell performance of samaria-doped ceria electrolytes used in solid oxide fuel cells
Polat et al. Thermo-electrical and structural properties of Gd2O3 and Lu2O3 double-doped Bi2O3
Liu et al. Synthesis and characterization of PrBa0. 5Sr0. 5Co2− xNixO5+ δ (x= 0.1, 0.2 and 0.3) cathodes for intermediate temperature SOFCs
Yuan et al. Preparation of BaTiO3-based X7R ceramics with high dielectric constant by nanometer oxides doping method
CN114394833A (zh) 钨青铜结构高储能密度及功率密度无铅储能介质陶瓷材料
Nguyen et al. Electrical conductivity, thermal expansion and reaction of (La, Sr)(Ga, Mg) O3 and (La, Sr) AlO3 system
CN113024246B (zh) 一种导电陶瓷及其烧结工艺
CN116425543A (zh) 作为电介质材料的具有高储能和充放电性能的b位高熵陶瓷及制备方法
CN107459347B (zh) 一种具有高储能密度和高储能效率的无铅陶瓷材料及其制备方法
CN1635592A (zh) 高介电、抗还原陶瓷材料及其制备的陶瓷电容器
Liu et al. Effect of ZnO on the intermediate-temperature electrochemical properties of Gd0. 1Ln0. 1Ce0. 8O2-α (Ln= Er, Yb) for solid oxide membrane fuel cells
JP3077054B2 (ja) 耐熱導電性セラミックス
Yang et al. Effects of ZnO sintering additive on the sintering behavior and conductivity of YSZ solid electrolyte
Gordeev et al. Approaches for the preparation of dense ceramics and sintering aids for Sr/Mg doped lanthanum gallate: focus review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant