CN113070477B - 一种高性能烧结钐钴合金的制备方法 - Google Patents

一种高性能烧结钐钴合金的制备方法 Download PDF

Info

Publication number
CN113070477B
CN113070477B CN202110283162.0A CN202110283162A CN113070477B CN 113070477 B CN113070477 B CN 113070477B CN 202110283162 A CN202110283162 A CN 202110283162A CN 113070477 B CN113070477 B CN 113070477B
Authority
CN
China
Prior art keywords
equal
magnetic powder
alloy
samarium cobalt
cobalt alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110283162.0A
Other languages
English (en)
Other versions
CN113070477A (zh
Inventor
俞能君
孙江辉
泮敏翔
杨杭福
吴琼
葛洪良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN202110283162.0A priority Critical patent/CN113070477B/zh
Publication of CN113070477A publication Critical patent/CN113070477A/zh
Application granted granted Critical
Publication of CN113070477B publication Critical patent/CN113070477B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0556Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together pressed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种高性能烧结钐钴合金的制备方法,包括(1)分别熔炼和制备(Sm,Pr)2(Fe,Co)17和Sm2(Co,Fe,Cu,Zr)17合金与磁粉;(2)将(Sm,Pr)2(Fe,Co)17和Sm2(Co,Fe,Cu,Zr)17磁粉混合均匀后经取向成型制得压坯,然后进行烧结、固溶和时效处理,获得高性能烧结钐钴合金。通过两种磁粉粒度的设计搭配,解决了Sm2Co17型烧结永磁体因Fe含量过高造成的内禀矫顽力恶化及工艺控制难度较大的技术瓶颈,采用Pr元素部分取代Sm元素,优化磁体的剩余磁化强度。同时,本发明有效提高了高性能烧结钐钴合金的磁性能达标率,降低了成本。

Description

一种高性能烧结钐钴合金的制备方法
技术领域
本发明属于磁性材料技术领域,具体涉及一种高性能烧结钐钴合金的制备方法。
背景技术
钐钴永磁材料在国防科工、工业等领域具有非常广泛的应用,属于关键功能材料。为了提高磁体的磁能积,尤其是最大磁能积,提升组分中的Fe含量是有效手段之一,但过高的Fe含量会造成磁体内禀矫顽力的急剧下降,同时高 Fe含量配方在制备过程中的工艺控制难度极高,制备成本较高且良品率较低。此外,由于Sm2(Co,Fe)17合金在Fe取代Co含量超过30%后,表现出面各向异性,磁性能急剧恶化,也为钐钴合金的磁性能上线盖了天花板。
发明内容
针对上述情况,为克服现有技术的缺陷,本发明提供一种高性能烧结钐钴合金的制备方法。
为了实现上述目的,本发明提供以下技术方案:
一种高性能烧结钐钴合金的制备方法,包括以下步骤:
(1)按照(Sm,Pr)2(Fe,Co)17和Sm2(Co,Fe,Cu,Zr)17合金中各元素质量比例称量各原料,将原料熔炼均匀,获得(Sm,Pr)2(Fe,Co)17合金和Sm2(Co,Fe,Cu,Zr)17合金;所述(Sm,Pr)2(Fe,Co)17合金中各元素的质量比例为,Sm:Pr:Co:Fe=a1: b1:(100-a1-b1-c1):c1,其中,10%≤a1≤21%,4%≤b1≤14%,18%≤c1≤32%; Sm2(Co,Fe,CuZr)17合金中各元素的质量比例为Sm:Co:Fe:Cu:Zr=x: (100-x-y-w-z):z:y:w,其中,23%≤x≤26%,12%≤z≤31%,8%≤y≤11.4%, 4.3%≤w≤7%。
(2)将(Sm,Pr)2(Fe,Co)17合金破碎至粉末平均粒度为0.2~0.5μm,将 Sm2(Co,Fe,Cu,Zr)17合金破碎至粉末平均粒度为2.5~4.5μm,获得(Sm,Pr)2(Fe, Co)17和Sm2(Co,Fe,Cu,Zr)17两种磁粉;
将(Sm,Pr)2(Fe,Co)17合金破碎成平均粒度为0.2~0.5μm,粒度大小远低于 Sm2(Co,Fe,Cu,Zr)17磁粉,实现(Sm,Pr)2(Fe,Co)17粉末均匀的包裹在 Sm2(Co,Fe,Cu,Zr)17磁粉表面,提高元素分布均匀性;如果(Sm,Pr)2(Fe,Co)17磁粉粒度小于0.2微米,粉末极易氧化,不好控制;如果(Sm,Pr)2(Fe,Co)17磁粉粒度大于0.5微米,混合后各元素分布不均匀;造成磁性能优化效果不好,甚至恶化。
粉末冶金法需要将磁粉磨制到准单畴颗粒,但粉末太细会极易氧化,颗粒过大会造成取向成型中偏转障碍,均会导致磁性下降,因此将Sm2(Co,Fe,CuZr)17合金破碎成2.5~4.5μm,适合工业生产,而且保持较好的效果。
(3)分别称量步骤(2)制得的(Sm,Pr)2(Fe,Co)17磁粉和Sm2(Co,Fe,CuZr)17磁粉,将(Sm,Pr)2(Fe,Co)17磁粉倒入液体C中,制成分布均匀的悬浊液;
(4)将步骤(3)中所制备的悬浊液喷射至Sm2(Co,Fe,CuZr)17磁粉,使两种磁粉混合均匀后,在氮气保护的无氧环境下烘干后,获得混合磁粉;
(5)将步骤(4)得到的混合磁粉进行取向成型处理,获得压坯,成型压力 50~100MPa,取向磁场强度为2T;
(6)将步骤(5)得到的压坯在1190~1220℃下烧结,烧结时间为1~3h,然后进行固溶处理,固溶温度为1140~1180℃,固溶时间为2~12h,获得烧结态磁体;
(7)对步骤(6)得到的烧结态磁体进行回火处理,回火工艺为790~870℃保温5~25h,随后以0.3~1.3℃/min的冷却速率缓慢冷却至350~450℃,再在400℃保温5~10h后冷却至室温,获得终态磁体。
进一步地,步骤(1)中,采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,获得(Sm,Pr)2(Fe,Co)17合金和Sm2(Co,Fe,Cu,Zr)17合金。
进一步地,步骤(2)中,采用高能球磨将(Sm,Pr)2(Fe,Co)17合金破碎至粉末平均粒度为0.2~0.5μm。
进一步地,步骤(2)中,所述高能球磨工艺,钢球和(Sm,Pr)2(Fe,Co)17合金的质量比为15:1。
进一步地,步骤(2)中,采用滚动球磨或高速氮气气流磨将Sm2(Co,Fe,Cu, Zr)17合金破碎至平均粒度为2.5~4.5μm。
进一步地,步骤(3)中,(Sm,Pr)2(Fe,Co)17磁粉和Sm2(Co,Fe,Cu,Zr)17磁粉的比例,以质量百分比计,(Sm,Pr)2(Fe,Co)17磁粉含量为30~50%, Sm2(Co,Fe,Cu,Zr)17磁粉含量为50~70%。
Sm2(Co,Fe,Cu,Zr)17为基本相,含量如果太少也即(Sm,Pr)2(Fe,Co)17含量过高,会造成显微结构控制和元素分布控制难度加大,此外更多的Pr元素进入胞内,主相的各向异性不可控,造成磁体磁性能恶化。(Sm,Pr)2(Fe,Co)17磁粉和 Sm2(Co,Fe,Cu,Zr)17磁粉的质量比例按照以上质量比例进行设置,能够在不改变 Sm2(Co,Fe,Cu,Zr)17原有结构特性的基础上,引入Pr提高整体磁性能。
进一步地,步骤(3)中,所述的液体C为酒精、120号汽油和甲苯中的一种或几种。这三种液体挥发性较好,容易干燥,且抗氧化性能较好,有助于制备磁性能较高的磁体。
进一步地,步骤(7)中,所述终态磁体中各元素的质量比例为,Sm:Pr:Co:Fe:Cu:Zr=a:b:(100-a-b-c-d-e):c:d:e,其中,19%≤a≤24%,2%≤b≤7%, 13.5%≤c≤32%,4.2%≤d≤5.7%,2.1%≤e≤5.1%。
本发明的有益效果是:
(1)发明公开了以纳米晶形式添加(Sm,Pr)2(Fe,Co)17合金,通过与母合金磁粉颗粒度的搭配,实现了钐钴合金中Fe添加量的大幅提升。
(2)本发明中的高性能烧结钐钴合金的制备方法,(1)分别熔炼和制备(Sm, Pr)2(Fe,Co)17和Sm2(Co,Fe,Cu,Zr)17合金与磁粉;(2)按比例将(Sm,Pr)2(Fe,Co)17和Sm2(Co,Fe,Cu,Zr)17磁粉混合均匀后经取向成型制得压坯,然后进行烧结、固溶和时效处理,获得高性能烧结钐钴合金。通过两种磁粉粒度的设计搭配,解决了Sm2Co17型烧结永磁体因Fe含量过高造成的内禀矫顽力恶化及工艺控制难度较大的技术瓶颈,采用Pr元素部分取代Sm元素,使磁体中形成(Sm,Pr)2(Fe,Co)17相,进而优化磁体的剩余磁化强度。同时,本发明有效提高了高性能烧结钐钴合金的磁性能达标率,降低了成本。
附图说明
图1实施例2所制得的磁体的TEM图。
图2实施例2中(Sm,Pr)2(Fe,Co)17磁粉的TEM图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行描述和说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。基于本申请提供的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域普通技术人员显式地和隐式地理解的是,本申请所描述的实施例在不冲突的情况下,可以与其它实施例相结合。
除非另作定义,本申请所涉及的技术术语或者科学术语应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。本申请所涉及的“一”、“一个”、“一种”、“该”等类似词语并不表示数量限制,可表示单数或复数。本申请所涉及的术语“包括”、“包含”、“具有”以及它们任何变形,意图在于覆盖不排他的包含;本申请所涉及的“连接”、“相连”、“耦接”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电气的连接,不管是直接的还是间接的。本申请所涉及的“多个”是指大于或者等于两个。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本申请所涉及的术语“第一”、“第二”、“第三”等仅仅是区别类似的对象,不代表针对对象的特定排序。
实施例1
1)按质量比Sm:Pr:Co:Fe=10:14:58:18称取所需原料,并采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,然后采用高能球磨将合金破碎至粉末平均粒度为0.2μm获得(Sm,Pr)2(Fe,Co)17磁粉。所述高能球磨工艺,钢球和(Sm, Pr)2(Fe,Co)17合金的质量比为15:1。
电弧熔炼和微正压感应熔炼是本领域的常规技术,本发明中,采用常规的电弧熔炼和微正压感应熔炼方法,并不对此进行改进。
本实施例中,采用电弧熔炼,在高纯氩气保护下进行。具体地,电弧熔炼过程中,电流设置为20A预热30s,然后调高至40~60A进行熔炼,时间为5~20s,然后调低至20A进行精炼约20s,正反面分别熔炼3~5次,确保铸锭均匀。
本发明中,采用(Sm,Pr)2(Fe,Co)17代表材料类别、合金的组成元素,不做具体相结构、元素分布等限制,因为熔炼过程中成分含量变化较小,与配料时的含量十分接近。
2)按质量比Sm:Co:Fe:Cu:Zr=23:50:12:8:7,称取所需原料,采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,然后采用高能球磨或高速氮气气流磨将合金破碎至平均粒度为2.5μm获得Sm2(Co,Fe,Cu,Zr)17磁粉。 Sm2(Co,Fe,Cu,Zr)17代表材料类别、合金的组成元素,不做具体相结构、元素分布等限制,因为熔炼过程中成分含量变化较小,与配料时的含量十分接近。
电弧熔炼和微正压感应熔炼是本领域的常规技术,本发明中,采用常规的电弧熔炼和微正压感应熔炼方法,并不对此进行改进。本实施例中,采用电弧熔炼,在高纯氩气保护下进行。具体地,电弧熔炼过程中,电流设置为20A预热30s,然后调高至40~60A进行熔炼,时间为5~20s,然后调低至20A进行精炼约20s,正反面分别熔炼3~5次,确保铸锭均匀。
本发明中,球磨或高速氮气气流磨均是本领域的常规设备,采用该设备能够得到所需粒度的磁粉。
3)将步骤(1)(2)所制得的磁粉,按照(Sm,Pr)2(Fe,Co)17磁粉和 Sm2(Co,Fe,Cu,Zr)17磁粉质量比例=3:7进行分别称量。将(Sm,Pr)2(Fe,Co)17磁粉倒入液体C中,制成分布均匀的悬浊液。本发明中,不对液体C的添加质量比例做限制,只要不影响喷雾处理即可。
4)将步骤(3)所制备的悬浊液采用滚筒喷雾喷射至Sm2(Co,Fe,Cu,Zr)17磁粉,使两种磁粉充分混合均匀后,在氮气保护的无氧环境下烘干后,获得混合磁粉。本实施例中,烘干温度为室温。烘干时间范围可以为1~4小时。
5)将步骤(4)所制备的混合磁粉进行取向成型处理,获得压坯,成型压力 50MPa,取向磁场强度为2T。
6)将步骤(5)所制得的压坯在1190℃下烧结,烧结时间为1h,然后进行固溶处理,固溶温度为1140℃,固溶时间为2h,获得烧结态磁体;
7)将步骤(6)所制得的烧结态磁体进行回火处理,回火工艺为830℃保温 5h,随后以0.3℃/min的冷却速率缓慢冷却至400℃,再在400℃保温5h后风冷至室温,获得终态磁体。
获得的终态磁体中各元素的质量比例为,Sm:Pr:Co:Fe:Cu:Zr=19.1: 4.2:52.4:13.8:5.6:4.9。
对比例1
1)按各元素质量比Sm:Pr:Co:Fe:Cu:Zr=19.1:4.2:52.4:13.8:5.6: 4.9称取所需原料,并采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,然后采用滚动球磨或高速氮气气流磨将合金破碎至平均粒度为2.5μm获得磁粉。
2)将步骤(1)所制备的磁粉进行取向成型处理,获得压坯,成型压力50MPa,取向磁场强度为2T。
3)将步骤(2)所制得的压坯在1190℃下烧结,烧结时间为1h,然后进行固溶处理,固溶温度为1140℃,固溶时间为2h,获得烧结态磁体;
4)将步骤(3)所制得的烧结态磁体进行回火处理,回火工艺为830℃保温 5h,随后以0.3℃/min的冷却速率缓慢冷却至400℃,再在400℃保温5h后风冷至室温,获得终态磁体。
本对比例中的其他条件与实施例1相同。
实施例2
1)按质量比Sm:Pr:Co:Fe=15:14:46:25称取所需原料,并采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,然后采用高能球磨将合金破碎至粉末平均粒度为0.35μm获得(Sm,Pr)2(Fe,Co)17磁粉。
电弧熔炼和微正压感应熔炼是本领域的常规技术,本发明中,采用常规的电弧熔炼和微正压感应熔炼方法,并不对此进行改进。
本实施例中,采用电弧熔炼,在高纯氩气保护下进行。具体地,电弧熔炼过程中,电流设置为20A预热30s,然后调高至40~60A进行熔炼,时间为5~20s,然后调低至20A进行精炼约20s,正反面分别熔炼3~5次,确保铸锭均匀。
2)按质量比Sm:Co:Fe:Cu:Zr=25:38:22:9:6,称取所需原料,并采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,然后采用滚动球磨或高速氮气气流磨将合金破碎至平均粒度为3.5μm获得Sm2(Co,Fe,Cu,Zr)17磁粉。
电弧熔炼和微正压感应熔炼是本领域的常规技术,本发明中,采用常规的电弧熔炼和微正压感应熔炼方法,并不对此进行改进。本实施例中,采用电弧熔炼,在高纯氩气保护下进行。具体地,电弧熔炼过程中,电流设置为20A预热30s,然后调高至40~60A进行熔炼,时间为5~20s,然后调低至20A进行精炼约20s,正反面分别熔炼3~5次,确保铸锭均匀。
3)将步骤(1)(2)所制得的磁粉,按照(Sm,Pr)2(Fe,Co)17磁粉和Sm2(Co,Fe,Cu,Zr)17磁粉质量比例为40%:60%分别称量。将(Sm,Pr)2(Fe,Co)17磁粉倒入液体C中,制成分布均匀的悬浊液。
4)将步骤(3)所制备的悬浊液采用滚筒喷雾喷射至Sm2(Co,Fe,Cu,Zr)17磁粉,使两种磁粉充分混合均匀后,在氮气保护的无氧环境下烘干后,获得混合磁粉。本实施例中,烘干温度为室温。烘干时间范围可以为1~4小时。
5)将步骤(4)所制备的混合磁粉进行取向成型处理,获得压坯,成型压力 75MPa,取向磁场强度为2T。
6)将步骤(5)所制得的压坯在1205℃下烧结,烧结时间为2h,然后进行固溶处理,固溶温度为1160℃,固溶时间为7h,获得烧结态磁体;
7)将步骤(6)所制得的烧结态磁体进行回火处理,回火工艺为830℃保温 15h,随后以0.8℃/min的冷却速率缓慢冷却至400℃,再在400℃保温7.5h后风冷至室温,获得终态磁体。
获得的终态磁体中各元素的质量比例为,Sm:Pr:Co:Fe:Cu:Zr=21:5.6: 41.2:23.2:5.4:3.6。
本实施例中的其他实施方式与实施例1相同。
对比例2
1)按质量比Sm:Pr:Co:Fe:Cu:Zr=21:5.6:41.2:23.2:5.4:3.6称取所需原料,并采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,然后采用滚动球磨或高速氮气气流磨将合金破碎至平均粒度为3.5μm获得磁粉。
2)将步骤(1)所制备的磁粉进行取向成型处理,获得压坯,成型压力75MPa,取向磁场强度为2T。
3)将步骤(2)所制得的压坯在1205℃下烧结,烧结时间为2h,然后进行固溶处理,固溶温度为1160℃,固溶时间为7h,获得烧结态磁体;
4)将步骤(3)所制得的烧结态磁体进行回火处理,回火工艺为830℃保温 15h,随后以0.8℃/min的冷却速率缓慢冷却至400℃,再在400℃保温7.5h后风冷至室温,获得终态磁体。
本实施例中的其他条件与实施例2相同。
实施例3
1)按质量比Sm:Pr:Co:Fe=21:4:43:32称取所需原料,并采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,然后采用高能球磨将合金破碎至粉末平均粒度为0.5μm获得(Sm,Pr)2(Fe,Co)17磁粉。
电弧熔炼和微正压感应熔炼是本领域的常规技术,本发明中,采用常规的电弧熔炼和微正压感应熔炼方法,并不对此进行改进。
本实施例中,采用电弧熔炼,在高纯氩气保护下进行。具体地,电弧熔炼过程中,电流设置为20A预热30s,然后调高至40~60A进行熔炼,时间为5~20s,然后调低至20A进行精炼约20s,正反面分别熔炼3~5次,确保铸锭均匀。
2)按质量比Sm:Co:Fe:Cu:Zr=26:27.3:31:11.4:4.3,称取所需原料,并采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,然后采用滚动球磨或高速氮气气流磨将合金破碎至平均粒度为4.5μm获得Sm2(Co,Fe,Cu,Zr)17磁粉。
本实施例中,采用电弧熔炼,在高纯氩气保护下进行。具体地,电弧熔炼过程中,电流设置为20A预热30s,然后调高至40~60A进行熔炼,时间为5~20s,然后调低至20A进行精炼约20s,正反面分别熔炼3~5次,确保铸锭均匀。
3)将步骤(1)(2)所制得的磁粉,按照(Sm,Pr)2(Fe,Co)17磁粉和 Sm2(Co,Fe,Cu,Zr)17磁粉质量比例=1:1进行分别称量。将(Sm,Pr)2(Fe,Co)17磁粉倒入液体C中,制成分布均匀的悬浊液。本发明中,不对液体C的添加质量比例做限制,只要不影响喷雾处理即可。
4)将步骤(3)所制备的悬浊液采用滚筒喷雾喷射至Sm2(Co,Fe,Cu,Zr)17磁粉,使两种磁粉充分混合均匀后,在氮气保护的无氧环境下烘干后,获得混合磁粉。本实施例中,烘干温度为室温。烘干时间范围可以为1~4小时。
5)将步骤(4)所制备的混合磁粉进行取向成型处理,获得压坯,成型压力 100MPa,取向磁场强度为2T。
6)将步骤(5)所制得的压坯在1220℃下烧结,烧结时间为3h,然后进行固溶处理,固溶温度为1180℃,固溶时间为12h,获得烧结态磁体;
7)将步骤(6)所制得的烧结态磁体进行回火处理,回火工艺为830℃保温 25h,随后以1.3℃/min的冷却速率缓慢冷却至400℃,再在400℃保温10h后风冷至室温,获得终态磁体。
获得的终态磁体中各元素的质量比例为,Sm:Pr:Co:Fe:Cu:Zr=23.5:2: 35.15:31.5:5.7:2.15。
本实施例中的其他实施方式与实施例1相同。
对比例3
1)按各元素质量比Sm:Pr:Co:Fe:Cu:Zr=23.5:2:35.15:31.5:5.7: 2.15,称取所需原料,并采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,然后采用滚动球磨或高速氮气气流磨将合金破碎至平均粒度为4.5μm获得磁粉。
2)将步骤(1)所制备的磁粉进行取向成型处理,获得压坯,成型压力100MPa,取向磁场强度为2T。
3)将步骤(2)所制得的压坯在1220℃下烧结,烧结时间为3h,然后进行固溶处理,固溶温度为1180℃,固溶时间为12h,获得烧结态磁体;
4)将步骤(3)所制得的烧结态磁体进行回火处理,回火工艺为830℃保温 25h,随后以1.3℃/min的冷却速率缓慢冷却至400℃,再在400℃保温10h后风冷至室温,获得终态磁体。
本实施例中的其他条件与实施例3相同。
将上述实施例和对比例中制备的磁体经磁性能测试,检测结果如表1所述。
表1实施例1-3和对比例1-3中制备的磁体的磁性能检测结果
Figure BDA0002979368510000091
注:Hk代表膝点矫顽力,Hcj代表内禀矫顽力。
从表1可知,与对比例相比,添加Pr元素后,相同成分相同含量下,实施例制得的磁体的剩磁Br较高,内禀矫顽力较大,最大磁能积较大。采用本发明方法制备的磁体磁性能明显优于对比例制备的磁体磁性能,本发明突破了Pr添加制备高磁性能钐钴磁体的技术限制。
图2是实施例2中(Sm,Pr)2(Fe,Co)17磁粉的TEM图,图1是实施例2所制得的终态磁体的TEM图,右下角是标定的电子衍射花样,通过晶格参数和电子衍射花样的标定,可以证明终态磁体由2:17相和1:5相组成,分别为胞内主相和胞壁相。
表2实施例2所制得的终态磁体中胞壁相(2)和胞内主相(1和3)的组成成分测试结果
编号 Sm(wt.%) Pr(wt.%) Fe(wt.%) Cu(wt.%) Zr(wt.%) Co(wt.%)
1 18.1 5.2 24.3 1.8 0.9 49.7
2 33.9 0 5.7 15.2 1.3 43.9
3 17.9 5.3 24.8 1.6 0.8 49.6
表2给出了胞壁相(2)和胞内主相(1和3)的成分测试结果。从表2可以看出,所添加的Pr元素更多的存在于胞内主相(2:17相)中,形成 (SmPr)2(Co,Fe,Cu,Zr)17相。
本领域的技术人员应该明白,以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (8)

1.一种高性能烧结钐钴合金的制备方法,其特征是,包括以下步骤:
(1)按照(Sm,Pr)2(Fe,Co)17和Sm2(Co,Fe,Cu,Zr)17合金成分称量各原料,对原料进行熔炼,获得(Sm,Pr)2(Fe,Co)17合金和Sm2(Co,Fe,Cu,Zr)17合金;所述(Sm,Pr)2(Fe,Co)17合金中各元素的质量比例为Sm:Pr:Co:Fe=a1:b1:(100-a1-b1-c1):c1,其中,10%≤a1≤21%,4%≤b1≤14%,18%≤c1≤32%;Sm2(Co,Fe,Cu,Zr)17合金中各元素的质量比例为Sm:Co:Fe:Cu:Zr=x:(100-x-y-w-z):z:y:w,其中,23%≤x≤26%,12%≤z≤31%,8%≤y≤11.4%,4.3%≤w≤7%;
(2)将(Sm,Pr)2(Fe,Co)17合金破碎至粉末平均粒度为0.2~0.5μm,将Sm2(Co,Fe,Cu,Zr)17合金破碎至平均粒度为2.5~4.5μm,获得(Sm,Pr)2(Fe,Co)17和Sm2(Co,Fe,Cu,Zr)17两种磁粉;
(3)分别称量(Sm,Pr)2(Fe,Co)17磁粉和Sm2(Co,Fe,Cu,Zr)17磁粉,将(Sm,Pr)2(Fe,Co)17磁粉倒入液体C中,制成悬浊液;
(4)将步骤(3)中所制备的悬浊液喷射至Sm2(Co,Fe,CuZr)17磁粉,使两种磁粉混合后,在氮气保护的无氧环境下烘干后,获得混合磁粉;
(5)将步骤(4)得到的混合磁粉进行取向成型处理,获得压坯,成型压力50~100MPa,取向磁场强度为2T;
(6)将压坯在1190~1220℃下烧结,烧结时间为1~3h,然后进行固溶处理,固溶温度为1140~1180℃,固溶时间为2~12h,获得烧结态磁体;
(7)对烧结态磁体进行回火处理,回火工艺为790~870℃保温5~25h,随后以0.3~1.3℃/min的冷却速率冷却至350~450℃,再在400℃保温5~10h后冷却至室温,获得终态磁体。
2.根据权利要求1所述一种高性能烧结钐钴合金的制备方法,其特征是,步骤(1)中,采用电弧熔炼或者微正压感应熔炼炉将原料熔炼均匀,获得(Sm,Pr)2(Fe,Co)17合金和Sm2(Co,Fe,Cu,Zr)17合金。
3.根据权利要求1所述一种高性能烧结钐钴合金的制备方法,其特征是,步骤(2)中,采用高能球磨将(Sm,Pr)2(Fe,Co)17合金破碎至粉末平均粒度为0.2~0.5μm。
4.根据权利要求3所述一种高性能烧结钐钴合金的制备方法,其特征是,步骤(2)中,所述的高能球磨工艺,钢球和(Sm,Pr)2(Fe,Co)17合金的质量比为15:1。
5.根据权利要求1所述一种高性能烧结钐钴合金的制备方法,其特征是,步骤(2)中,采用滚动球磨或高速氮气气流磨将Sm2(Co,Fe,Cu,Zr)17合金破碎至平均粒度为2.5~4.5μm。
6.根据权利要求1所述一种高性能烧结钐钴合金的制备方法,其特征是,步骤(3)中,(Sm,Pr)2(Fe,Co)17磁粉和Sm2(Co,Fe,Cu,Zr)17磁粉的比例,以质量百分比计,(Sm,Pr)2(Fe,Co)17磁粉含量为30~50%,Sm2(Co,Fe,Cu,Zr)17磁粉含量为50~70%。
7.根据权利要求1所述一种高性能烧结钐钴合金的制备方法,其特征是,步骤(3)中,所述的液体C为酒精、120号汽油和甲苯中的一种或几种。
8.根据权利要求1所述一种高性能烧结钐钴合金的制备方法,其特征是,步骤(7)中,所述终态磁体中各元素的质量比例为,Sm:Pr:Co:Fe:Cu:Zr=a:b:(100-a-b-c-d-e):c:d:e,其中,19%≤a≤24%,2%≤b≤7%,13.5%≤c≤32%,4.2%≤d≤5.7%,2.1%≤e≤5.1%。
CN202110283162.0A 2021-03-16 2021-03-16 一种高性能烧结钐钴合金的制备方法 Active CN113070477B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110283162.0A CN113070477B (zh) 2021-03-16 2021-03-16 一种高性能烧结钐钴合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110283162.0A CN113070477B (zh) 2021-03-16 2021-03-16 一种高性能烧结钐钴合金的制备方法

Publications (2)

Publication Number Publication Date
CN113070477A CN113070477A (zh) 2021-07-06
CN113070477B true CN113070477B (zh) 2022-04-26

Family

ID=76612551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110283162.0A Active CN113070477B (zh) 2021-03-16 2021-03-16 一种高性能烧结钐钴合金的制备方法

Country Status (1)

Country Link
CN (1) CN113070477B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612324B (zh) * 2022-10-14 2024-01-16 中国科学院赣江创新研究院 一种雷达吸波涂层及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083707A (ja) * 2000-09-08 2002-03-22 Shin Etsu Chem Co Ltd 希土類焼結磁石の製造方法
CN102760545A (zh) * 2012-07-24 2012-10-31 钢铁研究总院 高剩磁低矫顽力钐钴永磁材料及制备方法
CN104078175A (zh) * 2014-06-12 2014-10-01 嘉兴市鹏程磁钢有限公司 一种钐钴基纳米晶永磁体材料及其制备方法
CN106531383A (zh) * 2016-11-08 2017-03-22 中国科学院宁波材料技术与工程研究所 钐钴合金材料、钐钴合金粉末及其制备方法及钐钴基磁体
CN106935350A (zh) * 2017-03-13 2017-07-07 中南大学 一种各向异性SmCo5型稀土永磁材料及制备方法
CN109448946A (zh) * 2018-12-21 2019-03-08 中国计量大学 一种各向异性SmCo/MnBi复合磁体及其制备方法
CN111370191A (zh) * 2020-03-20 2020-07-03 杭州永磁集团有限公司 一种不含重稀土元素的低矫顽力温度系数高温用钐钴永磁材料及制备方法
CN111554500A (zh) * 2020-04-26 2020-08-18 有研稀土(荣成)有限公司 一种耐高温烧结钕铁硼永磁体及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083707A (ja) * 2000-09-08 2002-03-22 Shin Etsu Chem Co Ltd 希土類焼結磁石の製造方法
CN102760545A (zh) * 2012-07-24 2012-10-31 钢铁研究总院 高剩磁低矫顽力钐钴永磁材料及制备方法
CN104078175A (zh) * 2014-06-12 2014-10-01 嘉兴市鹏程磁钢有限公司 一种钐钴基纳米晶永磁体材料及其制备方法
CN106531383A (zh) * 2016-11-08 2017-03-22 中国科学院宁波材料技术与工程研究所 钐钴合金材料、钐钴合金粉末及其制备方法及钐钴基磁体
CN106935350A (zh) * 2017-03-13 2017-07-07 中南大学 一种各向异性SmCo5型稀土永磁材料及制备方法
CN109448946A (zh) * 2018-12-21 2019-03-08 中国计量大学 一种各向异性SmCo/MnBi复合磁体及其制备方法
CN111370191A (zh) * 2020-03-20 2020-07-03 杭州永磁集团有限公司 一种不含重稀土元素的低矫顽力温度系数高温用钐钴永磁材料及制备方法
CN111554500A (zh) * 2020-04-26 2020-08-18 有研稀土(荣成)有限公司 一种耐高温烧结钕铁硼永磁体及其制备方法

Also Published As

Publication number Publication date
CN113070477A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN102568807B (zh) 纳米Cu粉掺杂制备高矫顽力SmCoFeCuZr高温永磁体的方法
CN111834118B (zh) 一种提高烧结钕铁硼磁体矫顽力的方法及烧结钕铁硼磁体
EP4020505B1 (en) Preparation method for a neodymium-iron-boron magnet
CN105374484B (zh) 一种高矫顽力钐钴永磁材料及其制备方法
CN108269665A (zh) 一种钕铁硼磁体及其制备方法
CN112582122A (zh) 高膝点矫顽力烧结钐钴磁体的制备方法
CN112435820A (zh) 一种高性能烧结钕铁硼磁体及其制备方法
CN111446055A (zh) 一种高性能钕铁硼永磁材料及其制备方法
CN113070477B (zh) 一种高性能烧结钐钴合金的制备方法
CN113593882A (zh) 2-17型钐钴永磁材料及其制备方法和应用
CN112582123B (zh) 低温度系数高使用温度烧结钐钴磁体的制备方法
WO2023174430A1 (zh) 一种r-t-b磁体及其制备方法
JP2023177261A (ja) 希土類磁性体及びその製造方法
US11862370B2 (en) High-resistivity sintered samarium-cobalt magnet and preparation method thereof
CN113421761B (zh) 一种降低改性磁粉吸附能的高性能烧结钕铁硼制备方法
JP2020504782A (ja) ネオジム−鉄−ホウ素永久磁石材料を調製する微小粉末、ターゲット式ジェットミル製粉方法、及びターゲット式ジェットミル製出粉末
JP7215044B2 (ja) R-t-b系焼結磁石の製造方法
JP2789364B2 (ja) 耐酸化性の優れた永久磁石合金の製造方法
CN116230348B (zh) 一种高耐蚀低温度系数烧结Nd-Fe-B系永磁材料及制备方法
CN112216461B (zh) 一种含铈的钕铁硼磁体材料及其制备方法
CN111145997B (zh) 一种提高矫顽力的n30型烧结混合稀土合金的磁性材料的制备方法
CN116631758A (zh) 钐钴磁钢的制备方法
JP2007270163A (ja) 希土類永久磁石の製造方法およびその原料合金
CN116013675A (zh) 一种高性能无重稀土钕铁硼磁体的制备方法
JP2961360B2 (ja) 耐酸化性の優れた永久磁石合金の製造法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant