CN113087660A - 有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法 - Google Patents

有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法 Download PDF

Info

Publication number
CN113087660A
CN113087660A CN202010020501.1A CN202010020501A CN113087660A CN 113087660 A CN113087660 A CN 113087660A CN 202010020501 A CN202010020501 A CN 202010020501A CN 113087660 A CN113087660 A CN 113087660A
Authority
CN
China
Prior art keywords
catalyst
hydrogen
biodegradable polyester
stereoregular
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010020501.1A
Other languages
English (en)
Inventor
陶友华
李茂盛
张帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN202010020501.1A priority Critical patent/CN113087660A/zh
Publication of CN113087660A publication Critical patent/CN113087660A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/38Radicals substituted by singly-bound nitrogen atoms having only hydrogen or hydrocarbon radicals attached to the substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/61Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法。本发明的有机双功能催化剂是通过异氰酸酯或异硫氰酸酯和吡啶胺类化合物反应得到的。该催化剂通过硫脲活化氨基酸来源的O‑羧基环内酸酐单体,吡啶亲核加成单体,利用邻近基团的放大效应,可以在温和的条件下对OCA单体进行可控的开环聚合,制备高度等规、分子量可控的功能化聚酯。聚合所用的溶剂可以是氯仿、甲苯、二氯甲烷等,聚合温度范围是25~50℃,立构规整度在60%~90%之间可调。在上述聚合条件下,24~48小时内单体转化率可达99%。所得到的聚酯分子量可控,熔点高达150℃。聚酯的分子量在2万‑10万之间变化,为工业应用提供了广泛的前景。

Description

有机双功能催化剂及其制备方法和立构规整的生物降解聚酯 及其制备方法
技术领域
本发明涉及聚合物材料制备技术领域,具体涉及一种有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法。
背景技术
随着人类社会的发展进步,对于塑料、纤维、橡胶等聚合物材料的需求正在逐年增加。但随着石油资源的不断消耗,对于可再生资源的利用被提上了议程。利用可再生资源来合成聚合物材料的重大意义不言而喻。此外,传统的聚合物材料生物可降解性和生物相容性较差。因此,合成兼具良好的可降解性和生物相容性的聚合物材料是很重要的。
聚α-羟基酸是一种有吸引力的可生物降解和生物相容性良好的聚合物,广泛应用于在生物医学、农业和纺织工业中。典型的聚α-羟基酸包括聚乳酸、聚乙醇酸以及它们共聚物,可由丙交酯、乙交酯以及二者的混合物开环聚合得到。然而,通过此方法获得的聚酯往往缺乏功能化侧基,不易通过后修饰来改善它们的物理化学性能。
氨基酸是蛋白质的组成单元。利用天然氨基酸合成具有精密结构的聚合物是高分子化学领域一个重要的研究课题。而我国生物质来源的氨基酸产量丰富,部分氨基酸甚至存在产能过剩问题。因此,从廉价可再生的天然氨基酸单体制备高附加值的聚合物材料具有重要意义。
合成功能化聚酯的一种有效方法是O-羧基环内酸酐(OCAs)的开环聚合(RO P)。O-环内羧酸酐可以由含丰富侧基官能团的氨基酸或羟基酸制得。然而OCAs 单体容易消旋(Martin Vaca B,Bourissou D.ACS Macro Letters 2015,4,792- 798),目前只有少数文献报道了通过金属催化剂控制OCAs开环聚合制备立构规整的聚酯(Wang R,Zhang J,YinQ,Xu YX,Cheng JJ,Tong R Ang ew.Chem.Int.Ed.2016,55,13010-13014)。金属催化剂的残留性和严苛的反应条件限制了其在工业化生产上的应用,这促进了有机催化剂在合成功能化聚酯领域的发展(Kamber NE,Jeong W,Waymouth RM.Chemical Reviews 2007,1 07,5813-5040)。立构规整的聚酯在机械性能和热力学性能上比无规聚酯好,因此发展合适的催化剂尤其是有机催化剂用于合成等规聚酯是很有价值的。
发明内容
本发明要解决现有技术中的技术问题,提供一种新型的有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法。本发明的有机双功能催化剂利用硫脲的氢键活化单体,吡啶亲核加成单体,利用邻近效应、有机弱碱协同催化的策略,既实现了良好的催化活性,同时可以很好地控制聚合过程。
为了解决上述技术问题,本发明的技术方案具体如下:
本发明提供一种有机双功能催化剂,其分子结构式如下式1所示:
Figure BDA0002360599090000021
其中,R1是三氟甲基(CF3)或氢(H);
R2是三氟甲基(CF3)或氢(H);
R3是甲基(CH3)或氢(H);
R4是氯(Cl)或氢(H);
R5是氢(H)或叔丁基(tBu);
L是连接键、5-亚甲基(5-CH2)或6-亚甲基(6-CH2);
X是氧(O)或硫(S)。
在上述技术方案中,优选所述有机双功能催化剂选自以下分子结构式中的任意一种:
R1=R2=CF3,L=6-CH2,R3=H,R4=R5=H,X=S,催化剂1,Fw=379.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=R5=H,X=S,催化剂2,Fw=379.0;
R1=R2=CF3,L=6-(CH2)0,R3=H,R4=R5=H,X=S,催化剂3,Fw=365.0;
R1=R2=CF3,L=5-(CH2)0,R3=H,R4=R5=H,X=S,催化剂4,Fw=365.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=S,催化剂5,Fw=469.1;
R1=R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=H,X=S,催化剂6,Fw=413.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=3-Cl,R5=2-tBu,X=S,催化剂7,Fw=469.1;
R1=R2=CF3,L=6-CH2,R3=H,R4=3-Cl,R5=H,X=S,催化剂8,Fw=413.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=H,R5=2-tBu,X=S,催化剂9,Fw=435.1;
R1=R2=CF3,L=5-CH2,R3=H,R4=2-Cl,R5=H,X=S,催化剂10,Fw=413.0;
R1=R2=CF3,L=6-CH2,R3=H,R4=2-Cl,R5=H,X=S,催化剂11,Fw=413.0;
R1=H,R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=S,催化剂12, Fw=483.1;
R1=R2=H,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=S,催化剂13,Fw=333.1;
R1=R2=CF3,L=5-CH2,R3=CH3,R4=6-Cl,R5=2-tBu,X=S,催化剂14, Fw=483.9;
R1=R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=O,催化剂15,Fw=453.8。
本发明还提供一种有机双功能催化剂的制备方法,包括以下步骤:
将等当量苯基异硫氰酸酯或异氰酸酯,和吡啶胺类化合物混合于二氯甲烷中,室温反应12~24小时;反应完成后,浓缩,使用二氯甲烷重结晶,得到有机双功能催化剂;其合成路线如下:
Figure BDA0002360599090000041
其中,R1是三氟甲基(CF3)或氢(H);R2是三氟甲基(CF3)或氢(H);R3是甲基(CH3)或氢(H);R4是氯(Cl)或氢(H);R5是氢(H)或叔丁基(tBu);L是连接键、5-亚甲基(5-CH2)或6-亚甲基(6-CH2);X是氧(O)或硫(S)。
本发明还提供一种立构规整的生物降解聚酯,其分子结构式如下所示:
Figure BDA0002360599090000042
其中,R'为甲基、3-苯基丙基、或苄基;
R为选自以下取代基团中的一种:
Figure BDA0002360599090000043
其中,“”代表与C原子连接的部位;
所述生物降解聚酯的分子量在2万-10万。
在上述技术方案中,优选所述生物降解聚酯的立构规整度在60%~90%。
在上述技术方案中,进一步优选所述生物降解聚酯的立构规整度在 86%~90%。
本发明还提供一种立构规整的生物降解聚酯的制备方法,包括以下步骤:
在引发剂和本发明提供的有机双功能催化剂的作用下,将氨基酸来源的O- 羧基环内酸酐进行开环聚合反应,得到立构规整的生物降解聚酯;
其合成路线如下:
Figure BDA0002360599090000051
其中,O-羧基环内酸酐是以下化合物中的一种:
Figure BDA0002360599090000052
所述引发剂R'OH是甲醇、3-苯丙醇和苄醇中的一种;
所述生物降解聚酯的分子量在2万-10万。
在上述技术方案中,优选所述有机双功能催化剂和引发剂的物质的量比为 0.5~2;所述O-羧基环内酸酐和有机双功能催化剂的物质的量比为25~100:1。
在上述技术方案中,优选所述聚合反应的温度为25~50℃,时间为24~48 小时。
在上述技术方案中,优选所述聚合反应的溶剂为氯仿、甲苯、及二氯甲烷中的一种。
本发明的有益效果是:
本发明的立构规整的生物降解聚酯用的单分子双功能有机催化体系催化O- 羧基环内酸酐单体(OCAs)开环聚合具备活性聚合的特征。本发明的单分子双功能有机催化剂,以硫脲基团为Lewis酸,通过氢键活化单体,以吡啶基团为 Lewis碱,亲核加成单体,利用紧邻的协同效应共同催化OCAs单体的开环聚合。聚合速度较快,反应温度低,在25~50℃即可达到高达99%的转化率,所得到的聚酯分子量高达10万,分布窄至1.3以内,等规度最高在90%以上,避免了单体在聚合过程中发生消旋作用。通过调节催化剂的结构,改变硫脲的酸性和吡啶的碱性以及催化剂的空间位阻,优化聚合温度、浓度等参数,实现了对OCAs 单体的可控聚合,最终获得分子量可控的等规聚酯。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为应用实施例3制备的聚合物的GPC曲线图。
具体实施方式
本发明提供了一种新型的有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法,该有机双功能催化剂利用硫脲的氢键活化单体,吡啶亲核加成单体,利用邻近效应、有机弱碱协同催化的策略,既实现了良好的催化活性,同时可以很好地控制聚合过程。
本发明提供一种有机双功能催化剂,其分子结构式如下式1所示:
Figure BDA0002360599090000061
其中,R1是三氟甲基(CF3)或氢(H);
R2是三氟甲基(CF3)或氢(H);
R3是甲基(CH3)或氢(H);
R4是氯(Cl)或氢(H);
R5是氢(H)或叔丁基(tBu);
L是连接键、5-亚甲基(5-CH2)或6-亚甲基(6-CH2);
X是氧(O)或硫(S)。
优选所述有机双功能催化剂选自以下分子结构式中的任意一种:
R1=R2=CF3,L=6-CH2,R3=H,R4=R5=H,X=S,催化剂1,Fw=379.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=R5=H,X=S,催化剂2,Fw=379.0;
R1=R2=CF3,L=6-(CH2)0,R3=H,R4=R5=H,X=S,催化剂3,Fw=365.0;
R1=R2=CF3,L=5-(CH2)0,R3=H,R4=R5=H,X=S,催化剂4,Fw=365.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=S,催化剂5,Fw=469.1;
R1=R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=H,X=S,催化剂6,Fw=413.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=3-Cl,R5=2-tBu,X=S,催化剂7,Fw=469.1;
R1=R2=CF3,L=6-CH2,R3=H,R4=3-Cl,R5=H,X=S,催化剂8,Fw=413.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=H,R5=2-tBu,X=S,催化剂9,Fw=435.1;
R1=R2=CF3,L=5-CH2,R3=H,R4=2-Cl,R5=H,X=S,催化剂10,Fw=413.0;
R1=R2=CF3,L=6-CH2,R3=H,R4=2-Cl,R5=H,X=S,催化剂11,Fw=413.0;
R1=H,R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=S,催化剂12, Fw=483.1;
R1=R2=H,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=S,催化剂13,Fw=333.1;
R1=R2=CF3,L=5-CH2,R3=CH3,R4=6-Cl,R5=2-tBu,X=S,催化剂14, Fw=483.9;
R1=R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=O,催化剂15,Fw=453.8。
最优选的有机双功能催化剂,具有如式2所示的结构:
Figure BDA0002360599090000081
R1=R2=CF3,催化剂5,Fw=469.1;
R1=H,R2=CF3,催化剂12,Fw=483.1;R1=R2=H,催化剂13,Fw=333.1。
本发明中有机双功能催化剂,其通用的制备方法如下:
Figure BDA0002360599090000082
将等当量苯基异硫氰酸酯或异氰酸酯,和吡啶胺类化合物混合于干燥的二氯甲烷中,室温反应12~24小时。反应完成后,浓缩,使用二氯甲烷重结晶,得到有机双功能催化剂,产率80~100%;
其中,R1是三氟甲基(CF3)或氢(H);R2是三氟甲基(CF3)或氢(H);R3是甲基(CH3)或氢(H);R4是氯(Cl)或氢(H);R5是氢(H)或叔丁基(tBu);L是连接键、5-亚甲基(5-CH2)或6-亚甲基(6-CH2);X是氧(O)或硫(S)。
本发明中的有机双功能催化剂,其用于催化制备立构规整的生物降解聚酯的方法如下:
(1)、先将预制备的O-羧基环内酸酐单体用二氯甲烷、乙醚、四氢呋喃等溶剂重结晶。除去溶剂后,保存于无水无氧的低温环境中备用。
(2)、O-羧基环内酸酐单体的溶液聚合方法:
采用的溶剂为氯仿或甲苯或二氯甲烷,O-羧基环内酸酐单体浓度为2M,O- 羧基环内酸酐单体是L/D-ManOCA(代表的是L构型的L-ManOCA和D构型的 D-ManOCA)、L-LacOCA、L-Ser(Bn)OCA、L-Mal OCA、L-PheOCA、或 L-LysOCA,引发剂采用甲醇或3-苯丙醇或苄醇,浓度为0.25M,最佳单体和催化剂的摩尔比为25:1,聚合反应温度为25~50℃,最佳聚合温度为50℃,反应时间为24~48小时,反应结束后,用氯仿或甲苯或二氯甲烷稀释,用酸化的甲醇淬灭反应并沉降聚合物。生物降解聚酯的分子量用凝胶渗透色谱仪(Waters 2414) 测定,结构用核磁共振波谱(Bruker AV-500)测定。
本发明所用的单体O-羧基环内酸酐可参照现有文章中公开的方法制备得到:
通用制备方法如下:
O-羧基环内酸酐的制备方法:
Figure BDA0002360599090000091
将α-羟基酸(10mmol)溶于30mL无水四氢呋喃,加入200mg活性炭, 6.7mmol三光气,室温搅拌20小时后,抽滤,乙醚重结晶3次,得到O-羧基环内酸酐,通过核磁氢谱和碳谱表征如下。
(1)D-ManOCA:1H NMR(300MHz,CDCl3):δ7.42-7.53(m,5H),6.02(s,1H). 13C NMR(300MHz,CDCl3):δ165.46,148.15,130.92,129.67,129.34,126.26, 80.55.L-ManOCA:1HNMR和13C NMR和D-ManOCA一致.
(2)L-LacOCA:1H NMR(300MHz,CDCl3):δ5.12(q,1H),1.71(d,3H).13C NMR(300MHz,CDCl3):δ167.76,148.20,76.29,16.60.
(3)L-Ser(Bn)OCA:1H NMR(300MHz,CDCl3):δ7.26-7.40(m,5H),5.11(m, 1H),4.60(m,2H,),3.91(m,2H,).13C NMR(CDCl3,300MHz):δ165.66,148.55, 136.33,128.70,128.32,127.74,79.68,73.75,66.15.
(4)L-MalOCA:1H NMR(300MHz,CDCl3):δ7.32-7.43(m,5H),5.18(s,2H), 5.16(m,1H),3.19(m,2H).13C NMR(CDCl3,300MHz):δ168.02,166.89,148.42, 134.43,128.95,128.83,128.76,75.14,68.15,34.40.
(5)L-PheOCA:1H NMR(300MHz,CDCl3):δ7.21-7.40(m,5H),5.31(t,1H), 3.38(m,1H),3.27(dd,1H).13C NMR(CDCl3,300MHz):δ166.48,147.98,131.66, 129.77,129.26,128.50,80.03,36.47.
(6)L-LysOCA:1H NMR(300MHz,CDCl3):δ7.37-7.35(m,5H),5.09(s,2H), 5.03(m,1H),4.85,(s,1H),3.18-3.24(m,2H),1.84-2.14(m,2H),1.39-1.65(m,4H). 13C NMR(CDCl3,300MHz):167.21,156.58,148.39,136.51,128.56,128.17,128.07, 79.63,66.69,40.29,30.22,29.10,21.28.
本发明还提供一种立构规整的生物降解聚酯,其分子结构式如下所示:
Figure BDA0002360599090000101
其中,R'为甲基、3-苯基丙基、或苄基;
R为选自以下取代基团中的一种:
Figure BDA0002360599090000111
其中,“”代表与C原子连接的部位;
所述生物降解聚酯的分子量在2万-10万。
优选所述生物降解聚酯的立构规整度在60%~90%,进一步优选所述生物降解聚酯的立构规整度在86%~90%。
本发明提供的有机双功能催化剂是通过异氰酸酯或异硫氰酸酯和吡啶胺类化合物反应得到的新型单分子双功能有机催化剂。该催化剂通过硫脲活化氨基酸来源的O-羧基环内酸酐(OCA)单体,吡啶亲核加成单体,利用邻近基团的放大效应,可以在温和的条件下对OCA单体进行可控的开环聚合,制备高度等规、分子量可控的功能化聚酯。聚合所用的溶剂可以是氯仿、甲苯、二氯甲烷等,聚合温度范围是25~50℃,立构规整度在60%~90%之间可调。在上述聚合条件下,24~48小时内单体转化率可达99%。反应具备活性聚合的特点,产物的分子量可由单体与催化剂的摩尔比控制,所得到的聚酯分子量可控,熔点高达150℃。聚酯的分子量和立体控制受到催化剂的结构、聚合温度、聚合所用溶剂等影响,分子量在2万-10万之间变化,为工业应用提供了广泛的前景。
制备实施例1催化剂5的制备
Figure BDA0002360599090000121
具体步骤如下:
(1)向Schlenk瓶中加入2,6-二氯吡啶5.0g(33.8mmol)、碘化铜 643mg(3.38mmol)、溴化锂587mg(6.76mmol),通氮气30分钟,混合物0℃下溶于20mL无水四氢呋喃,保持温度,滴加叔丁基氯化镁的四氢呋喃溶液(50mL, 1M,50mmol),搅拌12小时,允许逐渐恢复室温。反应结束后,后处理得到2- 叔丁基-6-氯吡啶,产率70%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)、125兆赫兹核磁共振仪(碳谱,13C NMR)和高分辨质谱表征了2-叔丁基-6-氯吡啶的结构。1H NMR(500MHz,CDCl3):δ7.55(t,1H), 7.24(d,1H),7.12(d,1H),1.34(s,9H).13C NMR(125MHz,CDCl3):δ170.74, 150.36,138.87,121.26,117.56,37.66,30.10.HRMS:calcd for C9H13ClN [M+H]+:170.0737;found:170.0726.
(2)2-叔丁基-6-氯吡啶2.8g(16.5mmol)在-78℃、氮气氛围下溶于20mL无水四氢呋喃。保持温度,滴加正丁基锂的四氢呋喃溶液(8mL,2.5M,20mmol)。 1小时后加入N,N-二甲基甲酰胺(3.8mL,49.1mmol),随后搅拌12小时并缓慢恢复室温。反应结束后,后处理得到2-叔丁基-5-醛基-6-氯吡啶,产率50%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)表征了 2-叔丁基-5-醛基-6-氯吡啶的结构。1H NMR(500MHz,CDCl3):δ10.40(s,1H),8.15 (d,1H),7.42(d,1H),1.38(s,1H).
(3)硼氢化钠0.5g(13.2mmol)在0℃逐份加入2-叔丁基-5-醛基-6-氯吡啶1.5g(7.6mmol)的20mL甲醇溶液中。随后搅拌12小时并缓慢恢复室温。反应结束后,后处理得到2-叔丁基-5-羟甲基-6-氯吡啶。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)表征了2-叔丁基-5-羟甲基-6-氯吡啶的结构,产率95%。1H NMR(500MHz,CDCl3):δ7.75(d,1H),7.29(d,1H),4.75 (s,2H),1.35(s,9H).
(4)向Schlenk管中加入2-叔丁基-5-羟甲基-6-氯吡啶1.25g(6.3mmol)、三苯基膦1.97g(7.5mmol)、邻苯二甲酰亚胺1.11g(7.5mmol)和15mL无水四氢呋喃。0℃搅拌10分钟。偶氮二异丙酯1.5mL(7.5mmol)缓慢滴加进溶液。滴加完成后缓慢恢复室温并搅拌12h。乙醇淬灭反应,残余物溶于20mL乙醇,加入水合肼4mL回流2h。乙酸乙酯萃取,后期处理得到2-叔丁基-5-氨甲基-6-氯吡啶,产率70%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)表征了2-叔丁基-5-氨甲基-6-氯吡啶的结构,产率90~95%。1H NMR(500MHz,CDCl3):δ7.65(d,1H),7.25(d,1H),3.89(s,2H),1.33(s,9H).
(5)向圆底烧瓶中加入2-叔丁基-5-氨甲基-6-氯吡啶0.2g(1mmol)、3,5-双 (三氟甲基)苯基异硫氰酸酯0.27g(1mmol)和5mL二氯甲烷。室温搅拌12小时。后期处理得到催化剂5,产率90%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)、125兆赫兹核磁共振仪(碳谱,13C NMR)和高分辨质谱表征了催化剂5的结构。1H NMR(500MHz,DMSO-d6):δ10.36(s,1H), 8.67(s,1H),8.28(s,2H),7.75(s,1H),7.74(d,1H),7.45(d,1H),4.77(s,2H),1.28(s, 9H).13C NMR(125MHz,DMSO-d6):δ181.64,168.59,148.12,142.00,138.98, 130.66(q,J=32.9Hz),129.34,124.55(q,J=273.42Hz),122.56,118.58,116.68, 44.61,37.21,29.95.HRMS:calcd for C19H19ClF6N3S[M+H]+:470.0892;found:470.0876.
制备实施例2催化剂7的制备
Figure BDA0002360599090000141
具体步骤如下:
(1)向Schlenk瓶中加入2,3-二氯-5-甲基吡啶5.50g(34mmol)、碘化铜1.30g(6.8mmol)、溴化锂1.20g(13.4mmol),通氮气30分钟,混合物0℃下溶于 25mL无水四氢呋喃,保持温度,滴加叔丁基氯化镁的四氢呋喃溶液(50mL,1M, 50mmol),搅拌12小时,允许逐渐恢复室温,再回流24h。反应结束后,后处理得到2-叔丁基-3-氯-5-甲基吡啶,产率20%。以氘代氯仿(CDCl3)为试剂以500 兆赫兹核磁共振仪(氢谱,1H NMR)表征了2-叔丁基-3-氯-5-甲基吡啶的结构。1H NMR(500MHz,CDCl3):δ8.24(d,1H),7.44(d,1H),2.28(s,3H),1.48(s,9H).
(2)向圆底烧瓶中加入2-叔丁基-3-氯-5-甲基吡啶0.90g(4.9mmol)、N-溴代琥珀酰亚胺1.05g(5.9mmol)、偶氮二异丁腈40mg(0.25mmol),氮气保护,回流1小时,补加偶氮二异丁腈40mg(0.25mmol)。回流直至N-溴代琥珀酰亚胺消耗完全。反应结束后,后处理得到5-溴甲基-2-叔丁基-3-氯吡啶,产率40%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)表征了 2-叔丁基-3-氯-5-甲基吡啶的结构。1H NMR(500MHz,CDCl3):δ8.42(d,1H),7.67 (d,1H),4.41(s,2H),1.49(s,9H).
(3)向圆底烧瓶中加入5-溴甲基-2-叔丁基-3-氯吡啶0.9g(3.4mmol)、邻苯二甲酰亚胺钾盐0.76g(4.1mmol)和无水N,N-二甲基甲酰胺10mL。60℃搅拌直至原料消耗完全。反应结束后,后处理得到2-(6-叔丁基-5氯吡啶-3-取代) 甲基邻苯二甲酰亚胺,产率70%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)表征了2-(6-叔丁基-5氯吡啶-3-取代)甲基邻苯二甲酰亚胺的结构。1H NMR(500MHz,CDCl3):δ8.50(d,1H),7.87(m,2H),7.74(m, 2H),7.69(d,1H),4.81(s,2H),1.46(s,9H).
(4)向圆底烧瓶中加入2-(6-叔丁基-5氯吡啶-3-取代)甲基邻苯二甲酰亚胺0.7g(2.1mmol)、80wt%水合肼2mL。回流2小时。反应结束后,后处理得到2-叔丁基-3-氯-5-氨甲基吡啶,产率70%。以氘代氯仿(CDCl3)为试剂以500 兆赫兹核磁共振仪(氢谱,1H NMR)表征了2-叔丁基-3-氯-5-氨甲基吡啶的结构。1H NMR(500MHz,CDCl3):δ8.35(d,1H),7.62(d,1H),3.86(s,2H),1.49(s, 9H).
(5)催化剂7的合成遵照催化剂5。后期处理得到催化剂5,产率90%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)、125 兆赫兹核磁共振仪(碳谱,13CNMR)和高分辨质谱表征了催化剂5的结构。1H NMR(500MHz,CDCl3):δ8.49(bs,1H),8.37(d,1H),7.78(s,2H),7.72(s,H),7.68 (d,1H),6.49(t,1H),4.86(d,2H),1.46(s,9H).13C NMR(125MHz,CDCl3):δ 181.55,163.98,145.15,138.98,138.62,133.50(q,J=34.0Hz),131.47,131.29,124.51, 123.87(q,J=272.5),120.18,45.56,39.21,28.70.HRMS:calcdfor C19H19ClF6N3S [M+H]+:470.0892;found:470.0868.
制备实施例3催化剂9的制备
Figure BDA0002360599090000151
具体步骤如下:
(1)向Schlenk瓶中加入2-溴-5-氰基吡啶1.83g(10mmol)、碘化铜0.38g(2mmol)、溴化锂0.35g(4mmol),通氮气30分钟,混合物0℃下溶于25mL 无水四氢呋喃,保持温度,滴加叔丁基氯化镁的四氢呋喃溶液(15mL,1M, 15mmol),搅拌12小时,允许逐渐恢复室温。反应结束后,后处理得到2-叔丁基-5-氰基吡啶,产率95%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)表征了2-叔丁基-5-氰基吡啶的结构。1H NMR(500MHz,CDCl3):δ8.83(d,1H),7.89(dd,1H),7.47(dd,3H),1.37(s,9H).
(2)向圆底烧瓶中加入2-叔丁基-5-氰基吡啶1.46g(9.1mmol)、无水四氢呋喃20mL,0℃逐份加入四氢锂铝(0.76g,20mmol)的四氢呋喃分散液20mL。室温搅拌12小时,再回流1小时。反应结束后,后处理得到2-叔丁基-5-氨甲基吡啶,产率40%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)表征了2-叔丁基-5-氨甲基吡啶的结构。1H NMR(500MHz,CDCl3):δ 8.49(d,1H),7.59(dd,1H),7.33(dd,1H),3.86(s,2H),1.36(s,9H).
(3)催化剂9的合成遵照催化剂5。后期处理得到催化剂9,产率90%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)、125 兆赫兹核磁共振仪(碳谱,13CNMR)和高分辨质谱表征了催化剂5的结构。1H NMR(500MHz,CDCl3):δ10.62(s,1H),9.06(t,1H),8.66(s,1H),8.27(s,2H),8.16 (d,1H),7.79(d,1H),7.76(s,1H),4.87(d,2H),1.38(s,9H).13C NMR(125MHz, DMSO-d6):δ10.62(s,1H),9.06(t,1H),8.66(s,1H),8.27(s,2H),8.16(d,1H),7.79 (d,1H),7.76(s,1H),4.87(d,2H),1.38(s,9H).HRMS:calcd forC19H20F6N3S [M+H]+:436.1282;found:436.1248.
制备实施例4催化剂14的制备
Figure BDA0002360599090000171
(1)向圆底烧瓶中加入2-氯-3-氨甲基-6-叔丁基吡啶1.98g(10mmol),三乙胺2.1mL(15mmol),二碳酸二叔丁酯2.18g(10mmol)和40mL二氯甲烷。室温搅拌2小时后淬灭。后期处理得到2-氯-3-(叔丁氧羰基-氨甲基)-6-叔丁基吡啶,产率90%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR) 表征了2-氯-3-(叔丁氧羰基-氨甲基)-6-叔丁基吡啶的结构。1H NMR(500MHz, CDCl3):δ7.64(d,1H),7.24(d,1H),4.35(d,2H),1.44(s,9H),1.33(s,9H).
(2)向圆底烧瓶中加入2-氯-3-(叔丁氧羰基-氨甲基)-6-叔丁基吡啶 298mg(1mmol)和无水四氢呋喃5mL,0℃逐份加入60wt%氢化钠200mg。搅拌15 分钟后滴加碘甲烷0.124mL的四氢呋喃(0.5mL)溶液,继续搅拌1.5小时后淬灭。后期处理得到2-氯-3-(叔丁氧羰基-甲氨甲基)-6-叔丁基吡啶。将该步产物溶于5mL二氯甲烷和三氟乙酸(1:1),搅拌1小时。反应结束后,后处理得到 2-氯-3-(甲氨甲基)-6-叔丁基吡啶,产率75%。以氘代氯仿(CDCl3)为试剂以 500兆赫兹核磁共振仪(氢谱,1H NMR)表征了2-氯-3-(甲氨甲基)-6-叔丁基吡啶的结构。1H NMR(500MHz,CDCl3):δ7.64(d,1H),7.24(d,1H),3.80(s,2H), 2.46(s,3H),1.34(s,9H).
(3)催化剂14的合成遵照催化剂5。后期处理得到催化剂14,产率90%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)、125 兆赫兹核磁共振仪(碳谱,13CNMR)和高分辨质谱表征了催化剂14的结构。1H NMR(500MHz,CDCl3):δ7.87(s,2H),7.69(s,1H),7.64(d,1H),7.33(s,1H), 7.30(d,1H),5.23(s,2H),3.35(s,3H),1.36(s,9H).13C NMR(125MHz,CDCl3):δ 182.66,170.39,149.00,140.98,137.72,132.18(q,J=33.1Hz),126.41,125.40,124.06 (q,J=271.3Hz),119.30,118.58,54.29,38.73,37.61,30.08.HRMS:calcd for C20H21ClF6N3S[M+H]+:484.1049;found:484.1032.
制备实施例5催化剂6的制备
Figure BDA0002360599090000181
(1)(2)向Schlenk管中加入3-羟甲基-2-氯吡啶2.15g(15mmol)、三苯基膦4.72g(18mmol)、邻苯二甲酰亚胺2.65g(18mmol)和40mL无水四氢呋喃。 0℃搅拌10分钟。偶氮二异丙酯3.6mL(18mmol)缓慢滴加进溶液。滴加完成后缓慢恢复室温并搅拌12h。乙醇淬灭反应,残余物溶于40mL乙醇,加入水合肼8mL回流2h。乙酸乙酯萃取,后期处理得到3-氨甲基-2-氯吡啶,产率70%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)表征了3-氨甲基-2-氯吡啶的结构。1H NMR(500MHz,CDCl3):δ8.29(dd,1H),7.79 (dd,1H),7.25(dd,1H),3.94(s,2H),1.53(bs,2H)。
(3)向圆底烧瓶中加入3-氨甲基-2-氯吡啶0.143g(1mmol)、3,5-双(三氟甲基)苯基异硫氰酸酯0.27g(1mmol)和5mL二氯甲烷。室温搅拌12小时。后期处理得到催化剂6,产率80%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)、125兆赫兹核磁共振仪(碳谱,13C NMR)和高分辨质谱表征了催化剂6的结构。1H NMR(500MHz,DMSO-d6):δ10.42(bs,1H), 8.70(bs,1H),8.35(dd,1H),8.28(s,2H),7.81(dd,1H),7.78(s,1H),7.45(dd,1H), 4.81(s,2H)..13C NMR(125MHz,DMSO-d6):δ181.50,148.96,148.20,141.71,138.02,132.40,130.34(q,J=32.8Hz),124.32(q,J=271.2),123.19,122.41,116.54,44.53.HRMS:calcd for C15H11ClF6N3S[M+H]+:414.0266;found:414.0269.
制备实施例6催化剂13的制备
Figure BDA0002360599090000191
(1)2-氯-3-氨甲基-6-叔丁基吡啶的制备参照催化剂5的制备过程。
(2)向圆底烧瓶中加入2-氯-3-氨甲基-6-叔丁基吡啶0.198g(1mmol),苯基异硫氰酸酯0.135g(1mmol),二氯甲烷5mL,室温搅拌12小时,后处理得到催化剂13,产率90%。以氘代氯仿(CDCl3)为试剂以500兆赫兹核磁共振仪(氢谱,1H NMR)、125兆赫兹核磁共振仪(碳谱,13C NMR)和高分辨质谱表征了催化剂13的结构。1H NMR(500MHz,DMSO-d6):δ9.83(s,1H),8.20(t,1H), 7.69(d,1H),7.32-7.47(m,5H),7.14(m,1H).4.74(d,2H),1.29(s,9H).13C NMR (125MHz,DMSO-d6):δ180.91,169.87,149.42,140.00,135.90,130.37,128.10,127.63,125.35,118.06,46.10,37.43,30.02.HRMS:calcd for C17H21ClN3S[M+H]+:334.1145;found:334.1119.
参照上述制备实施例1-6,制备有机双功能催化剂1,2,3,4,8,10,11, 12,15。
应用实施例1
在手套箱中分别称取或量取催化剂5约94mg(0.2mmol)和无水甲醇 (0.25mmol)于1mL无水氯仿中作为储备溶液。称取扁桃酸OCAs单体约89mg (0.5mmol)置于反应瓶中(反应瓶事先经抽空、火烤、冷却、充氮处理,该过程重复三次),然后量取100微升催化剂5溶液和40微升无水甲醇的氯仿溶液于反应瓶中,用氯仿稀释至0.25mL。单体、催化剂5、引发剂摩尔比为50:2:1。反应瓶密封好以后立即置于50℃油浴中。当48h聚合完成后,用氯仿稀释,用约50mL甲醇(弱酸性,1mL 2M盐酸)沉降,离心得到白色固体。干燥24 小时后,用GPC分析聚合物分子量得Mn=8.8万,Mw/Mn=1.20,核磁(1H NMR,300MHz,CDCl3)分析单体转化率大于99%,等规度达到90%。
应用实施例2
在手套箱中分别称取或量取催化剂6约82.6mg(0.2mmol)和无水甲醇 (0.25mmol)于1mL无水氯仿中作为储备溶液。称取扁桃酸OCAs单体约89mg (0.5mmol)置于反应瓶中(反应瓶事先经抽空、火烤、冷却、充氮处理,该过程重复三次),然后量取100微升催化剂6溶液和40微升无水甲醇的氯仿溶液于反应瓶中,用氯仿稀释至0.25mL。单体、催化剂5、引发剂摩尔比为50:2: 1。反应瓶密封好以后立即置于50℃油浴中。当48h聚合完成后,用氯仿稀释,用约50mL甲醇(弱酸性,1mL 2M盐酸)沉降,离心得到白色固体。干燥24 小时后,用GPC分析聚合物分子量得Mn=10.0万,Mw/Mn=1.30,核磁(1H NMR,300MHz,CDCl3)分析单体转化率大于99%,等规度达到86%。
应用实施例3
在手套箱中分别称取或量取催化剂13约66.6mg(0.2mmol)和无水甲醇(0.25mmol)于1mL无水氯仿中作为储备溶液。称取扁桃酸OCAs单体约89mg (0.5mmol)置于反应瓶中(反应瓶事先经抽空、火烤、冷却、充氮处理,该过程重复三次),然后量取100微升催化剂13溶液和40微升无水甲醇的氯仿溶液于反应瓶中,用氯仿稀释至0.25mL。单体、催化剂5、引发剂摩尔比为50:2: 1。反应瓶密封好以后立即置于50℃油浴中。当48h聚合完成后,用氯仿稀释,用约50mL甲醇(弱酸性,1mL 2M盐酸)沉降,离心得到白色固体。干燥24 小时后,用GPC分析聚合物分子量得Mn=5.6万,Mw/Mn=1.21,核磁(1H NMR,300MHz,CDCl3)分析单体转化率大于99%,等规度达到78%,GPC曲线如图1所示。
应用实施例4
在手套箱中分别称取或量取催化剂5约94mg(0.2mmol)和无水甲醇 (0.25mmol)于1mL无水氯仿中作为储备溶液。称取乳酸OCAs单体约58mg (0.5mmol)置于反应瓶中(反应瓶事先经抽空、火烤、冷却、充氮处理,该过程重复三次),然后量取100微升催化剂5溶液和40微升无水甲醇的氯仿溶液于反应瓶中,用氯仿稀释至0.25mL。单体、催化剂5、引发剂摩尔比为50:2: 1。反应瓶密封好以后立即置于50℃油浴中。当48h聚合完成后,用氯仿稀释,用约50mL甲醇(弱酸性,1mL 2M盐酸)沉降,离心得到白色固体。干燥24 小时后,用GPC分析聚合物分子量得Mn=3.9万,Mw/Mn=1.22,核磁(1H NMR,300MHz,CDCl3)分析单体转化率大于99%,等规度达到99%。
应用实施例5
在手套箱中分别称取或量取催化剂5约94mg(0.2mmol)和无水甲醇 (0.25mmol)于1mL无水氯仿中作为储备溶液。称取L-Ser(Bn)OCA单体约 111mg(0.5mmol)置于反应瓶中(反应瓶事先经抽空、火烤、冷却、充氮处理,该过程重复三次),然后量取100微升催化剂5溶液和40微升无水甲醇的氯仿溶液于反应瓶中,用氯仿稀释至0.25mL。单体、催化剂5、引发剂摩尔比为50: 2:1。反应瓶密封好以后立即置于50℃油浴中。当48h聚合完成后,用氯仿稀释,用约50mL甲醇(弱酸性,1mL 2M盐酸)沉降,离心得到白色固体。干燥 24小时后,用GPC分析聚合物分子量得Mn=7.1万,Mw/Mn=1.29,核磁(1H NMR,300MHz,CDCl3)分析单体转化率大于99%,等规度达到99%。
上述实施例中所用的单体O-羧基环内酸酐还可以替换为L-LacOCA、L-Mal OCA、L-PheOCA、或L-LysOCA,即可制备得到想用的聚合物,这里不再一一举例。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种有机双功能催化剂,其特征在于,其分子结构式如下式1所示:
Figure FDA0002360599080000011
其中,R1是三氟甲基或氢;
R2是三氟甲基或氢;
R3是甲基或氢;
R4是氯或氢;
R5是氢或叔丁基;
L是连接键、5-亚甲基或6-亚甲基;
X是氧或硫。
2.根据权利要求1所述的有机双功能催化剂,其特征在于,其选自以下分子结构式中的任意一种:
R1=R2=CF3,L=6-CH2,R3=H,R4=R5=H,X=S,催化剂1,Fw=379.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=R5=H,X=S,催化剂2,Fw=379.0;
R1=R2=CF3,L=6-(CH2)0,R3=H,R4=R5=H,X=S,催化剂3,Fw=365.0;
R1=R2=CF3,L=5-(CH2)0,R3=H,R4=R5=H,X=S,催化剂4,Fw=365.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=S,催化剂5,Fw=469.1;
R1=R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=H,X=S,催化剂6,Fw=413.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=3-Cl,R5=2-tBu,X=S,催化剂7,Fw=469.1;
R1=R2=CF3,L=6-CH2,R3=H,R4=3-Cl,R5=H,X=S,催化剂8,Fw=413.0;
R1=R2=CF3,L=5-CH2,R3=H,R4=H,R5=2-tBu,X=S,催化剂9,Fw=435.1;
R1=R2=CF3,L=5-CH2,R3=H,R4=2-Cl,R5=H,X=S,催化剂10,Fw=413.0;
R1=R2=CF3,L=6-CH2,R3=H,R4=2-Cl,R5=H,X=S,催化剂11,Fw=413.0;
R1=H,R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=S,催化剂12,Fw=483.1;
R1=R2=H,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=S,催化剂13,Fw=333.1;
R1=R2=CF3,L=5-CH2,R3=CH3,R4=6-Cl,R5=2-tBu,X=S,催化剂14,Fw=483.9;
R1=R2=CF3,L=5-CH2,R3=H,R4=6-Cl,R5=2-tBu,X=O,催化剂15,Fw=453.8。
3.一种权利要求1所述的有机双功能催化剂的制备方法,其特征在于,包括以下步骤:
将等当量苯基异硫氰酸酯或异氰酸酯,和吡啶胺类化合物混合于二氯甲烷中,室温反应12~24小时;反应完成后,浓缩,使用二氯甲烷重结晶,得到有机双功能催化剂;其合成路线如下:
Figure FDA0002360599080000021
其中,R1是三氟甲基或氢;R2是三氟甲基或氢;R3是甲基或氢;R4是氯或氢;R5是氢或叔丁基;L是连接键、5-亚甲基或6-亚甲基;X是氧或硫。
4.一种立构规整的生物降解聚酯,其特征在于,其分子结构式如下所示:
Figure FDA0002360599080000022
其中,R'为甲基、3-苯基丙基、或苄基;
R为选自以下取代基团中的一种:
Figure FDA0002360599080000031
其中,“”代表与C原子连接的部位;
所述生物降解聚酯的分子量在2万-10万。
5.根据权利要求4所述的立构规整的生物降解聚酯,其特征在于,其立构规整度在60%~90%。
6.根据权利要求5所述的立构规整的生物降解聚酯,其特征在于,其立构规整度在86%~90%。
7.一种权利要求4-6任意一项所述的立构规整的生物降解聚酯的制备方法,其特征在于,包括以下步骤:
在引发剂和本发明提供的有机双功能催化剂的作用下,将氨基酸来源的O-羧基环内酸酐进行开环聚合反应,得到立构规整的生物降解聚酯;
其合成路线如下:
Figure FDA0002360599080000032
其中,O-羧基环内酸酐是以下化合物中的一种:
Figure FDA0002360599080000041
所述引发剂R'OH是甲醇、3-苯丙醇和苄醇中的一种;
所述生物降解聚酯的分子量在2万-10万。
8.根据权利要求7所述的立构规整的生物降解聚酯的制备方法,其特征在于,所述有机双功能催化剂和引发剂的物质的量比为0.5~2;所述O-羧基环内酸酐和有机双功能催化剂的物质的量比为25~100:1。
9.根据权利要求7所述的立构规整的生物降解聚酯的制备方法,其特征在于,所述聚合反应的温度为25~50℃,时间为24~48小时。
10.根据权利要求7所述的立构规整的生物降解聚酯的制备方法,其特征在于,所述聚合反应的溶剂为氯仿、甲苯、及二氯甲烷中的一种。
CN202010020501.1A 2020-01-09 2020-01-09 有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法 Pending CN113087660A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010020501.1A CN113087660A (zh) 2020-01-09 2020-01-09 有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010020501.1A CN113087660A (zh) 2020-01-09 2020-01-09 有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法

Publications (1)

Publication Number Publication Date
CN113087660A true CN113087660A (zh) 2021-07-09

Family

ID=76664052

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010020501.1A Pending CN113087660A (zh) 2020-01-09 2020-01-09 有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法

Country Status (1)

Country Link
CN (1) CN113087660A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891194A (zh) * 2022-06-17 2022-08-12 中国科学院长春应用化学研究所 一种合成聚酯的双功能高分子催化剂及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694471A (zh) * 2018-12-21 2019-04-30 浙江大学 一种吡啶基脲催化剂及其在开环聚合中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694471A (zh) * 2018-12-21 2019-04-30 浙江大学 一种吡啶基脲催化剂及其在开环聚合中的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BASAK KOCA等: "Organocatalysts in Ring-Opening Polymerization: Revealing Their Effect on Stereochemistry", 《EUROPEAN POLYMER JOURNAL》 *
MAOSHENG LI等: "Synergetic Organocatalysis for Eliminating Epimerization in Ring-Opening Polymerizations Enables Synthesis of Stereoregular Isotactic Polyester", 《J. AM. CHEM. SOC.》 *
RUI FENG等: "Pyridyl-urea catalysts for the solvent-free ring-opening polymerization of lactones and trimethylene carbonate", 《EUROPEAN POLYMER JOURNAL》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114891194A (zh) * 2022-06-17 2022-08-12 中国科学院长春应用化学研究所 一种合成聚酯的双功能高分子催化剂及其应用
CN114891194B (zh) * 2022-06-17 2023-08-29 中国科学院长春应用化学研究所 一种合成聚酯的双功能高分子催化剂及其应用

Similar Documents

Publication Publication Date Title
WO2010110460A1 (ja) ラクチド・ε-カプロラクトン共重合体の製造方法
Pacini et al. Poly (γ‐glutamic acid) esters with reactive functional groups suitable for orthogonal conjugation strategies
CN112079999B (zh) 一种锌催化剂催化环酯开环聚合的方法
JP2004528467A (ja) 大環状オリゴエステルのコポリエステルおよび重合
US20160083510A1 (en) Block copolymer and process for preparing the same
JP2009538972A (ja) ポリアミドブロックコポリマーの製造
Peng et al. Polymerization of α‐amino acid N‐carboxyanhydrides catalyzed by rare earth tris (borohydride) complexes: Mechanism and hydroxy‐endcapped polypeptides
Zaccaria et al. Biocompatible graft copolymers from bacterial poly (γ-glutamic acid) and poly (lactic acid)
JP2016521772A (ja) ポリエステルを調製する方法
CN113087660A (zh) 有机双功能催化剂及其制备方法和立构规整的生物降解聚酯及其制备方法
Ling et al. Deprotonation Reaction of α‐Amino acid N‐Carboxyanhydride at 4‐CH Position by Yttrium Tris [bis (trimethylsilyl) amide]
CN111647150A (zh) 一种高效催化γ-丁内酯开环制备聚(γ-丁内酯)的方法
CN108503803B (zh) 一种利用脲/醇盐制备聚γ-丁内脂的方法
Nguyen et al. Synthesis of new biobased linear poly (ester amide) s
WO2019006435A1 (en) SYNTHONS OF CYCLOBUTANE-1,3-DICARBOXYLIC ACID TYPE
CN113087659B (zh) Dmap-硫脲催化剂及其制备方法和高分子量生物降解聚酯及其制备方法
CN1332996C (zh) 改性聚丁二酸丁二醇酯及其合成方法
JP4225014B2 (ja) ポリチオウレタンおよびその製造方法
CN113527650B (zh) 一种酸碱对催化剂催化乙交酯丙交酯共聚的方法
CN113150254B (zh) 一种以乳酸水溶液调控制备无毒性聚乳酸的方法
US20070249654A1 (en) Method for controlled polymerization of o-carboxy anhydrides derived from alpha-hydroxy acids
Chen et al. Synthesis and solubility of polylactide-co-poly (amino acid) random copolymer
CN108003087B (zh) 含水杨醛基的手性非对称氮氧配体及其制备方法和应用
JP4056408B2 (ja) ポリウレタン共重合体の製造方法
CN115368546B (zh) 生物可降解聚酯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210709

WD01 Invention patent application deemed withdrawn after publication