CN112973795B - 一种改性海藻酸钠基光催化还原剂、制备方法及其应用 - Google Patents

一种改性海藻酸钠基光催化还原剂、制备方法及其应用 Download PDF

Info

Publication number
CN112973795B
CN112973795B CN202110304300.9A CN202110304300A CN112973795B CN 112973795 B CN112973795 B CN 112973795B CN 202110304300 A CN202110304300 A CN 202110304300A CN 112973795 B CN112973795 B CN 112973795B
Authority
CN
China
Prior art keywords
sodium alginate
reducer
photocatalytic
hexavalent chromium
modified sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110304300.9A
Other languages
English (en)
Other versions
CN112973795A (zh
Inventor
郭成
夏能伟
高翔鹏
孙亮
李明阳
孙又权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202110304300.9A priority Critical patent/CN112973795B/zh
Publication of CN112973795A publication Critical patent/CN112973795A/zh
Application granted granted Critical
Publication of CN112973795B publication Critical patent/CN112973795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明为一种改性海藻酸钠基光催化还原剂、制备方法及其应用,涉及废水处理技术领域,以戊二醛为交联剂将聚乙烯亚胺嫁接到海藻酸钠基体上,经过硝酸铁溶液进行固化,再置于烘箱中进行干燥,最终得到一种对六价铬具备优良吸附和光催化还原性能的多孔水凝胶材料;本发明所制备的海藻酸钠基光催化还原剂,采用溶胶‑凝胶法,生产工艺简单,制备条件温和,可用于处理高浓度的六价铬工业废水,在实际处理过程中具有操作简便,成本低廉,效率高的优点;此外,该发明所制备的光催化剂可延伸至用于处理含多种重金属离子,如三价砷、六价铬等混合工业废水,通过还原六价铬来提升对三价砷的氧化,拓宽有机光催化材料在实际工业生产中的多元化应用。

Description

一种改性海藻酸钠基光催化还原剂、制备方法及其应用
技术领域
本发明涉及废水处理技术领域,具体涉及一种改性海藻酸钠基光催化还原剂、制备方法及其应用。
背景技术
在传统的工业生产制造过程中,如皮革生产、电镀、钢铁冶金、木材防腐等行业中会产生大量的含重金属离子污染的工业废水,这些重金属离子在水体中具有较高的溶解度,部分金属离子具有很强的毒性且极难被降解,若处理不当排放到自然环境中,会严重危害到人类及动植物的生存环境。当前去除水溶液中重金属离子的方法主要有化学沉淀、电解、反渗透法等,然而这些传统的方法在处理过程中存在二次污染、成本高昂以及去除不彻底的缺陷。光催化还原去除水体中重金属离子是一种新兴的处理方法,其原理为在太阳光或紫外光的照射下激发光催化剂产生电子和空穴,进而可将水体中的有机污染物或高价态的金属离子进行降解或还原,具有绿色环保,成本低廉的优点。当前常见的光催化还原法处理工业废水所使用的催化剂一般为无机材料(如TiO2、ZnO、CdS等),然而这些材料对金属离子的吸附性能较差,因此光催化还原法对高浓度废水的处理能力受限。
海藻酸钠是一种可从藻类中提取的天然多糖,在褐藻中含量约为30~40%,具有来源广泛,价格低廉的特性。海藻酸钠分子链上含有大量的羟基和羧基基团,对水体中的金属离子具有一定的吸附特性,其在单独使用时可与金属离子(如Ca2+、Fe3+)等发生交联形成稳定性良好的水凝胶材料。目前利用海藻酸钠作为基底材料,通过聚乙烯亚胺和戊二醛进行化学改性后,并在增加紫外光的条件用于处理高浓度的Cr(VI)废水,目前尚未见相关文献报道。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
本发明的目的解决如何提高在较高浓度的工业废水中,对金属离子的吸附性能和吸附速率,进而提升在增加光源的情况下对高价态的金属离子还原性能的问题,提供了一种改性海藻酸钠基光催化还原剂、制备方法及其应用。
为了实现上述目的,本发明公开了一种改性海藻酸钠基光催化还原剂的制备方法,包括以下步骤:
S1:将聚乙烯亚胺溶解于去离子水中,然后加入海藻酸钠粉末,升温至55~60℃,匀速搅拌6h,得到混合凝胶;
S2:向步骤S1中得到的混合凝胶加入戊二醛溶液,将温度降至45~55℃,匀速搅拌反应12h,得到复合水凝胶;
S3:将步骤S2中得到的复合水凝胶滴入硝酸铁溶液中进行固化,得到水凝胶颗粒;
S4:将步骤S3中得到的水凝胶颗粒利用去离子反复冲洗3~5次,干燥后即得改性海藻酸钠基光催化还原剂。
所述步骤S1中聚乙烯亚胺和海藻酸钠粉末的质量比为1~3:2~3。
所述步骤S2中戊二醛溶液的体积分数为2~4%。
所述步骤S3中硝酸铁溶液质量分数为3~5%。
所述步骤S3中采用蠕动泵将复合水凝胶滴入硝酸铁溶液中,蠕动泵的流速为0.5~1mL/min,固化时间为12h。
所述步骤S4中干燥温度为30~50℃。
对合成后的改性海藻酸钠基光催化还原剂和海藻酸钠进行傅里叶红外光谱表征,进而分析本发明材料的合成机理。海藻酸钠分子量上含有大量的羟基和羧基基团,由于羟基和羧基基团存在不同的分子平面上,因此与三价铁离子交联时形成三维网状结构,即多孔结构。此外,由于电极极化导致羟基中的氧原子带有负电荷;聚乙烯亚胺中分子链上的胺基基团存在未共用电子对,具有亲核性;又因戊二醛分子上的羰基基团能发生共振效应,易于极性基团发生亲核加成反应;所以羟基和胺基分别与戊二醛上的羰基发生缩醛反应和席夫碱交联反应。
本发明还公开了一种采用上述制备方法制得的改性海藻酸钠基光催化还原剂,具有良好比表面积,可通过静电吸引吸附六价铬、三价砷、五价砷等阴离子化合物。
本发明还公开了一种上述改性海藻酸钠基光催化还原剂在混合六价铬和三价砷废水中的应用,通过静电吸引将六价铬阴离子化合物吸附到该催化剂上,然后在紫外光的照射下使得六价铬还原为三价,此外在六价铬还原的同时可协同促进三价砷的氧化。
与现有技术比较本发明的有益效果在于:
1、本发明使用聚乙烯亚胺和戊二醛对海藻酸钠进行改性,并在硝酸铁溶液中进行交联固化,制备出一种多孔的海藻酸钠基光催化还原剂,在紫外光照射的情况下可用于吸附-还原电镀厂产生的高浓度六价铬工业废水;
2、本发明以硝酸铁溶液固化改性后的海藻酸钠水凝胶材料,成功制备出一种含有均匀孔结构的凝胶颗粒,由此可以增大对高浓度工业废水中金属离子的吸附速率和吸附性能。此外,改性后的催化剂成功引入了大量的胺基基团,在酸性溶液易于质子化可对六价铬、三价砷、五价砷等阴离子化合物进行静电吸附;
3、本发明将三价铁与海藻酸钠基体上的羧基和羟基基团发生络合,在增加紫外光的条件下,可以激发羟基和羧基产生电子-空穴对,促进三价铁的还原,进而导致二价铁易于高价态金属阳离子发生氧化还原反应。此外,在六价铬和三价砷共存的条件下,六价铬还原为三价铬的同时可协同促进三价砷的氧化。
附图说明
图1为实施例1中的改性海藻酸钠基光催化还原剂表面扫描电镜图;
图2为实施例2中的改性海藻酸钠基光催化还原剂表面扫描电镜图;
图3为实施例3中的改性海藻酸钠基光催化还原剂表面扫描电镜图;
图4为本发明中的改性海藻酸钠基光催化还原剂和海藻酸钠的瞬时光电流图;
图5为本发明中的改性海藻酸钠基光催化还原剂和海藻酸钠的紫外漫反射光谱图;
图6为本发明中改性海藻酸钠基光催化还原剂的Zeta电势图。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例1
本实施例的一种改性海藻酸钠基光催化还原剂,包括以下步骤:
(1)将1g聚乙烯亚胺溶解于40mL去离子水中,然后加入2g海藻酸钠,升温到55℃,匀速搅拌反应6h;
(2)向上述混合凝胶中加入10mL体积分数为2%的戊二醛溶液,将温度降至45℃,匀速搅拌反应12h;
(3)将步骤(2)中复合水凝胶液体通过控制蠕动泵的流速为0.5mL/min,滴入质量分数为3%的硝酸铁溶液中进行固化12h;
(4)将步骤(3)中获得的水凝胶颗粒利用去离子反复冲洗5次,置于烘箱30℃进行干燥,即改性海藻酸钠基光催化还原剂。
实施例2
本实施例的一种改性海藻酸钠基光催化还原剂,包括以下步骤:
(1)将2g聚乙烯亚胺溶解于40mL去离子水中,然后加入3g海藻酸钠粉末,升温至60℃,匀速搅拌6h;
(2)向上述混合凝胶中加入10mL体积分数为3%的戊二醛溶液,将温度降至50℃,匀速搅拌反应12h;
(3)将步骤(2)中复合水凝胶液体通过控制蠕动泵的流速为0.75mL/min,滴入质量分数为4%的硝酸铁溶液中进行固化12h;
(4)将步骤(3)中获得的水凝胶颗粒利用去离子反复冲洗5次,置于烘箱40℃进行干燥,即改性海藻酸钠基光催化还原剂。
实施例3
本实施例的一种改性海藻酸钠基光催化还原剂,包括以下步骤:
(1)将3g聚乙烯亚胺溶解于40mL去离子水中,然后加入3g海藻酸钠粉末,升温至60℃,匀速搅拌6h;
(2)向上述混合凝胶中加入10mL体积分数为4%的戊二醛溶液,将温度降至55℃,匀速搅拌反应12h;
(3)将步骤(2)中复合水凝胶液体通过控制蠕动泵的流速为1mL/min,滴入质量分数为5%的硝酸铁溶液中进行固化12h;
(4)将步骤(3)中获得的水凝胶颗粒利用去离子反复冲洗5次,置于烘箱50℃进行干燥,即改性海藻酸钠基光催化还原剂。
吸附试验:配置pH为1和3两种不同的Cr(VI)标准溶液,浓度为100mg/L,取上述制备好的三种催化剂各200mg,分别置于不同pH值Cr(VI)溶液中,体积为200mL,在黑暗条件下静置吸附12h,标号分别为a1/a2/a3/b1/b2/b3,试验结果如表1所示。
光催化试验:配置pH为1的Cr(VI)标准溶液,浓度为100mg/L,取上述制备好的三种催化剂各200mg置于Cr(VI)标准液中,体积为200mL,在紫外光照射下进行光催化还原,每隔15min取样一次测量Cr(VI)和Cr(III)浓度,标号分别为c1/c2/c3/c4/c5/c6/d1/d2/d3/d4/d5/d6/e1/e2/e3/e4/e5/e6,试验结果如表2所示。
对比实验:配置pH为1的Cr(VI)标准溶液,浓度为100mg/L,选取最优型的制备方案所制备的改性海藻酸钠基光催化还原剂,分别在黑暗和紫外光照的条件下进行实验,其中在在黑暗条件和紫外光条件下分别每隔1h和15min取样一次检测Cr(VI)的浓度,标号分别为f1/f2/f3/f4/f5/f6/f7/f8/f9/f10/f11/f12//g1/g2/g3/g4/g5/g6/g7/g8/g9/g10/g11/g12,试验结果如表3所示。
检测分析:将最优选配方制备好的催化剂磨成粉末分别检测其瞬时光电流和对紫外光的吸收特性以及Zeta Potential分析;将做完吸附和光催化实验后的Cr(VI)标准液分别进行ICP和紫外分光光度计检测溶液中剩余六价铬和总铬的浓度;挑选形貌规整的吸附剂进行SEM分析。
图1、2、3分别为实施例1、2、3得到的改性海藻酸钠基光催化还原剂的表面电镜图,通过对比可知实施例1表面平整光滑,实施例2表面含有大量的细微褶皱,具有良好的比表面积,实施例3在较高的温度下干燥后表面开裂较为严重。由此将实施例2作为备选最优型制备方案。
表1吸附后溶液中六价铬的浓度
实施例1 a1 b1
Cr(VI)(mg/L) 12.63 23.95
实施例2 a2 b2
Cr(VI)(mg/L) 2.55 8.74
实施例3 a3 b3
Cr(VI)(mg/L) 8.21 17.45
由表1可知三种不同配方制备的改性海藻酸钠基光催化还原剂在pH为1时对Cr(VI)的去除能力均要比在pH为3时的性能优良,这是因为改性后催化剂上的胺基基团在较强的酸性条件下质子化能力较强,且通过比较可知实施例2对Cr(VI)的去除能力最佳。此外,实施例3表面开裂严重,在酸性溶液中的稳定性较差,更进一步将实施例2作为最优型制备方案。
表2光催化实验后溶液中剩余Cr(VI)和Cr(III)的浓度
实施例1 c1 c2 c3 c4 c5 c6
Cr(VI)(mg/L) 68.49 48.06 35.59 22.61 11.43 4.27
Cr(III)(mg/L) 22.63 39.72 51.53 63.19 72.81 78.96
实施例2 d1 d2 d3 d4 d5 d6
Cr(VI)(mg/L) 39.58 6.03 0.21 0.00 0.00 0.00
Cr(III)(mg/L) 50.46 80.88 89.91 91.20 92.33 95.61
实施例3 e1 e2 e3 e4 e5 e6
Cr(VI)(mg/L) 71.18 52.59 41.76 32.33 18.85 6.68
Cr(III)(mg/L) 18.45 35.54 46.59 58.01 71.32 80.53
通过对不同的实施例所制备的光催化剂进行光催化还原试验的结果可知,实施例2所制备的改性海藻酸钠基光催化还原剂在60min内基本上可将Cr(VI)完全去除,且随着光催化时间的延长,溶液中Cr(VI)还原为Cr(III)的浓度逐渐上升。此外,实施例2对Cr(VI)的吸附-催化还原能力要比实施例1和3性能显著。
表3实施例2在黑暗和紫外光条件下进行实验后溶液中剩余Cr(VI)的浓度
Figure GDA0004067890460000061
由表3可知,本发明的实施例2改性海藻酸钠基光催化还原剂,在黑暗条件下去除溶液中的Cr(VI)约需要12h,而在紫外光照射的条件下约在60min内去除溶液中的Cr(VI)。由此对比可知在增加紫外光的条件下去除Cr(VI)的效率约提升了12倍。
图4为海藻酸钠与实施例2的瞬时光电流图谱,通过比较可知经过实施例2改性后的海藻酸钠基光催化还原剂的光电流瞬时响应特性约为单一海藻酸钠的十倍左右。图5为海藻酸钠和改性后的海藻酸钠基光催化还原剂的紫外漫反射光谱,通过对比可知在波长范围为200~400nm内改性后材料对紫外光的吸收强度显著增强。图6为本实验所制备的改性海藻酸钠基光催化还原剂的Zeta电势图,由此知本材料在pH值较广的范围条件下呈表面正电性,可通过静电吸引去除溶液中Cr(VI)阴离子化合物。综合上述知,本发明材料在酸性及中性条件下首先对阴离子化合物进行静电吸引,随后在紫外光的照射下对Cr(VI)进行催化还原。
由以上试验结果可知,通过此方法制备的改性海藻酸钠基光催化还原剂对Cr(VI)具备高效的吸附-催化还原性能。并且该复合材料具有良好的光电流响应特性和对紫外光的吸收特性,因此可通过光催化还原法处理溶液中其它的高价态金属离子,在降低工业废水重金属污染方面具有良好应用前景和意义。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (4)

1.一种改性海藻酸钠基光催化还原剂在六价铬废水中的应用,其特征在于,所述改性海藻酸钠基光催化还原剂通过静电吸引将六价铬阴离子化合物吸附到该光催化还原剂上,然后在紫外光的照射下使得六价铬还原为三价;
所述改性海藻酸钠基光催化还原剂的制备方法包括以下步骤:
S1:将聚乙烯亚胺溶解于去离子水中,然后加入海藻酸钠粉末,升温至55~60℃,匀速搅拌6h,得到混合凝胶,聚乙烯亚胺和海藻酸钠粉末的质量比为1~3:2~3;
S2:向步骤S1中得到的混合凝胶加入体积分数为2~4%的戊二醛溶液,将温度降至45~55℃,匀速搅拌反应12h,得到复合水凝胶;
S3:将步骤S2中得到的复合水凝胶滴入硝酸铁溶液中进行固化,得到水凝胶颗粒;
S4:将步骤S3中得到的水凝胶颗粒利用去离子反复冲洗3~5次,干燥后即得改性海藻酸钠基光催化还原剂。
2.如权利要求1所述的一种改性海藻酸钠基光催化还原剂在六价铬废水中的应用,其特征在于,所述步骤S3中硝酸铁溶液质量分数为3~5%。
3.如权利要求1所述的一种改性海藻酸钠基光催化还原剂在六价铬废水中的应用,其特征在于,所述步骤S3中采用蠕动泵将复合水凝胶滴入硝酸铁溶液中,蠕动泵的流速为0.5~1mL/min,固化时间为12h。
4.如权利要求1所述的一种改性海藻酸钠基光催化还原剂在六价铬废水中的应用,其特征在于,所述步骤S4中干燥温度为30~50℃。
CN202110304300.9A 2021-03-22 2021-03-22 一种改性海藻酸钠基光催化还原剂、制备方法及其应用 Active CN112973795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110304300.9A CN112973795B (zh) 2021-03-22 2021-03-22 一种改性海藻酸钠基光催化还原剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110304300.9A CN112973795B (zh) 2021-03-22 2021-03-22 一种改性海藻酸钠基光催化还原剂、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN112973795A CN112973795A (zh) 2021-06-18
CN112973795B true CN112973795B (zh) 2023-05-19

Family

ID=76334335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110304300.9A Active CN112973795B (zh) 2021-03-22 2021-03-22 一种改性海藻酸钠基光催化还原剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112973795B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684675A (zh) * 2021-09-16 2021-11-23 义乌市艾丫贸易有限公司 一种用于纺织物的漂白稳定剂的制备方法
CN114618447B (zh) * 2021-09-30 2023-05-12 成都理工大学 聚乙烯亚胺-钛酸纳米管复合材料及其制备方法和应用
CN114471733B (zh) * 2021-12-16 2023-07-28 安徽欣创节能环保科技股份有限公司 一种改性海藻酸钠基光催化还原剂及其制备方法和应用
CN114471707B (zh) * 2021-12-23 2023-06-16 中国石油大学(华东) 含催化剂水凝胶球、其制备方法及其在光催化处理有机污染物方面的应用
CN114315380B (zh) * 2022-01-11 2023-01-06 湖南省博鼎建材有限公司 一种绿色环保除铬陶瓷减水剂
CN115178242B (zh) * 2022-06-28 2023-06-06 中国地质大学(武汉) 一种固定五价砷离子的吸附膜及其制备方法和应用
CN116393106A (zh) * 2023-02-27 2023-07-07 北方工业大学 一种改性海藻酸钠-sba-15复合材料的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103446899B (zh) * 2013-09-13 2015-05-06 天津工业大学 一种表层化学交联的海藻酸盐基有机无机杂化水凝胶过滤膜及其制备方法
CN108298629A (zh) * 2018-01-09 2018-07-20 中国科学院新疆理化技术研究所 一种高效吸附汞离子的复合材料的制备方法
CN108568314A (zh) * 2018-03-30 2018-09-25 华中科技大学 一种可见光响应型g-C3N4/PDI光催化剂、其制备方法和应用

Also Published As

Publication number Publication date
CN112973795A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
CN112973795B (zh) 一种改性海藻酸钠基光催化还原剂、制备方法及其应用
Mahmoodi et al. Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling
Preethi et al. Photo-reduction of Cr (VI) using chitosan supported zinc oxide materials
CN110538672A (zh) 一种复合可见光响应光催化剂材料及其制备方法和应用
Viet et al. Noble metal-doped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light
Cruz et al. Green synthesis of a magnetic hybrid adsorbent (CoFe2O4/NOM): Removal of chromium from industrial effluent and evaluation of the catalytic potential of recovered chromium ions
CN111359650B (zh) 铁、镍、钯共掺杂石墨相氮化碳复合催化剂的制备方法、产品及应用
CN111992255B (zh) 用于去除水中双酚A的片状g-C3N4/ZIF-8/AgBr复合材料及其制备方法
Hassan et al. Photocatalytic degradation of industrial dye using hybrid filler impregnated poly-sulfone membrane and optimizing the catalytic performance using Box-Behnken design
CN115196739A (zh) 一种提高染料废水中亚甲基蓝催化降解率的方法
CN108101147B (zh) 一种新型催化材料催化降解化工废水的方法
CN108640248B (zh) 一种利用基于碳基磁性铁钴双金属材料激活过一硫酸盐去除水中雌激素的方法
CN111977873B (zh) 一种光活海泡石Si-OH用于水溶性有机污染物吸附与光降解的方法
CN117205931A (zh) 铜掺杂的铁酸镧催化剂及其制备方法和在硝基苯类污染物中的应用
CN111234295B (zh) 一种分子印迹光催化材料及其制备方法和应用
Elhami et al. Process efficiency and life cycle assessment of novel waste-derived Chl/TiO2 photocatalyst for rhodamine B removal
Hamed et al. Cellulose Powder Functionalized with Phenyl Biguanide: Synthesis, Cross-Linking, Metal Adsorption, and Molecular Docking
CN111215116A (zh) 一种3d缺陷氮化碳光催化材料及其制备方法与用途
CN111392810A (zh) 一种协同光降解甲基橙和亚甲基蓝的方法
CN107243323B (zh) 一种磁性竹纤维基活性炭材料及其制备方法和应用
CN115121232A (zh) 一种二氧化钛自清洁膜及其制备方法与应用
CN107673441B (zh) 一种在紫外灯光源照射下对罗丹明b的降解方法
CN114471733B (zh) 一种改性海藻酸钠基光催化还原剂及其制备方法和应用
CN108246326B (zh) 一种锌/锑双组分负载型纳米碳化硅材料光催化去除甲醛的方法
CN112604669A (zh) 一种复合树脂气凝胶及其在污水处理中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant