CN113073086A - 一种非洲猪瘟病毒基因缺失株及其构建方法和用途 - Google Patents

一种非洲猪瘟病毒基因缺失株及其构建方法和用途 Download PDF

Info

Publication number
CN113073086A
CN113073086A CN202110297743.XA CN202110297743A CN113073086A CN 113073086 A CN113073086 A CN 113073086A CN 202110297743 A CN202110297743 A CN 202110297743A CN 113073086 A CN113073086 A CN 113073086A
Authority
CN
China
Prior art keywords
swine fever
african swine
fever virus
strain
virus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110297743.XA
Other languages
English (en)
Inventor
樊惠英
林熙炜
艾强云
谢翰高
王召阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202110297743.XA priority Critical patent/CN113073086A/zh
Publication of CN113073086A publication Critical patent/CN113073086A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56983Viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6854Immunoglobulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/12011Asfarviridae
    • C12N2710/12021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/12011Asfarviridae
    • C12N2710/12022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/12011Asfarviridae
    • C12N2710/12034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/12011Asfarviridae
    • C12N2710/12051Methods of production or purification of viral material
    • C12N2710/12052Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/01DNA viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2469/00Immunoassays for the detection of microorganisms
    • G01N2469/20Detection of antibodies in sample from host which are directed against antigens from microorganisms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Public Health (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Communicable Diseases (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Mycology (AREA)

Abstract

本发明提供了一种非洲猪瘟病毒基因缺失株及其构建方法和用途,所述非洲猪瘟病毒基因缺失株是将非洲猪瘟病毒的CD2v基因缺失后得到的,所述非洲猪瘟病毒基因缺失株带有红色荧光标记基因。该非洲猪瘟病毒基因缺失株带有红色荧光标记基因,可用于直观地体外评价非洲猪瘟疫苗的抗体水平或者相关药物筛选。

Description

一种非洲猪瘟病毒基因缺失株及其构建方法和用途
技术领域
本发明涉及一种非洲猪瘟病毒基因缺失株及其构建方法和用途。
背景技术
非洲猪瘟(African swine fever,ASF)是一种猪的病毒性疾病,主要感染家猪和野猪,可引起猪只发热,食欲减退,呼吸困难,内脏器官广泛性出血,神经系统紊乱等临床症状,一旦感染,致死率高达100%,对全球养猪业具有严重的破坏性。目前,ASF被世界动物卫生组织(OIE)列为“法定报告动物疾病”,也是我国重点防范的一类动物疫病。
非洲猪瘟病毒(African swine fever Virus,ASFV)是非洲猪瘟病毒科(Asfarviridae)的唯一成员,也是已知的唯一DNA虫媒病毒。ASFV的基因组为一个大的双链DNA,病毒基因紧密分布,编码在两条DNA链上,没有内含子,基因末端带有反向重复序列和发夹环。基因组大小从170kb到190kb不等,包含151-167个基因,有五十多个基因编码病毒的结构蛋白,除结构蛋白以外,病毒含有完整的酶和与病毒转录有关的因子,编码调节宿主细胞功能及与病毒免疫逃逸相关的蛋白等。由于ASFV基因组较大,确定诱导保护性免疫应答的病毒抗原难度较大,大部分基因的基因功能并未明确,免疫逃逸机制复杂,一般是由多个毒力基因及免疫抑制基因共同发挥作用,感染与致病机制不清,疫苗创制的理论认知有限,其流行已逾百年,但仍未有商品化的疫苗问世。
在疫苗的研发过程中,了解基因的功能至关重要。ASFV基因组集成了抑制干扰素产生、调控细胞凋亡和自噬等多种免疫逃避机制,编码了多种病毒蛋白参与调控宿主的免疫应答。在多基因家族中,MGF360和MGF505/530能够抑制宿主干扰素的产生和的产生和调控促炎性细胞因子表达,是ASFV的毒力基因。有研究表明,A179L、A224、EP153R能够抑制宿主细胞的凋亡,该三种蛋白能够广泛的作用于细胞中抑制凋亡的信号通路。DP71L能通过和磷酸酶1催化亚基的催化位点作用,抑制eIF2的磷酸化,进而影响细胞的蛋白翻译。E183L蛋白能够激活与细胞凋亡相关信号通路,在病毒感染后期,促进细胞裂解,便于子代病毒粒子的进一步的感染复制。I329L与TRIF竞争性地结合TLR3,从而拮抗TLR3介导的NF-κB和IRF3活化。A238L对NF-κB信号通路产生抑制作用,而随着感染进程的推进,ASFV感染细胞晚期,A224L表达凋亡抑制蛋白能够激活NF-κB信号通路,通过抑制细胞凋亡促进ASFV感染细胞的存活。DP96R可以通过抑制TBK1和IKKβ活化而抑制cGAS/STING介导的I型干扰素表达和NF-κB活化。CD2v由EP402R基因编码,该蛋白有助于病毒黏附在红细胞表面,被感染细胞可在其周围形成玫瑰花样的红细胞花环,避免被感染细胞被T细胞及NK细胞的杀伤,在I型毒株BA71v中,缺失CD2v基因的BA71v毒株可产生对亲本毒株的同源保护,同时可产生部分异源保护,说明CD2v基因是该病毒的毒力基因。但该基因在中国流行株(基因II型)和MalawiLil-20/1株(基因II型)中的缺失却不足以完全致弱毒株。据报道,2020年6月-2020年12月,有科研机构在中国北方的7个省份进行了非洲猪瘟病毒监测,总共分离出22株病毒,均为基因II型,其中有11株毒株在CD2v蛋白(由EP402R基因编码)上有变异或缺失,并且表现为非红细胞吸附(non-HAD)。在动物实验中,其中,具有红细胞吸附(HAD)的两个毒株表现出强毒力;而非红细胞吸附(non-HAD)的两个毒株的毒力降低,但传播性增强,其临床表现与剂量相关。我国地域辽阔,虽然在我国流行的ASFV毒株均属于基因型II型毒株,但不同地区的分离株在疾病临床表现上有所差异,同时,在疫苗的研发过程中,不同的毒株采用相同的弱毒株构建策略,其效果却不尽相同。有必要针对本地区的流行毒株进行深入研究,为疾病的防控提供理论基础。
在病毒基因功能的研究过程中,构建基因缺失株是研究基因功能的重要手段。非洲猪瘟病毒基因组可进行二代测序,毒株的遗传信息较为明确,但是构成非洲猪瘟的调控基因和结构基因高达160多个,虽然对所有基因的功能进行研究是一项巨大的工程,但全面研究每一个调控基因和结构基因的功能对其致病机理和疫苗研制至关重要。目前,非洲猪瘟病毒基因组中大部分基因功能尚不明确,严重制约了非洲猪瘟疫苗和相关药物的研发。
发明内容
本发明的目的在于,提供一种非洲猪瘟病毒基因缺失株及其构建方法和用途,该非洲猪瘟病毒基因缺失株带有红色荧光标记基因,可用于直观地体外评价非洲猪瘟疫的抗体水平或者筛选非洲猪瘟疫相关药物。
为实现上述目的,所采取的技术方案:一种CD2v基因编码蛋白功能丧失的非洲猪瘟病毒基因缺失株,所述非洲猪瘟病毒基因缺失株是将非洲猪瘟病毒的CD2v基因缺失后得到的,所述非洲猪瘟病毒基因缺失株带有红色荧光标记基因。
优选地,所述非洲猪瘟病毒基因缺失株的原始毒株为基因II型的非洲猪瘟病毒毒株。
优选地,所述原始毒株为华南地区分离的非洲猪瘟病毒毒株。该原始毒株命名为ASFV GD11。
优选地,所述CD2v基因的核苷酸序列如SEQ ID NO.2所示,缺失原毒株基因组第73543位到74625位碱基。
本发明提供了一种上述所述的非洲猪瘟病毒基因缺失株的构建方法,所述构建方法包括以下步骤:
(1)筛选表达盒的设计:以病毒vp72启动子序列,mRFP1序列,polyA序列为模板,设计合成RFP筛选表达盒,同时在表达盒的两端插入LoxP位点;
(2)同源重组供体质粒的构建:在步骤(1)得到的RFP筛选表达盒两端插入CD2v基因上下游片段,然后克隆入PUC57载体中,得到同源重组供体质粒;
(3)病毒的重组:同源重组供体质粒转染至猪骨髓巨噬细胞中,感染非洲猪瘟病毒原始毒株,采用荧光显微镜观察重组病毒感染细胞情况,挑取荧光细胞,冻融释放重组病毒,将该代重组病毒定义为P0代;
(4)重组病毒的纯化:将P0代重组病毒接种PAM细胞,经过有限稀释法筛选,扩大培养,通过PCR鉴定CD2v基因缺失的非洲猪瘟病毒基因缺失株,以确定获得纯化的CD2v基因缺失的非洲猪瘟病毒基因缺失株。
优选地,所述步骤(2)中同源重组供体质粒的序列如SEQ ID NO.1所示。
优选地,所述步骤(4)中PCR鉴定所用的引物包括检测CD2v基因的引物对和检测RFP基因的引物对,所述检测CD2v基因的引物对如SEQ ID NO.3和SEQ ID NO.4所示,所示检测RFP基因的引物对如SEQ ID NO.5和SEQ ID NO.6所示。
本发明提供了上述所述的非洲猪瘟病毒基因缺失株在制备体外评价非洲猪瘟抗体水平的试剂中的用途。
本发明提供了上述所述的非洲猪瘟病毒基因缺失株在制备体外筛选治疗非洲猪瘟的药物的试剂中的用途。
本发明提供了上述所述的非洲猪瘟病毒基因缺失株在制备非洲猪瘟疫苗中的用途。
有益效果:
本发明提供了一种构建非洲猪瘟病毒基因缺失株的方法,所设计的基因缺失供体质粒可进行同源臂的替换,用于构建其他基因缺失株,为本实验室基因功能的研究提供了一种手段。
本发明中采用的同源重组方案中,在RFP基因表达盒的两端,插入了loxP位点,后续可运用cre/loxP重组酶系统,对RFP筛选表达盒进行敲除,避免敲入基因对病毒的影响,更好的明确缺失基因的功能。
本发明所构建的非洲猪瘟病毒基因缺失株,带有红色荧光基因,可通过荧光来测定病毒的TCID50,相比于亲本毒株,需要制备猪红细胞来滴定病毒的HAD50,对于病毒滴度的滴定较为简便,可用于免疫动物的血清抗体水平或药物筛选的体外评价。
附图说明
图1:重组病毒供体质粒PUC57-ΔCD2v-RFP图谱。
图2:PUC57-ΔCD2v-RFP酶切验证结果,M为DL 5000DNA Marker,泳道1为双酶切结果,目的产物长度分别为4804bp和993bp,泳道2为单酶切线性化结果,目的产物长度为5797bp,泳道3为质粒电泳结果。
图3:ASFV GD11-ΔCD2v毒株构建示意图。
图4:PBM细胞转染PUC57-ΔCD2v-RFP质粒后,以MOI=3接种ASFV GD11毒株,24h后荧光显微镜观察结果。PBM细胞病变肿胀,少量细胞发出红色荧光。图中a为PBM细胞TxRed荧光视野,图中b为PBM细胞白光视野。
图5:PAM细胞有限稀释纯化过程中,荧光显微镜下观察到的出现红色荧光的区域。图中a为PAM细胞TxRed荧光视野,图中b为a对应的PAM细胞白光视野。
图6:纯化的重组病毒扩大培养,大部分细胞发红色荧光。图中a为接种ASFV GD11-ΔCD2v毒株PAM细胞TxRed荧光视野,图中b为a对应的PAM细胞白光视野。
图7:PCR检测结果:M为DL 5000DNA Marker,泳道1,2检测RFP基因,泳道3,4检测CD2v基因;泳道1,3检测重组病毒毒株,泳道2,4检测亲本毒株。
图8:ASFV GD11-ΔCD2v毒株和其亲本毒株ASFV GD11的HAD实验结果。图中a为接种ASFV GD11-ΔCD2v株的PAM细胞,并加入了1%猪红细胞的TxRed荧光视野,图中b为a对应的白光视野,图中c为接种ASFV GD11的PAM细胞的红细胞吸附现象。
图9:ASFV GD11与ASFV GD11-ΔCD2v毒株一步生长曲线。
图10:抗病毒血清与ASFV GD11-ΔCD2v病毒液孵育,荧光显微镜下观察荧光细胞的数目,亮度。a为2-1稀释度,b为2-2稀释度,c为2-3稀释度,d为2-4稀释度,e为不与血清孵育的病毒液。
具体实施方式
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
生物安全:本发明使用的ASFV毒株由华南农业大学兽医学院动物生物安全三级实验室分离并保存,毒株为ASFV GD11。涉及ASFV病原的操作及样品制备均于P3实验室开展。实验中所产生的废弃物均经过灭菌杀毒后无害化处理。
1、重组病毒供体质粒的设计
设计RFP筛选表达盒,并在两端插入CD2v基因上下游各1000bp片段,送交生工生物工程有限公司合成,并克隆入PUC57载体中,具体设计为,根据GenBank上PA-2A-mRFP(KT377271.1)序列中的mRFP1基因序列,以病毒B646L基因的启动子(vp72)作为mRFP1的启动子,SV40 poly(A)signal作为mRFP1转录终止信号,分别在启动子前和终止信号之后插入XbaI和XmaI酶切位点,同时在整段序列的前后插入LoxP位点,该段为RFP基因表达盒。接着,参考ASFV GD11株序列,将CD2v(EP402R)基因上下游各1000bp作为同源臂,插入到表达盒的两端,为方便后续上下游同源臂的替换,在上游同源臂5’端插入酶切位点EcoR I,Sac I,在上游同源臂3’端插入酶切位点Not I,MIu I,在下游同源臂5’端插入酶切位点Pme I,ApaI,在下游同源臂3’端插入酶切位点Cpo I,Xho I,合成质粒命名为PUC57-ΔCD2v-RFP,具体设计如图1所示,序列SEQ ID NO.1所示。
2、供体质粒的去内毒素大提及酶切线性化
供体质粒的扩大培养:将重组病毒供体质粒转化DH5α感受态细胞,挑取阳性菌落,将含有目的质粒的阳性菌落接种于150mL含氨苄青霉素(100μg/mL)的LB液体培养基中,于37℃恒温摇床220rpm震荡培养14~16h。
去内毒素大提质粒:根据E.Z.N.A D6926 Endo-Free Plasmid Maxi Kit(OMEGA)试剂盒提供的说明书进行,具体操作步骤如下:将菌液收集于50mL离心管中,室温下,4000g离心10min,收集沉淀的菌体,加入10mL Solution I/RNaseA混合液,将所有菌体重悬。加入10mL Solution II溶液,颠倒数次后,静置裂解8min。加入5mL预冷的N3 Buffer,颠倒混匀,室温静置5~10min,离心12000g,10min,取上清液,用试剂盒中配套的针筒过滤器过滤,收集滤液。加入0.1倍体积的ETR Solution,上下颠倒10次,冰浴10min,再42℃水浴5min,离心,4000g,5min。将上清液转移至另一新50mL离心管中,加入总体积0.5倍体积的无水乙醇,上下颠倒数次混匀,静置1~2min。将HiBind DNAMaxi结合柱套入50mL离心管中,取20mL上述混合液,加至结合柱中,室温下,4000g离心3min,弃去离心管中的滤液,重复该步骤,直至混合液全部过滤通过柱子。往结合柱中加入10mL HBC Buffer(已按说明书规定剂量的异丙醇稀释),室温下,4000g离心3min,弃滤液。往结合柱中加入15mL DNAWash Buffer(已按说明书规定剂量的无水乙醇稀释),室温,4000g离心3min,弃滤液,重复该步骤一次。空离,室温条件下,5000g离心10min,以干燥HiBind DNAMaxi结合柱中的液体。将HiBind DNAMaxi结合柱置于洁净的50mL收集管中,加入1mL Endo-Free Elution Buffer到结合柱的中央,静置10min。室温下,水平离心机,5000g离心10min,洗脱DNA。弃除柱子,将质粒溶液通过分光光度计测量浓度及纯度,于-20℃保存备用。
质粒的验证:用Xba I酶和Sma I酶对质粒进行双酶切,酶切体系如下表1:
表1酶切体系
Figure BDA0002984954350000071
于1.5mL EP管中配置如上酶切体系,混匀后,于37℃水浴锅中,酶切过夜。然后进行酶切产物的核酸凝胶电泳,验证目的条带大小是否与预期相符。
单酶切线性化质粒:用EcoR I酶进行质粒的单酶切,酶切体系如下表2:
表2酶切体系
Figure BDA0002984954350000072
Figure BDA0002984954350000081
于1.5mL EP管中配置如上酶切体系,混匀后,于37℃水浴锅中,酶切过夜。然后进行酶切产物的核酸凝胶电泳,并回收目的片段条带,测量浓度,4℃保存备用。
酶切验证结果如图2所示,M为DL 5000DNAMarker,泳道1为双酶切结果,目的产物长度分别为4804bp和993bp,符合预期,泳道2为单酶切线性化结果,目的产物长度为5797bp,符合预期,泳道3为质粒电泳结果,大小符合预期。
3重组病毒ASFV GD11-ΔCD2v的构建(如图3)
骨髓巨噬细胞(PBM)的复苏与培养:复苏一支PBM细胞,用PBM细胞完全培养液1(RPMI-1640+20%FBS+10ng/mL GM-CSF+1×P/S)重悬细胞,调节细胞密度为1x 106个/mL,铺于24孔板中,每孔500μL。第三天,取出一半的细胞培养液,离心,250g,5min,弃上清,将细胞用相同体积的PBM细胞完全培养液2(RPMI-1640+10%FBS+10ng/mL GM-CSF+1×P/S)重悬,加入原来的孔中。第五天,重复该步骤一次。第六天,细胞刺激完成,可进行下一步实验。
PBM细胞的转染与接毒:将转染试剂
Figure BDA0002984954350000082
-LT1 Transfection Reagent恢复至室温,配置转染体系:取一洁净的1.5mL EP管,依次加入50μL Opti-MEM,0.5μg线性化质粒,1.5μL TransIT-LT1 Reagent,轻轻混匀后,于室温下孵育20min。弃去PBM细胞上清,将转染体系均匀的滴加到细胞中,补充PBM细胞完全培养基2至500μL,至于37℃培养箱中孵育4h。回收PBM细胞上清,以MOI=3接入ASFV GD11病毒液,至于37℃培养箱中孵育2h,弃去病毒液,将回收的细胞上清加回每个孔中,于37℃培养箱中培养24h。在倒置荧光显微镜下观察细胞状态与荧光状态,如图4所示,弃去细胞培养上清,用含10%FBS的RPMI-1640培养基将细胞吹打下来,并充分吹散,铺于新的24孔板中,置于37℃二氧化碳培养箱中静置1h,于倒置荧光显微镜下观察,用10μL枪头挑取单个荧光细胞,置于洁净的1.5mL EP管中,EP管中已预加100μL RPMI-1640,于-80℃冰箱冻融一次。该病毒液为重组病毒P0代。
4重组病毒ASFV GD11-ΔCD2v的纯化
复苏一支PAM细胞,用10mL含10%FBS的RPMI-1640完全培养基重悬细胞,铺于96孔板中,每孔100μL,置于37℃培养箱中孵育2h。用含10%FBS的RPMI-1640完全培养基,将P0代病毒进行梯度稀释,稀释度为10-2-10-9。弃去细胞上清,接种病毒稀释液,每稀释度接种12孔,每孔100μL,培养3d。每隔12h,在荧光显微镜下观察细胞病变情况,并标记出现红色荧光的区域,荧光细胞如图5所示,选择最高稀释度有荧光细胞的孔,收取细胞上清,于-80℃冰箱冻融一次,该病毒液为重组病毒P1代。取50μL的P1代病毒液提取基因组DNA,进行PCR检测。
PCR验证重组病毒:设计ASFV-GD11 CD2v基因及mFP1基因设计检测引物,引物序列如下表3:
表3引物序列
Figure BDA0002984954350000091
取2μL上述病毒液所提取的病毒基因组DNA,分别进行CD2v基因及RFP基因的PCR检测,PCR体系及反应程序如下表4:
表4 PCR体系
Figure BDA0002984954350000092
Figure BDA0002984954350000101
PCR反应程序:95℃,5min;95℃,15s,55℃,15s,72℃2min,循环35次;72℃,5min;16℃保存。
根据PCR检测结果,取检测结果中CD2v基因条带较弱,而RFP基因条带较强的病毒液,进行下一代的病毒接种,接毒步骤同P1代。如此重复上述有限稀释法纯化步骤,直到出现检测结果为CD2v阴性,RFP阳性的孔,将该孔病毒液扩繁冻存。
经过10轮的有限稀释纯化,得到了CD2v阴性,RFP阳性的病毒液,将病毒液扩大培养,如图6所示,大部分细胞发出红色荧光,提取病毒基因组DNA,进行PCR检测,检测结果如图7所示,重组病毒CD2v基因为阴性,RFP为阳性,GD11毒株CD2v基因为阳性,RFP基因为阴性。得到的重组病毒,命名为ASFV GD11-ΔCD2v。
5重组病毒的测序验证
将病毒扩繁后,取200μL病毒液,提取病毒基因组DNA。参照ASFV GD11毒株的基因序列,设计一对引物m-R-F,m-R-R(表5)扩增ASFV CD2v基因同源左右臂间的基因序列片段,并送公司测序,分析测序结果。结果如预期,缺失ASFV GD11株基因组第73543位到74625核苷酸。
表5引物序列
Figure BDA0002984954350000102
6重组病毒与亲本毒株的HAD试验
复苏PAM细胞,铺于96孔板中,每孔100μL,分别接种ASFV GD11株和ASFV GD11-ΔCD2v株,在接毒后24h,每孔加入20μL的1%猪红细胞,继续置于37℃二氧化碳培养箱中培养,于16h后开始观察红细胞吸附现象。结果如图8所示,接种ASFV GD11株出现红细胞吸附现象,接种ASFV GD11-ΔCD2v株没有出现红细胞吸附现象,表明CD2v基因的缺失,使毒株红细胞吸附现象消失。
7重组病毒的生物学特性
重组病毒的TCID50的测定:复苏一支PAM细胞,用5mL含10%FBS的RPMI-1640完全培养基重悬细胞,铺于96孔板中,每孔100μL,共铺48孔,置于37℃5%二氧化碳培养箱中培养2h。将病毒液作10倍倍比稀释,稀释梯度为100-10-10。弃去细胞培养液,接入各稀释度病毒液,每孔100μL,每个稀释度做4个重复,另作4孔阴性对照,每孔接入100μL RPMI-1640培养基,培养箱中孵育2h。弃去病毒液,每孔接入1640完全培养基100uL,37℃二氧化碳培养箱中培养,置于倒置荧光显微镜下观察荧光情况,记录下有荧光细胞的孔,判定为阳性,连续观察7d,采用Reed and Muench法计算TCID50
重组病毒一步生长曲线的绘制:根据测定的TCID50,及HAD50,以MOI=1,分别接种重组病毒ASFV GD11-ΔCD2v和亲本毒株ASFV GD11,孵育2h后,弃去培养液,加入含10%FBS的细胞完全培养基,继续放入37℃5%CO2的细胞培养箱中培养。分别于接种病毒后6h、24h、48h、72h、96h收取细胞及培养上清,并于4℃/-80℃条件下反复冻融3次后,测定不同收毒时间点的TCID50及HAD50,绘制病毒的一步生长曲线。结果如图9所示,重组病毒生长速率与亲本毒株无明显差异。
8重组病毒在评价血清抑制病毒复制效果上的应用
复苏PAM细胞,细胞铺于48孔板中,每孔250μL。取本实验室制备的已免疫非洲猪瘟病毒蛋白的豚鼠血清,56℃水浴30min灭活补体,用RPMI-1640对血清进行二倍倍比稀释。将每个稀释度与103TCID ASFV GD11-ΔCD2v混合,于37℃培养箱孵育1h,然后接种于PAM细胞中,每孔200μL,置于37℃5%CO2培养箱中,孵育2h,,弃去血清及病毒液,加入25 0μL含10%FBS的RPMI-1640,放回培养箱中,培养2d。于倒置荧光显微镜中观察接种ASFV GD11-ΔCD2v毒株荧光情况,拍照记录。收取病毒液,提取病毒基因组DNA,进行qPCR检测,滴定病毒含量。
结果显示,在稀释度为2-1,2-2,2-3,2-4,血清有抑制病毒复制的效果,在荧光显微镜下可观察到红色荧光数目不同,随血清稀释度的增加,荧光数目逐步增多,可直接判断该血清具有一定的抑制病毒复制的作用,如图10所示。通过qPCR检测病毒含量,测得2-1稀释度CT值为24.28,2-2稀释度CT值为23.60,2-3稀释度CT值为23.31,2-4稀释度CT值为22.56,不与血清孵育的病毒液,CT值为20.66。CT值越高,表明病毒含量越低,qPCR结果显示,随着血清稀释倍数增加,病毒含量逐步上升,证明该血清具有一定的抑制效果。
本发明在本实验室分离到的基因型II型非洲猪瘟病毒株ASFV GD11上,进行了CD2v基因的缺失,缺失了原毒株第73543位到74625核苷酸,并替换为表达mRFP1红色荧光基因,成功构建了ASFV GD11株基因缺失的方法,为后续基因功能研究提供了基因缺失的平台。
本发明非洲猪瘟病毒基因缺失株中的荧光标签,可用于通过观察病毒感染细胞后,红色荧光阳性细胞数及荧光强度,快速的对重组病毒进行观察和定量检测,省了常规滴定的繁琐程序,为非洲猪瘟抗体水平及药物的体外筛选提供便捷的工具。
本发明非洲猪瘟病毒基因缺失株可应用于制备非洲猪瘟疫苗,可用于制备灭活疫苗,联合疫苗等,还可作为制备非洲猪瘟基因缺失减毒疫苗的备选方案。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
SEQUENCE LISTING
<110> 华南农业大学
<120> 一种非洲猪瘟病毒基因缺失株及其构建方法和用途
<130> 2021
<160> 8
<170> PatentIn version 3.3
<210> 1
<211> 5797
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240
attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360
tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cgagctccca ttctcattgc 420
atgcttggtg ttattactct gtctagttat atatgtcggt catcgtgccg atcatgcacg 480
aaaatattta gaaggaatgt ggcatggaga tccggttttt ctaaaacagt cggggctaca 540
atccttttat ctctacatac aacctgacca tacatgtttt tttagcattg tgaataaaaa 600
tggtgaaaag ctgatggaaa ccaaaatacc ttgtacgata acaaataaaa tatatatgtt 660
ttttaaacct atttttgaat ttcatgttgt gatggaagac atacatagct acttccctaa 720
gcagtttaac tttctgttag atagtacaga aggtaaactt attttagaaa acaatcacgt 780
tatttatgct gtattgtata aggataattt cgccaccgca ctaggaaaaa cggttgaaaa 840
atatataaca caaaattaat catgttttct aacaaaaagt acatcggtct tatcaataag 900
aaggagggtt tgaaaaaaaa aatagatgat tatagtatat taataattgg aatattaatt 960
ggaactaaca tcttaagcct tattataaat ataataggag agattaataa accaatatgt 1020
taccaaaatg atgataagat attttattgc cctaaagatt gggttggata taataatgtt 1080
tgttattatt ttggcaatga agaaaaaaat tataataatg caagtaatta ttgtaagcaa 1140
ttaaatagta cgcttactaa taataatact attttagtaa atcttactaa aacattaaat 1200
cttactaaaa catataatca cgaatctaat tattgggtta attattcttt aattaaaaat 1260
gagtcagtac tattacgtga tagtggatat tacaaaaaac aaaaacatgt aagtttatta 1320
tatatttgta gtaaataata tttttaatta cttaaaattt ttatatataa gtttttgata 1380
ctatattata aaacatatgt tcataaagcg gccgcacgcg tgcgggtacc gatggatccg 1440
cgataacttc gtatagcata cattatacga agttattcta gacggaggaa aagtcaaaag 1500
gggcaggtag ttcatacacc aaaaagtttt ttttttctgc cagcaagagc gtgtcaataa 1560
ttttaagctg atcgttaatt aatttttggt ttaactcttt gttattatca agatccttcg 1620
cataaaccgc catatttaat aaaaacaata aattattttt ataacattat atggccttct 1680
ccgaggacgt tatcaaggag ttcatgcgct tcaaggtgcg catggagggc tccgtgaacg 1740
gccacgagtt cgagatcgag ggcgagggcg agggccgccc ctacgagggc acccagaccg 1800
ccaagctgaa ggtgaccaag ggcggccccc tgcccttcgc ctgggacatc ctgtcccctc 1860
agttccagta cggctccaag gcctacgtga agcaccccgc cgacatcccc gactacttga 1920
agctgtcctt ccccgagggc ttcaagtggg agcgcgtgat gaacttcgag gacggcggcg 1980
tggtgaccgt gacccaggac tcctccctgc aggacggcga gttcatctac aaggtgaagc 2040
tgcgcggcac caacttcccc tccgacggcc ccgtaatgca gaagaagacc atgggctggg 2100
aggcctccac cgagcggatg taccccgagg acggcgccct gaagggcgag atcaagatga 2160
ggctgaagct gaaggacggc ggccactacg acgccgaggt caagaccacc tacatggcca 2220
agaagcccgt gcagctgccc ggcgcctaca agaccgacat caagctggac atcacctccc 2280
acaacgagga ctacaccatc gtggaacagt acgagcgcgc cgagggccgc cactccaccg 2340
gcgccaactt gtttattgca gcttataatg gttacaaata aagcaatagc atcacaaatt 2400
tcacaaataa agcatttttt tcactgcatt ctagttgtgg tttgtccaaa ctcatcaatg 2460
tatcttaccc gggataactt cgtatagcat acattatacg aagttattgg atccagcggc 2520
ccgacgtacg gtttaaacgg gccctatgta ctatatatta attatttaac ctttcaagct 2580
ggtcttcatt taaatttaaa atccactaat aaaatgtatt ttctagtagc agatcatcga 2640
gaacatcatg tgattccttt tcttaaaacc gatttccatc acatgcatca aaatcctata 2700
caaaaaaatc aagctctcct agaaatcaaa cagcttttta ctggagatta tctcatctgc 2760
aaaagccctt ctaccattct ggcctgtatt gaacgaaaaa cctacaaaga ctttgcggct 2820
tctttgaaag atggacgtta taaaaatcgc caaaaaatgc tgtcgctgcg agaacaaacc 2880
aactgtcaac tttatttttt tgtagaaggc ccggcatttc ctaaccctca aaaaaaaatt 2940
aatcacgttg cctatgcaag cattattact gctatgacgc atcttatggt tagagatcat 3000
atttttgtca ttcaaacgaa aaatgaggcc cacagttccc aaaagcttgt gcagcttttt 3060
tatgcctttt ctaaggaaat ggtgtgcgtc gttcccacct ccctcacccc cacggatgaa 3120
gagctatgca tcaagctatg gtcttctctt tctggtattt caggcgtgat aggtaaaatc 3180
ttggcaaaca cttgttccgt agctcatttg gttcatggaa agctttcatc gcagaatatt 3240
gatcagttaa aaactccctc caaccgacca ttccccaaaa aagtaaaacg tatgcttata 3300
agcattagca aaggaaataa ggagttagaa ataaaattgc tctcgggggt tcccaatatc 3360
gggaaaaaat tagctgccga aattttaaaa gatcatgcgc ttcttttttt tctaaatcag 3420
cccgtagaat gcttggcaaa tatacaaatc gttcaaaaaa cccgtacgat taagttggga 3480
atgaagcgag ccgaagcgat tcattatttt ttaaactggt gtggctctgc ccatgtaacc 3540
gatgcggwcc gctcgagaag cttggcgtaa tcatggtcat agctgtttcc tgtgtgaaat 3600
tgttatccgc tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg 3660
ggtgcctaat gagtgagcta actcacatta attgcgttgc gctcactgcc cgctttccag 3720
tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt 3780
ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg 3840
ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg 3900
gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag 3960
gccgcgttgc tggcgttttt ccataggctc cgcccccctg acgagcatca caaaaatcga 4020
cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct 4080
ggaagctccc tcgtgcgctc tcctgttccg accctgccgc ttaccggata cctgtccgcc 4140
tttctccctt cgggaagcgt ggcgctttct catagctcac gctgtaggta tctcagttcg 4200
gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgaccgc 4260
tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca 4320
ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag 4380
ttcttgaagt ggtggcctaa ctacggctac actagaagaa cagtatttgg tatctgcgct 4440
ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc 4500
accgctggta gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga 4560
tctcaagaag atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca 4620
cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat ccttttaaat 4680
taaaaatgaa gttttaaatc aatctaaagt atatatgagt aaacttggtc tgacagttac 4740
caatgcttaa tcagtgaggc acctatctca gcgatctgtc tatttcgttc atccatagtt 4800
gcctgactcc ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt 4860
gctgcaatga taccgcgaga cccacgctca ccggctccag atttatcagc aataaaccag 4920
ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagtct 4980
attaattgtt gccgggaagc tagagtaagt agttcgccag ttaatagttt gcgcaacgtt 5040
gttgccattg ctacaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc 5100
tccggttccc aacgatcaag gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt 5160
agctccttcg gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg 5220
gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgtg 5280
actggtgagt actcaaccaa gtcattctga gaatagtgta tgcggcgacc gagttgctct 5340
tgcccggcgt caatacggga taataccgcg ccacatagca gaactttaaa agtgctcatc 5400
attggaaaac gttcttcggg gcgaaaactc tcaaggatct taccgctgtt gagatccagt 5460
tcgatgtaac ccactcgtgc acccaactga tcttcagcat cttttacttt caccagcgtt 5520
tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg 5580
aaatgttgaa tactcatact cttccttttt caatattatt gaagcattta tcagggttat 5640
tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg 5700
cgcacatttc cccgaaaagt gccacctgac gtctaagaaa ccattattat catgacatta 5760
acctataaaa ataggcgtat cacgaggccc tttcgtc 5797
<210> 2
<211> 1083
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
atgataatac ttattttttt aatattttct aacatagttt taagtattga ttattgggtt 60
agttttaata aaacaataat tttagatagt aatattacta atgataataa tgatataaat 120
ggagtatcat ggaatttttt taataattct tttaatacac tagctacatg tggaaaagca 180
ggtaactttt gtgaatgttc taattatagt acatcaatat ataatataac aaataattgt 240
agcttaacta tttttcctca taatgatgta tttgatacaa catatcaagt agtatggaat 300
caaataatta attatacaat aaaattatta acacctgcta ctcccccaaa tatcacatat 360
aattgtacta attttttaat aacatgtaaa aaaaataatg gaacaaacac taatatatat 420
ttaaatataa atgatacttt tgttaaatat actaatgaaa gtatacttga atataactgg 480
aataatagta acattaacaa ttttacagct acatgtataa ttaataatac aattagtaca 540
tctaatgaaa caacacttat aaattgtact tatttaacat tgtcatctaa ctatttttat 600
acttttttta aattatatta tattccatta agcatcataa ttgggataac aataagtatt 660
cttcttatat ccatcataac ttttttatct ttacgaaaaa gaaaaaaaca tgttgaagaa 720
atagaaagtc caccacctga atctaatgaa gaagaacaat gtcagcatga tgacaccact 780
tccatacatg aaccatctcc cagagaacca ttacttccta agccttacag tcgttatcag 840
tataatacac ctatttacta catgcgtccc tcaacacaac cactcaaccc atttccctta 900
cctaaaccgt gtcctccacc caaaccatgt ccgccaccca aaccatgtcc tccacctaaa 960
ccatgtcctt cagctgaatc ctattctcca cccaaaccac tacctagtat cccgctacta 1020
cccaatatcc cgccattatc tacccaaaat atttcgctta ttcacgtaga tagaattatt 1080
taa 1083
<210> 3
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
caccacctga atctaatgaa g 21
<210> 4
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
gcgggatatt gggtagtag 19
<210> 5
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
atggccttct ccgaggacg 19
<210> 6
<211> 15
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
ggcgccggtg gagtg 15
<210> 7
<211> 29
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ctccttgttt tatttgttat atacacagc 29
<210> 8
<211> 30
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
catttcttta gataatgttt gataccctac 30

Claims (10)

1.一种非洲猪瘟病毒基因缺失株,其特征在于,所述非洲猪瘟病毒基因缺失株是将非洲猪瘟病毒的CD2v基因缺失后得到的,所述非洲猪瘟病毒基因缺失株带有红色荧光标记基因。
2.如权利要求1所述的非洲猪瘟病毒基因缺失株,其特征在于,所述非洲猪瘟病毒基因缺失株的原始毒株为基因II型的非洲猪瘟病毒毒株。
3.如权利要求2所述的非洲猪瘟病毒基因缺失株,其特征在于,所述原始毒株为华南地区分离的非洲猪瘟病毒毒株。
4.如权利要求1所述的非洲猪瘟病毒基因缺失株,其特征在于,所述CD2v基因的核苷酸序列如SEQ ID NO.2所示,缺失原始毒株基因组第73543位到74625位碱基。
5.一种如权利要求1-4任一所述的非洲猪瘟病毒基因缺失株的构建方法,其特征在于,所述构建方法包括以下步骤:
(1)筛选表达盒的设计:以病毒vp72启动子序列,mRFP1序列,polyA序列为模板,设计合成RFP筛选表达盒,同时在表达盒的两端插入LoxP位点;
(2)同源重组供体质粒的构建:在步骤(1)得到的RFP筛选表达盒两端插入CD2v基因上下游片段,然后克隆入PUC57载体中,得到同源重组供体质粒;
(3)病毒的重组:同源重组供体质粒转染至猪骨髓巨噬细胞中,感染非洲猪瘟病毒原始毒株,采用荧光显微镜观察重组病毒感染细胞情况,挑取荧光细胞,冻融释放重组病毒,将该代重组病毒定义为P0代;
(4)重组病毒的纯化:将P0代重组病毒接种PAM细胞,经过有限稀释法筛选,扩大培养,通过PCR鉴定CD2v基因缺失的非洲猪瘟病毒基因缺失株,以确定获得纯化的CD2v基因缺失的非洲猪瘟病毒基因缺失株。
6.如权利要求5所述的构建方法,其特征在于,所述步骤(2)中同源重组供体质粒的序列如SEQ ID NO.1所示。
7.如权利要求5所述的构建方法,其特征在于,所述步骤(4)中PCR鉴定所用的引物包括检测CD2v基因的引物对和检测RFP基因的引物对,所述检测CD2v基因的引物对如SEQ IDNO.3和SEQ ID NO.4所示,所示检测RFP基因的引物对如SEQ ID NO.5和SEQ ID NO.6所示。
8.如权利要求1-4任一所述的非洲猪瘟病毒基因缺失株在制备体外评价非洲猪瘟抗体水平的试剂中的用途。
9.如权利要求1-4任一所述的非洲猪瘟病毒基因缺失株在制备体外筛选治疗非洲猪瘟的药物的试剂中的用途。
10.如权利要求1-4任一所述的非洲猪瘟病毒基因缺失株在制备非洲猪瘟疫苗中的用途。
CN202110297743.XA 2021-03-19 2021-03-19 一种非洲猪瘟病毒基因缺失株及其构建方法和用途 Pending CN113073086A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110297743.XA CN113073086A (zh) 2021-03-19 2021-03-19 一种非洲猪瘟病毒基因缺失株及其构建方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110297743.XA CN113073086A (zh) 2021-03-19 2021-03-19 一种非洲猪瘟病毒基因缺失株及其构建方法和用途

Publications (1)

Publication Number Publication Date
CN113073086A true CN113073086A (zh) 2021-07-06

Family

ID=76612814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110297743.XA Pending CN113073086A (zh) 2021-03-19 2021-03-19 一种非洲猪瘟病毒基因缺失株及其构建方法和用途

Country Status (1)

Country Link
CN (1) CN113073086A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115851626A (zh) * 2022-07-13 2023-03-28 金宇保灵生物药品有限公司 一种基因缺失的减毒非洲猪瘟病毒毒株及其构建方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150165018A1 (en) * 2013-12-18 2015-06-18 Boehringer Ingelheim Vetmedica Gmbh Cd2 deficient african swine fever virus as live attenuated or subsequently inactivated vaccine against african swine fever in mammals
CN110551695A (zh) * 2019-08-14 2019-12-10 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) 非洲猪瘟病毒四基因缺失弱毒株及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150165018A1 (en) * 2013-12-18 2015-06-18 Boehringer Ingelheim Vetmedica Gmbh Cd2 deficient african swine fever virus as live attenuated or subsequently inactivated vaccine against african swine fever in mammals
CN110551695A (zh) * 2019-08-14 2019-12-10 中国农业科学院上海兽医研究所(中国动物卫生与流行病学中心上海分中心) 非洲猪瘟病毒四基因缺失弱毒株及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHARLES C.ABRAMS 等: "Sequential deletion of genes from the African swine fever virus genome using the cre/loxP recombination system", 《VIROLOGY》 *
钟秋萍 等: "非洲猪瘟病毒外膜蛋白CD2v的原核表达及其免疫特性的研究", 《中国兽医科学》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115851626A (zh) * 2022-07-13 2023-03-28 金宇保灵生物药品有限公司 一种基因缺失的减毒非洲猪瘟病毒毒株及其构建方法和应用

Similar Documents

Publication Publication Date Title
CN109749976B (zh) 一种高效合成鸟苷二磷酸岩藻糖的重组枯草芽孢杆菌及其构建方法与应用
EP0970242A1 (en) Method for analyzing quantitative expression of genes
CN108424870B (zh) 一种生产n-乙酰氨基葡萄糖的谷氨酸棒杆菌及其应用
CN110592108B (zh) 一种针对ii类vii型流行ndv株dhn3的感染性重组克隆方法
CN112481271B (zh) 一种调控脂肪细胞形成的转录因子c/ebpz及其应用
CN107338224A (zh) PD‑1敲除EGFRvIIICAR‑T细胞的制备
CN107699535B (zh) 一种诱导合成鸟苷二磷酸岩藻糖的重组枯草芽孢杆菌及其构建方法与应用
CN106591371A (zh) Cd16a/gpc3双抗慢病毒表达载体及其构建方法和应用
CN107805622B (zh) 一种合成鸟苷二磷酸岩藻糖的重组枯草芽孢杆菌及其构建方法与应用
CN113025752B (zh) 用于2019-nCoV和SARS病毒PCR检测的内参基因、试剂盒及检测方法
CN114150001A (zh) 一种用于弓形虫基因编辑的CRISPR/Cas9载体的构建方法
CN107936122A (zh) 一种慢病毒及其制备方法和应用
CN112608940B (zh) 一种先天性白内障疾病动物模型构建方法及应用
CN109652381A (zh) 基于碱基编辑靶向cd133的car-t细胞制备方法及应用
CN113073086A (zh) 一种非洲猪瘟病毒基因缺失株及其构建方法和用途
CN113943737A (zh) 一种鸡ctgf基因在抑制鸡前脂肪细胞分化的应用
CN109022363A (zh) 一种基于PiggyBac载体的CD-133-CAR-T系统构建方法
KR102009270B1 (ko) 구제역 O-Thi60 주의 방어 항원이 발현되는 재조합 바이러스
CN110564766A (zh) 一种全基因组表达载体pBR322-DHN3的制备方法
CN113621650B (zh) 一种高效丝素重链启动子分泌表达系统的建立与应用
CN106978432B (zh) 敲除衣藻内源基因和表达外源基因的载体构建方法及应用
CN111100874B (zh) 打靶载体及整合外源基因至小鼠dc-sign外显子7位点构建bac克隆的方法和应用
CN114836473A (zh) 用于构建筛选药物活性的细胞株模型的慢病毒载体与应用
CN111909957B (zh) 一种雨生红球藻的遗传转化方法
CN113684212A (zh) 一种基于靶点内回文序列介导的mmej靶向基因组修饰方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210706