CN113004459B - 一种高透明、高拉伸、高导电离子水凝胶的制备方法 - Google Patents

一种高透明、高拉伸、高导电离子水凝胶的制备方法 Download PDF

Info

Publication number
CN113004459B
CN113004459B CN202110283259.1A CN202110283259A CN113004459B CN 113004459 B CN113004459 B CN 113004459B CN 202110283259 A CN202110283259 A CN 202110283259A CN 113004459 B CN113004459 B CN 113004459B
Authority
CN
China
Prior art keywords
laponite
nano
highly
phytic acid
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110283259.1A
Other languages
English (en)
Other versions
CN113004459A (zh
Inventor
刘群峰
龙志军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Maidis Medical Technology Co ltd
Original Assignee
Foshan Polytechnic
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Polytechnic filed Critical Foshan Polytechnic
Priority to CN202110283259.1A priority Critical patent/CN113004459B/zh
Publication of CN113004459A publication Critical patent/CN113004459A/zh
Application granted granted Critical
Publication of CN113004459B publication Critical patent/CN113004459B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开一种高透明、高拉伸、高导电离子水凝胶的制备方法,其特征在于,以植酸及其盐类作为导电剂兼稳定分散剂,复配设计出纳米锂藻土的稳定分散体系;该稳定分散体系的制备方法为:纳米锂藻土先溶于水中,然后依次加入稳定分散剂、单体、交联剂和引发剂形成透明溶液,最后对透明溶液进行光固化反应,获得高透明、高拉伸、高导电离子水凝胶。经实验验证,本发明采用的植酸及其盐类配置纳米锂藻土反应水溶液,配置出的反应溶液具有长期稳定性,在室温下放置一个月以上呈现溶液状态。而本发明制得的离子水凝胶,其不仅具有高透明、高拉伸性能,而且,电导率可达2S/cm,远远优于现有技术。

Description

一种高透明、高拉伸、高导电离子水凝胶的制备方法
技术领域
本发明涉及一种高性能水凝胶材料,尤其是一种高透明、高拉伸、高导电离子水凝胶材料的制备方法与应用。
背景技术
基于导电水凝胶的柔性传感器在可穿戴设备、可植入器件、软机器人、以及人机交互系统等领域有广阔应用前景。作为人机界面的理想载体之一,越来越多的研究将水凝胶应用于生物电子等电子器件。然而导电水凝胶材料还存在一些不足,限制了其实际应用,水凝胶的性能仍需进一步提高,如:1)大部分凝胶自身的力学性能(模量、强度、断裂能等)不足,拉伸容易断裂,不能满足荷载柔性器件需求;特别是当水凝胶承受动态力学载荷时(比如水凝胶作为心脏贴片、软骨替代物),需要设计抗疲劳的水凝胶以及与其他材料抗疲劳的粘接性能;2)存在高机械性能和导电性不能兼顾的问题;3)在柔性光学显示等方面应用还需要具有良好的透光性。因而,开发出兼具高拉伸、高透明、高导电等性能的理想离子导电水凝胶材料可较好的满足柔性电子器件应用方面的要求。
但是制备出兼具高拉伸、高透明、高导电的离子导电水凝胶还是一个难题,目前这类性能的离子凝胶体系还比较少。现阶段基于纳米锂藻土的复合体系制备高力学性能的水凝胶已成为一种凝胶增强的主要方法,且制备的水凝胶具有高度透明性。但是这种纳米锂藻土体系对离子物质不兼容,在体系中加入离子物质后,凝胶体系会发生微观相分离,用于制备凝胶的溶液体系容易聚集变成不流动状态,制备的凝胶变得不透明,凝胶力学性能下降。所以采用纳米锂藻土体系制备兼具高拉伸、高透明、高导电的离子导电水凝胶比较困难。
这是由纳米锂藻土的组成和结构特征决定的,纳米锂藻土如Laponite(商品名)为层状硅酸盐结构,在镁氧八面体的两边各有一个共用氧原子的硅氧四面体,其中部分二价的镁原子被一价锂原子置换,使粒子表面带有永久负电荷。由于电荷之间的排斥力,纳米锂藻土在水中能够分散成单层片层,从而成为溶液状态。纳米锂藻土片层在水凝胶的交联网络中起多官能度交联点的作用,赋予水凝胶高拉伸等优良的力学性能。纳米锂藻土水分散液的稳定性与pH值、离子强度等密切相关。在较低的离子强度下,纳米锂藻土水分散液由于静电排斥作用而稳定;在较高的离子强度下,纳米锂藻土在水中的分散与凝胶化几乎同时发生;随着离子强度提高,由于双电层被压缩,片层之间的排斥力减弱,而分散的片层会重新聚集。造成体系微观相分离和团聚现象,表现为离子强度升高则分散液变浑浊,甚至絮凝。因而对水凝胶的力学性能和光学性能都产生了不利的影响。
利用纳米锂藻土如Laponite制备出兼具高拉伸、高透明、高导电的理想离子导电水凝胶,首先要设计与纳米锂藻土兼容的离子导电体系,解决离子体系与纳米锂藻土兼容的问题。前期的一些研究报道了一些特殊的复配体系,可以一定程度提高纳米锂藻土Laponite的耐离子性能,如添加十二烷基硫酸钠(简称SDS)和2-丙烯酰胺基-2-甲基丙磺酸(简称AMPS)(Journal of Polymer Research, 2014,21:541)等可以制备透明的Laponite离子凝胶,刘群峰采用柠檬酸钠等制备透明的Laponite离子凝胶(Chemical PhysicsLetters, 2020, 754:137667.)。但是体系大部分采用弱的电解质作为离子体系,因而这类离子凝胶的导电性不高。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种兼具高透明、高拉伸、高导电的离子水凝胶制备方法。
为达到以上目的,本发明采用如下技术方案。
一种高透明、高拉伸、高导电离子水凝胶的制备方法,其特征在于,以植酸及其盐类作为离子导电剂兼稳定分散剂,复配设计出纳米锂藻土的稳定分散体系;该稳定分散体系的制备方法为:纳米锂藻土先溶于水中,然后依次加入稳定分散剂、单体、交联剂和引发剂形成透明溶液,最后对透明溶液进行光固化反应,获得高透明、高拉伸、高导电离子水凝胶。
更为优选的是,在所述稳定分散体系中,按重量百分比计,纳米锂藻土0.5-5%,植酸及其盐类 0.5-35%,单体 3-30%,交联剂 0.001-1%,引发剂 0.01-1%,余量为水。
更为优选的是,在所述稳定分散体系中,按重量百分比计,纳米锂藻土1-3%,植酸及其盐类 3-15%,单体 5-20%,交联剂 0.005-0.5%,引发剂 0.1-0.5%,余量为水。
更为优选的是,所述植酸及其盐类为植酸及其钠盐和/或钾盐。
更为优选的是,所述单体为丙烯酰胺、N,N-异丙基丙烯酰胺、甲基丙烯酸羟乙酯、丙烯酸及其钠盐和/或钾盐等、2-丙烯酰胺-2-甲基丙磺酸及其钠盐和/或钾盐中的一种或几种。
更为优选的是,所述交联剂为N,N-亚甲基二丙烯酰胺、N-羟甲基丙烯酰胺、双丙酮丙烯酰胺、二丙烯酸酯类中的一种或几种。
更为优选的是,所述引发剂为光引发剂或水溶性自由基聚合引发剂。
本发明的有益效果是:通过在纳米锂藻土的水溶液中加入植酸及其盐类,植酸及其盐类既充当高离子强度的电解质,又充当整个体系的稳定分散剂,提高纳米锂藻土的耐离子性,从而实现纳米锂藻土的片层结构的均匀分散,进而使得光固化后纳米锂藻土均匀的分布在凝胶中,赋予凝胶高拉伸性和高导电性。经实验验证,本发明采用的植酸及其盐类配置纳米锂藻土反应水溶液,配置出的反应溶液具有长期稳定性,在室温下放置一个月以上呈现溶液状态。而本发明制得的离子水凝胶,其不仅具有高透明、高拉伸性能,而且电导率可到0.2S/cm,远优于现有通常离子凝胶体系。
具体实施方式
下面对本发明的具体实施方式作进一步的描述,使本发明的技术方案及其有益效果更加清楚、明确。下面描述实施例是示例性的,旨在解释本发明,而不能理解为对本发明的限制。
本发明的附加方面和优点将在下面的描述部分中变得明显,或通过本发明的实践了解到。
一种高透明、高拉伸、高导电离子水凝胶的制备方法,采用植酸及其盐类复配设计出纳米锂藻土的稳定分散体系,基于植酸复配的稳定分散剂配制含离子纳米复合凝胶反应溶液,进而通过自由基交联共聚制备出高拉伸、高透明、高导电的离子导电水凝胶材料。
本发明制备的离子导电水凝胶材料,兼具力学强度、高透明和高导电性能,采用体系方法简单,制备的凝胶综合性能十分优越。本实施例制得的离子导电水凝胶材料可被应用于多种器件上,比如皮肤贴片、柔性传感器,驱动器,表面涂层,光学器件,电子器件,以及集水装置等。
本发明采用的植酸及其盐类配置纳米锂藻土反应水溶液,配置出的反应溶液具有长期稳定性,在室温下放置一个月以上呈现溶液状态。而现有技术中,绝大部分电解质加入后会导致纳米锂藻土发生聚集成为不流动的溶液状态,难以形成流动的溶液。植酸,又名肌醇六磷酸、环己六醇六磷酸,分子式C6H18O24P6,是从植物种籽中提取的一种有机磷类化合物,植酸属于强酸,其特征之一是与金属离子有极强的鳌合作用。已报道透明的纳米锂藻土离子导电水凝胶大部分是弱电解质,因为离子强度越强,使得纳米锂藻土分散体系越不稳定。植酸可以较长时间保持纳米锂藻土稳定性。一些特殊的电解质如SDS、AMPS、柠檬酸钠等能复配形成纳米锂藻土溶液,但是这个溶液状态保持的时间比较短,一般几天后就会逐步形成凝胶形态。含有植酸及其盐类的Laponite体系其溶液具有高度的透明性,因而反应后获得的水凝胶也具有高透明性。
本发明的凝胶通过自由基聚合的方法制备,参与聚合反应溶液中包括:单体、交联剂、纳米锂藻土、引发剂、植酸及其盐类复配剂、其它盐类、水等。过程为:纳米锂藻土先溶于水中,然后依次加入植酸复配剂、单体、交联剂、引发剂、盐类,形成透明溶液,将反应溶液置于透明玻璃容器中,在光固化反应器皿中进行光固化反应,获得高度透明的水凝胶材料。该类水凝胶具有多重交联网络结构,一重交联结构由双官能交联剂形成,属于化学交联,提供水凝胶网络结构的稳定性,另外一重网络结构由纳米锂藻土作为交联剂形成,赋予凝胶高拉伸性。纳米锂藻土的片层结构需要均匀分散才有利于凝胶的高拉伸性,植酸及其盐类虽然是离子强度高的电解质,但是却能提高纳米锂藻土的耐离子性,使得纳米锂藻土的片层结构实现均匀的分散,光固化后纳米锂藻土均匀的分布在凝胶中,赋予凝胶高拉伸性。
离子导电凝胶的导电性主要来自于凝胶中的离子组分,导电离子组分主要是指电解质。因而电解质的导电性与离子凝胶的导电性直接相关。由于纳米锂藻土如Laponite的耐离子性较差,因而利用电解质制备具有透明性纳米锂藻土的案例较少,这些能与纳米锂藻土兼容的电解质为中弱电解质,如SDS结合丙烯酸、柠檬酸盐、焦磷酸钠等,含这类中弱电解质离子导电凝胶的导电性都不高。有报道强酸性单体AMPS(2-丙烯酰胺-2-甲基丙磺酸)可以与纳米锂藻土Laponite形成透明离子凝胶,但是AMPS是一种反应性单体,发生反应后,AMPS通过聚合交联反应形成网络结构,以聚合物PAMPS链段的形式被固定在网络结构中,影响了AMPS分子中阴阳离子的自由迁移,因而AMPS虽然为强电解质,但是纯的PAMPS水凝胶的电导率较低(化学进展,2011,23,№5,P923)。本发明采用的植酸及其盐类为强电解质,形成凝胶后分布在网络结构中其包含的阴阳离子可以自由的移动,且纳米锂藻土中也包含有阴阳离子成分,具有导电性,因而形成的透明离子型纳米锂藻土水凝胶其电导率高。这里植酸(及其盐)兼具体系稳定剂和导电剂双重作用,其另外一个特点是,加入植酸(及其盐)形成稳定体系后,在溶液中再加入其它的强电解质如氯化钠、硫酸钠等后,纳米锂藻土还能维持稳定成为透明溶液,反应后成透明高导电凝胶。
这里纳米锂藻土主要指片层结构硅酸镁锂纳米粒子,优选Laponite(商品名),其含量为0.5-5%,优选1-3%。
化学交联剂主要包括N,N-亚甲基二丙烯酰胺、N-羟甲基丙烯酰胺、双丙酮丙烯酰胺或二丙烯酸酯类;化学交联剂的含量为0.001-1%,优选0.005-0.5%。
单体主要指包括丙烯酰胺、N,N-异丙基丙烯酰胺、甲基丙烯酸羟乙酯、丙烯酸及其钠、钾盐等或2-丙烯酰胺-2-甲基丙磺酸及其钠、钾盐等,单体的含量为3-30%,优选5-20%。
引发剂主要包括各类光引发剂如巴斯夫2959,水溶性自由基聚合引发剂如过硫酸铵、过硫酸钾等,其含量为0.01-1%,优选0.1-0.5%。
离子导电电解质为植酸及其钠、钾盐等,其含量为0.5-35%,优选3-15%。
实施例1
称取3克纳米锂藻土Laponite溶于46.85克去离子水中,加入35克植酸钠,搅拌形成透明溶液,然后依次加入15g单体N,N-异丙基丙烯酰胺、0.05g化学交联剂N,N-亚甲基二丙烯酰胺、0.1克2959光引发剂,搅拌形成透明溶液,此溶液稳定性好,密封避光储藏30天还呈现透明溶液状态。取此反应溶液至于玻璃器皿中,在UV-LED光固化机中在35nm的波长下进行光固化反应,十分钟后取出玻璃器皿,获得离子水凝胶1。
实施例2
称取1克纳米锂藻土Laponite溶于63克去离子水中,加入15克植酸钾,搅拌形成透明溶液,然后依次加入20g单体甲基丙烯酸羟乙酯、0. 5g化学交联剂N-羟甲基丙烯酰胺、0.5克过硫酸钾,搅拌形成透明溶液,此溶液稳定性好,密封避光储藏30天还呈现透明溶液状态。取此反应溶液至于玻璃器皿中,在55℃烘箱中进行自由基反应,十五分钟后取出玻璃器皿,获得离子水凝胶2。
实施例3
称取5克纳米锂藻土Laponite溶于77克去离子水中,加入8克植酸钠,搅拌形成透明溶液,然后依次加入5g单体丙烯酸钠、1g化学交联剂N,N-亚甲基二丙烯酰胺、1g过硫酸铵,搅拌形成透明溶液,再加入3g氯化钠此溶液稳定性好,密封避光储藏7天还呈现透明溶液状态。取此反应溶液至于玻璃器皿中,在55℃烘箱中进行自由基反应,十五分钟后取出玻璃器皿,获得离子水凝胶3。
实施例4
称取5克纳米锂藻土Laponite溶于64.489克去离子水中,加入0.5克植酸钠,搅拌形成透明溶液,然后依次加入30g单体2-丙烯酰胺-2-甲基丙磺酸钠、0.001g化学交联剂双丙酮丙烯酰胺、0.01克2959光引发剂,搅拌形成透明溶液,此溶液稳定性好,密封避光储藏30天还呈现透明溶液状态。取此反应溶液至于玻璃器皿中,在UV-LED光固化机中在35nm的波长下进行光固化反应,十分钟后取出玻璃器皿,获得离子水凝胶4。
实施例5
称取0.5克纳米锂藻土Laponite溶于76克去离子水中,加入20克植酸与植酸钠混合物,搅拌形成透明溶液,然后依次加入3g单体丙烯酰胺、0.1g化学交联剂乙二醇二丙烯酸酯、0.4克2959光引发剂,搅拌形成透明溶液,此溶液稳定性好,密封避光储藏30天还呈现透明溶液状态。取此反应溶液至于玻璃器皿中,在UV-LED光固化机中在35nm的波长下进行光固化反应,十分钟后取出玻璃器皿,获得离子水凝胶5。
为更好体现本发明的进步性,下面对实施例1-5制得的离子水凝胶分别进行性能测试,测试方法为:用紫外分光光度计检测透光率,采用拉力机测试断裂伸长率,采用万用表测试电导率。测试结果详见表1。
表1、凝胶1-5的性能测试
Figure 947364DEST_PATH_IMAGE001
从表1可以看出,利用本发明制得的离子水凝胶不仅具有高透明、高拉伸性能,而且采用植酸(盐)的电导率可达0.2S/cm;远优于现有技术。
通过上述原理的描述,所属技术领域的技术人员应当理解,本发明不局限于上述的具体实施方式,在本发明基础上采用本领域公知技术的改进和替代均落在本发明的保护范围,本发明的保护范围应由各权利要求项及其等同物限定之。具体实施方式中未阐述的部分均为现有技术或公知常识。

Claims (6)

1.一种高透明、高拉伸、高导电离子水凝胶的制备方法,其特征在于,以植酸及其盐类作为离子导电剂兼稳定分散剂,复配设计出纳米锂藻土的稳定分散体系;该稳定分散体系的制备方法为:纳米锂藻土先溶于水中,然后依次加入稳定分散剂、单体、交联剂和引发剂形成透明溶液,最后对透明溶液进行光固化反应,获得高透明、高拉伸、高导电离子水凝胶;
在所述稳定分散体系中,按重量百分比计,纳米锂藻土0.5-5%,植酸及其盐类 0.5-35%,单体 3-30%,交联剂 0.001-1%,引发剂 0.01-1%,余量为水。
2.根据权利要求1所述的一种高透明、高拉伸、高导电离子水凝胶的制备方法,其特征在于,在所述稳定分散体系中,按重量百分比计,纳米锂藻土1-3%,植酸及其盐类 3-15%,单体 5-20%,交联剂 0.005-0.5%,引发剂 0.1-0.5%,余量为水。
3.根据权利要求1所述的一种高透明、高拉伸、高导电离子水凝胶的制备方法,其特征在于,所述植酸及其盐类为植酸及其钠盐和/或钾盐。
4.根据权利要求1所述的一种高透明、高拉伸、高导电离子水凝胶的制备方法,其特征在于,所述单体为丙烯酰胺、甲基丙烯酸羟乙酯、丙烯酸及其钠盐和/或钾盐、2-丙烯酰胺-2-甲基丙磺酸及其钠盐和/或钾盐中的一种或几种。
5.根据权利要求1所述的一种高透明、高拉伸、高导电离子水凝胶的制备方法,其特征在于,所述交联剂为N,N-亚甲基二丙烯酰胺、二丙烯酸酯类中的一种或几种。
6.根据权利要求1所述的一种高透明、高拉伸、高导电离子水凝胶的制备方法,其特征在于,所述引发剂为光引发剂。
CN202110283259.1A 2021-03-16 2021-03-16 一种高透明、高拉伸、高导电离子水凝胶的制备方法 Active CN113004459B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110283259.1A CN113004459B (zh) 2021-03-16 2021-03-16 一种高透明、高拉伸、高导电离子水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110283259.1A CN113004459B (zh) 2021-03-16 2021-03-16 一种高透明、高拉伸、高导电离子水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN113004459A CN113004459A (zh) 2021-06-22
CN113004459B true CN113004459B (zh) 2022-11-11

Family

ID=76408679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110283259.1A Active CN113004459B (zh) 2021-03-16 2021-03-16 一种高透明、高拉伸、高导电离子水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN113004459B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113797380B (zh) * 2021-08-30 2023-04-07 佛山职业技术学院 一种释氧敷料及其制备方法和应用
CN114213678A (zh) * 2021-11-25 2022-03-22 同济大学 高拉伸、自粘附、抗冻保水纳米复合导电水凝胶及制备方法和应用
CN114824285B (zh) * 2022-04-08 2024-03-19 南京邮电大学 一种本征高拉伸多功能聚合物离子导体及其制备方法与应用
CN115572394B (zh) * 2022-10-11 2024-04-23 佛山职业技术学院 一种高力学强度的水凝胶及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"A transparent Laponite polymer nanocomposite hydrogel synthesis via in-situ copolymerization of two ionic monomers";Peng Chen等;《Applied Clay Science》;20130301;第72卷;第196-200页 *
"Hybrid nanocomposite hydrogels with high strength and excellent self-recovery performance";Jia Yang等;《RSC Advances》;20160606;第6卷;第59131-59140页 *
"Simple preparation of carboxymethyl cellulose-based ionic conductive hydrogels for highly sensitive, stable and durable sensors";Chunyin Lu等;《Cellulose》;20210306;第28卷;第4253-4265页 *

Also Published As

Publication number Publication date
CN113004459A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
CN113004459B (zh) 一种高透明、高拉伸、高导电离子水凝胶的制备方法
CN107216467B (zh) 一种高强聚阴阳离子智能功能凝胶的制备方法
CN111019041A (zh) 高导电、可拉伸压缩、可修复的两性离子凝胶聚合物电解质及其制备、应用
CN108276522B (zh) 可3d打印的铁离子双交联海藻酸盐-聚丙烯酰胺丙烯酸高性能水凝胶的制备方法
CN110760152B (zh) 一种抗冻水凝胶及其制备方法与应用
JP5132278B2 (ja) 有機無機複合ヒドロゲルの製造方法
CN112185712A (zh) 一种咪唑类聚离子液体凝胶电解质及其制备方法
CN113549175A (zh) 一种多功能导电离子液体凝胶及其制备方法与应用
Wang et al. Multi‐Healable, Mechanically Durable Double Cross‐Linked Polyacrylamide Electrolyte Incorporating Hydrophobic Interactions for Dendrite‐Free Flexible Zinc‐Ion Batteries
CN110265232A (zh) 一种可自愈水凝胶电解质薄膜及其制备方法和应用
CN114349899B (zh) 一种自粘附导电凝胶及其制备方法
CN110595347A (zh) 一种低杨氏模量水凝胶柔性应变传感器
CN114015075B (zh) 一种基于纤维素自组装调控的强韧、透明水凝胶的制备方法
CN113012947B (zh) 一种水系固态电解质的制备方法及其应用
CN114805848A (zh) 有修复性和抗氧化性MXene基导电水凝胶的制备方法
Li et al. In situ polymerization induced supramolecular hydrogels of chitosan and poly (acrylic acid-acrylamide) with high toughness
CN113354768A (zh) 一种聚合物、水凝胶、负载型聚合物和负载型水凝胶
CN107880219B (zh) 一种力学性能和溶胀率可控的水凝胶及其制备方法与应用
CN115216028B (zh) 一种多功能导电水凝胶的制备方法与应用
CN108794686A (zh) 一种具有可逆电致变色透明水凝胶的制备方法
CN106866882A (zh) 一种多硼交联剂及扩散渗析专用阳离子膜的制备方法
CN114989332B (zh) 一种离子弹性体、制备方法和应用
CN115028767B (zh) 一种氧化石墨烯/聚合物复合抗冻水凝胶的制备方法和应用
CN113150316B (zh) 一种具有高强度、可拉伸的PAA-Fe3+/AG离子导电水凝胶的制备方法
CN115386042A (zh) 具有抗冻能力的双网络结构水凝胶电解质、制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240924

Address after: 101399 north of the third floor on the east side of plant 4, building 3, No. 1, shunqiang Road, Shunyi District, Beijing

Patentee after: Beijing maidis Medical Technology Co.,Ltd.

Country or region after: China

Address before: No.3, vocational education road, Leping Town, Sanshui District, Foshan City, Guangdong Province

Patentee before: FOSHAN POLYTECHNIC

Country or region before: China