CN112930409A - 具有高扩孔率的冷轧退火钢板及其制造方法 - Google Patents
具有高扩孔率的冷轧退火钢板及其制造方法 Download PDFInfo
- Publication number
- CN112930409A CN112930409A CN201880099124.6A CN201880099124A CN112930409A CN 112930409 A CN112930409 A CN 112930409A CN 201880099124 A CN201880099124 A CN 201880099124A CN 112930409 A CN112930409 A CN 112930409A
- Authority
- CN
- China
- Prior art keywords
- steel sheet
- equal
- temperature
- cold
- percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/02—Winding-up or coiling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
冷轧退火钢板,其化学组成按重量%计包含:0.30%≤C≤0.50%、1.00%≤Mn≤2.50%、1.00%≤Si≤2.00%、Al≤2.00%、Cr≤0.100%、0.100%≤Mo≤0.500%、0.020%≤Nb≤0.200%、B≤0.0005%、P≤0.02%、S≤0.005%、N≤0.01%、剩余部分的Fe和不可避免的杂质,其中碳、锰、铬、钼和硼的百分比使得合金满足以下条件:250%C+120%Mn–200%Cr+200%Mo–10000%B≥320,以及其中显微组织按表面分数计包含35%至45%的马氏体与残余奥氏体(M‑A)的岛,总残余奥氏体高于或等于24%,剩余部分由贝氏体铁素体组成。
Description
本发明涉及呈现主要包含贝氏体铁素体的显微组织的冷轧退火钢板。该钢板可以用于制造车辆的结构部件。
汽车工业的主要挑战之一是在不忽略安全要求的情况下减轻车辆的重量以减少CO2排放。炼钢行业不断开发新的高强度钢来满足这些要求。随着高强度钢在汽车应用中的使用增加,对具有增强的强度和改善的扩孔性能二者的钢的需求不断增长。因此,已经提出了几种提供各种强度等级的钢族。
在公开WO2015011554中,生产了具有高于900MPa的抗拉强度和高于700MPa的屈服强度的冷轧的钢板。该冷轧的钢板的显微组织包含13%至30%的马氏体与残余奥氏体的岛、13%至25%的残余奥氏体、剩余部分的贝氏体和铁素体。马氏体与残余奥氏体的岛的这一比例引起具有低于16%的均匀延伸率的低延展性的钢。
在公开WO2012164579中,生产了具有高于1300MPa的抗拉强度和高于20%的总延伸率的热轧的贝氏体钢板。该钢不含合金元素,但是为了改善钢的淬透性而添加了大量的铬。但是在焊接期间,通过与铬形成碳化物可能降低热影响区中钢的软化。
公开EP1676933描述了冷轧并退火的钢板,其具有高于1180MPa的抗拉强度,并且具有由大于90%的贝氏体铁素体和马氏体、以及至少3%的残余奥氏体组成的显微组织。该显微组织增加了钢的淬透性,但降低了延展性,其中延伸率低于15%。
在公开WO2014040585中,生产了低合金无碳化物的贝氏体钢,其中特别地,高含量的铬(其减缓了铁素体相转变)与铝的组合使得能够控制贝氏体和铁素体形成动力学。
因此,本发明的目的在于提供表现出高于1100MPa的抗拉强度、高于16%的均匀延伸率、以及高于15%的扩孔率的钢板。
在一个优选实施方案中,本发明的钢板表现出高于或等于24%的扩孔率。在一个优选实施方案中,本发明的钢板表现出高于1180MPa的抗拉强度。
该目的通过提供根据权利要求1的钢板来实现。该钢板还可以包括权利要求2至7的特征。另一个目的通过提供根据权利要求8至10的方法来实现。
本发明现在将更详细地进行描述,但是没有限制。
为了达到期望的显微组织特征和机械特征,化学组成和工艺参数是非常重要的。以重量百分比表示的钢的组成如下:
-0.30%≤C≤0.50%:如果碳含量低于0.30%,则残余奥氏体分数不足以实现大于16%的均匀延伸率。如果碳含量超过0.50%,则钢板的可焊接性可能降低。
-1.00%≤Mn≤2.50%:当锰含量小于1.00%时,总残余奥氏体不足以获得期望的机械特性。如果锰超过2.50%,则中心偏析的风险增加而损害屈服强度、抗拉强度和扩孔值。在本发明的一个优选实施方案中,锰含量为1.30%至2.10%,以限制偏析区域中的硬质相排列和微偏析的风险。
-1.00%≤Si≤2.00%:硅是用于液体阶段中的脱氧和用于实现固溶硬化的元素。硅含量必须高于1.00%以使残余奥氏体稳定。优选地,硅的含量高于1.4%。如果硅含量超过2.00%,则促进铁素体形成,并且无法实现期望的抗拉强度和延伸率。
-Al≤2.00%:铝的添加有助于在液体阶段中的有效脱氧并有利于铁素体的稳定化。铝含量被限制为2.00%以避免形成铁素体,由此获得本发明中要求的屈服强度水平和抗拉强度水平。优选地,铝含量低于1.00%,并且更优选地其低于0.50%,或者甚至低于0.10%。
-Cr≤0.100%:铬是使贝氏体转变动力学减慢并且阻碍最大分数的贝氏体的合金元素。其含量被限制为0.100%以使贝氏体分数最大化,因此确保残余奥氏体的良好稳定化并且限制马氏体的形成,因此获得本发明的机械特性。优选地,铬含量被限制为0.05%,并且更优选地,铬含量被限制为0.01%。
-0.100%≤Mo≤0.500%:钼是有利于残余奥氏体的稳定化的元素。低于0.100%,无法实现这样的有效效果。超过0.500%,贝氏体分数减少并促进马氏体形成,因此使板硬化并降低延展性。此外,相转变动力学将减慢。优选地,钼的含量低于0.400%,或者甚至低于0.300%,以避免不会在退火期间的均热步骤中溶解的碳化物的稳定化。
-0.020%≤Nb≤0.200%:铌是形成析出物、利用碳或氮硬化的微合金元素。然后显微组织被细化,产生更大的延展性。当铌含量小于0.020%时,无法实现这样的有效效果。然而,为了避免过度的硬化效果,铌含量被限制为0.200%。优选地,铌含量被限制为0.100%。
-B≤0.0005%:硼是使相转变减慢的元素。如果硼含量超过0.0005%,则贝氏体分数降低并且促进马氏体形成,由此使板硬化并降低延展性。
根据本发明,碳、锰、铬、钼和硼的百分比使得该合金满足以下条件:
250%C+120%Mn-200%Cr+200%Mo-10000%B≥320。碳、锰和钼是有利于残余奥氏体稳定化的元素,而铬和硼使相转变动力学减慢并且限制贝氏体分数。
-P≤0.02%:如果磷含量超过0.02%,则可能发生在晶界处的偏析,并且钢板的延伸率可能降低。
-S≤0.005%:硫含量被限制为0.005%,以减少对板延展性有害的硫化物的形成。
-N≤0.01%:如果氮含量超过0.01%,则某些元素可能在氮化物或碳氮化物的形式下以液体状态或固体状态析出。必须避免粗大的析出物,因为其降低钢板的延展性。
其余组成是铁和冶炼产生的不可避免的杂质如钛、铜、镍和钒,对钛、铜和镍的容差高达0.01%,对钒的容差高达0.005%。
现在将详细描述根据本发明的冷轧退火的轧制钢板的显微组织。
根据本发明,钢的显微组织按表面分数计包含35%至45%的马氏体与残余奥氏体(M-A)的岛。如果M-A含量低于35%,则总残余奥氏体含量不足以达到16%的均匀延伸率最小值。如果M-A含量超过45%,则由于形成过量马氏体的影响,扩孔率将降低。
根据本发明,钢的总残余奥氏体高于或等于24%,以获得期望的抗拉强度、均匀延伸率和扩孔率。
在一个优选实施方案中,钢的显微组织按表面分数计包含小于16%的马氏体。该马氏体是在过时效步骤之后的最终冷却期间形成的。如果马氏体分数高于16%,则钢板的扩孔率可能由于钢的淬透性增加而降低。
显微组织的剩余部分由贝氏体铁素体组成。
根据本发明的钢板可以通过任何合适的制造方法来生产,并且本领域技术人员可以限定一种制造方法。然而,优选使用根据本发明的方法,该方法包括以下步骤:
-提供具有上述组成的钢半成品,
-以1150℃至1300℃的温度加热所述钢半成品,从而获得再加热的钢半成品,
-以高于或等于800℃的终轧温度对所述再加热的钢半成品进行热轧,从而获得热轧的钢板,
-在400℃至590℃的温度T卷取下对热轧的钢板进行卷取,从而获得卷取的钢板,
-任选地,对所述卷取的钢板进行热处理,
-以30%至80%的压下率对卷取的钢板进行冷轧,从而获得冷轧的钢板,
-以2℃/秒至50℃/秒的加热速率VH将冷轧的钢板加热至高于Ac3+20℃且低于1000℃的均热温度T均热,保持高于60秒的持续时间t均热,从而获得退火的钢板,
-以20℃/秒至1000℃/秒的冷却速率VC将退火的钢板冷却至高于385℃且低于450℃的过时效温度TOA,
-将经冷却的退火的钢板在过时效温度TOA下保持高于或等于270秒的持续时间tOA。
根据本发明的钢板优选地通过以下方法生产:对由根据本发明的具有上述组成的钢制成的半成品例如板坯、薄板坯或带材进行铸造,在铸造之后将铸造输入储料(castinput stock)加热至1150℃至1300℃的温度,或者在这样的温度下直接使用,而无需进行中间冷却。
然后以高于或等于800℃的终轧温度对半成品进行热轧,从而获得热轧的钢板,以通过在带中形成铁素体而避免由缺乏延展性造成的任何开裂问题。
然后,在400℃至590℃的温度T卷取下对热轧的钢板进行卷取,从而获得卷取的钢板。如果卷取温度低于400℃,则冷却之后的钢的硬度增加。如果卷取的温度高于590℃,则可能形成不期望的表面氧化物。优选地,卷取温度为500℃至590℃。
可以在卷取之后添加酸洗步骤,以去除表面氧化物。
可以进行卷取的钢板的热处理至400℃至700℃的热处理温度θA,在所述热处理温度下的持续时间为30秒至200小时。考虑到长的持续时间适应于低温并且短的持续时间适应于高温,热处理的持续时间应与热处理温度相适应。
可以在热处理之后添加酸洗步骤,以去除表面氧化物。然后以30%至80%的压下率对钢进行冷轧,从而获得冷轧的钢板。
然后以2℃/秒至50℃/秒的加热速率VH加热冷轧的钢板。低于2℃/秒,不能避免深度脱碳,导致表面软化,因此不能实现期望的机械特性。高于50℃/秒,相转变会干扰重结晶,导致具有低延展性的部分未重结晶的显微组织。优选地,加热速率VH为10℃/秒至40℃/秒。
将冷轧的钢板加热达到高于Ac3+20℃且低于1000℃的均热温度T均热,保持高于60秒的持续时间t均热,从而获得退火的钢板。如果T均热低于Ac3+20℃,则促进铁素体形成,并且无法实现期望的显微组织,然后无法实现期望的机械特性。
Ac3温度由在Journal of the Iron and Steel Institute,203,721-727,1965中发表的Andrews所推导的公式来计算:
Ac3(℃)=910-203x(%C)^(1/2)-15,2x(%Ni)+44,7x(%Si)+104x(%V)+31,5x(%Mo)+13,1x(%W)-30x(%Mn)-11x(%Cr)-20x(%Cu)+700x(%P)+400×(%Al)+120×(%As)+400×(%Ti)
然而,如果温度T均热高于1000℃,则奥氏体晶粒尺寸过度增加,这对弹性特性具有不利影响。优选地,均热温度低于900℃。如果均热的持续时间短于60秒,则碳化物溶解将不充分。优选地,均热时间大于100秒。
在热处理之后,以高于20℃/秒(以避免铁素体形成)并且低于1000℃/秒的冷却速率VC对退火的钢板进行冷却,以达到385℃至450℃的过时效温度TOA,从而获得冷却的钢板。优选地,冷却速率低于500℃/秒,并且更优选地,低于100℃/秒。如果将钢加热至低于385℃的温度,则贝氏体的含量太大并且残余奥氏体的含量不足。均匀延伸率将无法达到目标值。相反,如果TOA高于450℃,则贝氏体含量太低,并且将出现过多的马氏体形成,这降低了延展性。
将钢在TOA温度下保持高于或等于270秒的持续时间tOA,以获得奥氏体的稳定化和M-A岛的细化。短于270秒的过时效持续时间限制了贝氏体的形成,因此阻碍了奥氏体的稳定化,并且因此促进了过量马氏体的形成,而降低了延展性。将该钢板冷却至室温。
在该最终冷却步骤之后,可以任选地对钢板进行金属涂覆操作,以改善其抗腐蚀保护性。所用的涂覆工艺可以是适用于本发明的钢的任何工艺。可以采用电解或物理气相沉积,其中特别强调喷射气相沉积。金属涂覆可以例如基于锌或铝。
现在将通过以下实施例来对本发明进行举例说明,所述实施例决不是限制性的。
实施例
半成品具有表1中详述的以重量百分比表示的组成。钢A至D对应于本发明的组成。
表2详述了已经应用的制造条件。试验1至5对应于本发明。
表3:热处理的最终钢板的显微组织特征。
带下划线的值:不对应于本发明。
热处理的钢板的显微组织在经Klemm蚀刻的抛光试样上进行确定,并用扫描电子显微镜来观察。通过X射线衍射和Rietveld细化来测量总残余奥氏体的表面分数,并通过图像分析来测量M-A岛的表面分数。表3中报道了组分的比例。表4汇总了最终的热处理钢板的机械特性。已经根据ISO 6892-1:2016确定了抗拉强度TS和均匀延伸率UEI。已经根据ISO16630:2017确定了扩孔率HER。
扩孔方法包括在冲压之前测量孔的初始直径Di(标称:10mm),然后在冲压之后在孔的边缘上沿板的厚度方向观察到贯通裂纹时确定孔的最终直径Df。扩孔率HER根据以下公式确定:HER=100*(Df-Di)/Di。因此,HER用于量化板在切孔的水平处承受冲压的能力。
试验 | TS(MPa) | UEI(%) | HER(%) |
1 | 1153 | 18 | 30 |
2 | 1165 | 21 | 19 |
3 | 1381 | 16 | 26 |
4 | 1212 | 18 | 24 |
5 | 1199 | 17 | 18 |
<u>6</u> | <u>931</u> | <u>14</u> | 37 |
<u>7</u> | <u>1097</u> | <u>14</u> | 21 |
<u>8</u> | 1428 | <u>12</u> | <u>3</u> |
<u>9</u> | 1108 | <u>15</u> | 25 |
<u>10</u> | 1358 | 16 | <u>8</u> |
<u>11</u> | 1422 | <u>15</u> | <u>2</u> |
<u>12</u> | 1189 | <u>11</u> | 28 |
<u>13</u> | <u>1076</u> | 23 | 21 |
<u>14</u> | 1321 | <u>13</u> | 20 |
<u>15</u> | 1286 | <u>14</u> | <u>7</u> |
表4:最终钢板的机械特性。
带下划线的值:未达到目标TS、UEL或HER值。
在试验1至5中,组成和制造条件对应于本发明。因此,获得了期望的显微组织和机械特性。试验6至13和15与本发明的组成不匹配。试验6至13具有非常小含量的作为残余奥氏体的稳定剂元素的钼。因此,未达到期望的总残余奥氏体水平,并且均匀延伸率降低。
此外,试验6和9不包含足够的用于细化显微组织的铌,导致低的均匀延伸率。
在试验8、10和11中,过量的硼以及尤其是过量的铬导致具有高的马氏体分数和低的总残余奥氏体分数的不期望的显微组织,这使显微组织的延展性降低,导致低的均匀延伸率。另外,大量的马氏体也阻碍了扩孔率,因为马氏体是脆性的并且在扩孔期间呈现出早期的损伤。
在试验15中,钢包含大量的硼。促进了马氏体的形成,减少了贝氏体的量,因此使板硬化并且降低了延展性。
在试验12和14中,过时效温度低于本发明的极限,使残余奥氏体的低水平加剧,这使显微组织的延展性降低,导致低的均匀延伸率。在试验13中,过时效的保持时间对于获得奥氏体的稳定化和M-A岛的细化而言太短。结果,钢板无法满足要求的机械特性。
Claims (11)
1.一种冷轧退火钢板,所述冷轧退火钢板的化学组成按重量%计包含:
0.30%≤C≤0.50%
1.00%≤Mn≤2.50%
1.00%≤Si≤2.00%
Al≤2.00%,
Cr≤0.100%,
0.100%≤Mo≤0.500%.
0.020%≤Nb≤0.200%
B≤0.0005%,
P≤0.02%.
S≤0.005%.
N≤0.01%,
剩余部分为Fe和不可避免的杂质,其中碳、锰、铬、钼和硼的百分比使得合金满足以下条件:
250%C+120%Mn-200%Cr+200%Mo-10000%B≥320.
以及其中显微组织按表面分数计包含35%至45%的马氏体与残余奥氏体(M-A)的岛,总残余奥氏体高于或等于24%,剩余部分由贝氏体铁素体组成。
2.根据权利要求1所述的钢板,其中锰含量为1.30%至2.10%。
3.根据权利要求1至2中任一项所述的钢板,其中钼含量为0.100%至0.400%。
4.根据权利要求1至3中任一项所述的钢板,其中显微组织按表面分数计包含小于16%的马氏体。
5.根据权利要求1至4中任一项所述的钢板,其中抗拉强度TS高于1100MPa,均匀延伸率UEI高于或等于16%,以及扩孔率高于15%。
6.根据权利要求1至5中任一项所述的钢板,其中扩孔率高于或等于24%。
7.根据权利要求1至6中任一项所述的钢板,其中抗拉强度TS高于1180MPa。
8.一种用于生产钢板的方法,包括以下步骤:
-提供具有根据权利要求1至3中任一项所述的组成的钢半成品,
-以1150℃至1300℃的温度加热所述钢半成品,从而获得再加热的钢半成品,
-以高于或等于800℃的终轧温度对所述再加热的钢半成品进行热轧,从而获得热轧的钢板,
-在400℃至590℃的温度T卷取下对所述热轧的钢板进行卷取,从而获得卷取的钢板,
-任选地,对所述卷取的钢板进行热处理,
-以30%至80%的压下率对所述卷取的钢板进行冷轧,从而获得冷轧的钢板,
-以2℃/秒至50℃/秒的加热速率VH将所述冷轧的钢板加热至高于Ac3+20℃且低于1000℃的均热温度T均热,保持高于60秒的持续时间t均热,从而获得退火的钢板,
-以20℃/秒至1000℃/秒的冷却速率VC将所述退火的钢板冷却至高于385℃且低于450℃的过时效温度TOA,
-将经冷却的退火的钢板在过时效温度TOA下保持高于或等于270秒的持续时间tOA。
9.根据权利要求8所述的方法,其中卷取温度为500℃至590℃。
10.根据权利要求8至9中任一项所述的方法,其中将所述卷取的钢板热处理至400℃至700℃的热处理温度θA,所述热处理的持续时间为30秒至200小时。
11.根据权利要求1至7中任一项所述的冷轧退火钢板或者根据权利要求8至10中任一项制造的冷轧退火钢板用于制造车辆的结构部件的用涂。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2018/059510 WO2020109850A1 (en) | 2018-11-30 | 2018-11-30 | Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112930409A true CN112930409A (zh) | 2021-06-08 |
CN112930409B CN112930409B (zh) | 2023-01-31 |
Family
ID=64902147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880099124.6A Active CN112930409B (zh) | 2018-11-30 | 2018-11-30 | 具有高扩孔率的冷轧退火钢板及其制造方法 |
Country Status (17)
Country | Link |
---|---|
US (1) | US20220010398A1 (zh) |
EP (1) | EP3887556B1 (zh) |
JP (1) | JP7213973B2 (zh) |
KR (1) | KR102544854B1 (zh) |
CN (1) | CN112930409B (zh) |
BR (1) | BR112021005688B1 (zh) |
CA (1) | CA3115030C (zh) |
ES (1) | ES2939457T3 (zh) |
FI (1) | FI3887556T3 (zh) |
HU (1) | HUE061197T2 (zh) |
MA (1) | MA54266B1 (zh) |
MX (1) | MX2021005866A (zh) |
PL (1) | PL3887556T3 (zh) |
RU (1) | RU2768717C1 (zh) |
UA (1) | UA126731C2 (zh) |
WO (1) | WO2020109850A1 (zh) |
ZA (1) | ZA202101829B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111647820B (zh) * | 2020-06-15 | 2022-01-11 | 山东建筑大学 | 一种先进高强度钢及其分段制备方法与应用 |
CN114107791B (zh) * | 2020-08-31 | 2023-06-13 | 宝山钢铁股份有限公司 | 一种980MPa级全贝氏体型超高扩孔钢及其制造方法 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617188A (ja) * | 1992-03-11 | 1994-01-25 | Nkk Corp | 加工性および溶接性に優れた耐摩耗鋼 |
CN103695618A (zh) * | 2013-12-16 | 2014-04-02 | 北京科技大学 | 一种制备亚微米复相钢的热机械处理方法 |
US20140120371A1 (en) * | 2011-06-07 | 2014-05-01 | Arcelormittal Investigacion Y Desarrollo Sl | Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate |
WO2015011554A1 (fr) * | 2013-07-24 | 2015-01-29 | Arcelormittal Investigación Y Desarrollo Sl | Tôle d'acier à très hautes caractéristiques mécaniques de résistance et de ductilité, procédé de fabrication et utilisation de telles tôles |
CN104388821A (zh) * | 2014-12-08 | 2015-03-04 | 钢铁研究总院 | TiC粒子增强型复相组织高塑性耐磨钢板及制造方法 |
WO2015151443A1 (ja) * | 2014-03-31 | 2015-10-08 | Jfeスチール株式会社 | 厚鋼板およびその製造方法 |
WO2016001706A1 (en) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability and obtained sheet |
CN105518175A (zh) * | 2013-08-22 | 2016-04-20 | 蒂森克虏伯钢铁欧洲股份公司 | 用于制造钢构件的方法 |
CN106661650A (zh) * | 2014-07-03 | 2017-05-10 | 安赛乐米塔尔公司 | 用于制造具有改进的可成形性和延展性的高强度钢板的方法及获得的板 |
WO2017108959A1 (en) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a high strength coated steel sheet having improved ductility and formability, and obtained coated steel sheet |
CN107002155A (zh) * | 2014-11-18 | 2017-08-01 | 安赛乐米塔尔公司 | 用于制造高强度钢产品的方法和由此获得的钢产品 |
CN107614732A (zh) * | 2015-06-10 | 2018-01-19 | 安赛乐米塔尔公司 | 高强度钢及生产方法 |
WO2018127984A1 (ja) * | 2017-01-06 | 2018-07-12 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
CN108463340A (zh) * | 2016-01-18 | 2018-08-28 | 安赛乐米塔尔公司 | 具有优异的可成形性的高强度钢板及其制造方法 |
CN108884512A (zh) * | 2015-12-21 | 2018-11-23 | 安赛乐米塔尔公司 | 用于生产具有改善的强度和可成形性的高强度钢板的方法以及所获得的高强度钢板 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4188581B2 (ja) * | 2001-01-31 | 2008-11-26 | 株式会社神戸製鋼所 | 加工性に優れた高強度鋼板およびその製造方法 |
JP4091894B2 (ja) * | 2003-04-14 | 2008-05-28 | 新日本製鐵株式会社 | 耐水素脆化、溶接性、穴拡げ性および延性に優れた高強度薄鋼板およびその製造方法 |
CA2531616A1 (en) | 2004-12-28 | 2006-06-28 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength thin steel sheet having high hydrogen embrittlement resisting property and high workability |
EP1990431A1 (fr) * | 2007-05-11 | 2008-11-12 | ArcelorMittal France | Procédé de fabrication de tôles d'acier laminées à froid et recuites à très haute résistance, et tôles ainsi produites |
JP5483859B2 (ja) * | 2008-10-31 | 2014-05-07 | 臼井国際産業株式会社 | 焼入性に優れた高強度鋼製加工品及びその製造方法、並びに高強度かつ耐衝撃特性及び耐内圧疲労特性に優れたディーゼルエンジン用燃料噴射管及びコモンレールの製造方法 |
JP5598157B2 (ja) * | 2010-08-20 | 2014-10-01 | 新日鐵住金株式会社 | 耐遅れ破壊特性及び衝突安全性に優れたホットプレス用鋼板及びその製造方法 |
WO2012164579A1 (en) | 2011-05-30 | 2012-12-06 | Tata Steel Limited | Bainitic steel of high strength and high elongation and method to manufacture said bainitic steel |
KR101601566B1 (ko) * | 2011-07-29 | 2016-03-08 | 신닛테츠스미킨 카부시키카이샤 | 성형성이 우수한 고강도 강판, 고강도 아연 도금 강판 및 그들의 제조 방법 |
IN2014CN04908A (zh) * | 2011-11-28 | 2015-09-18 | Arcelormittal Lnvestigacion Y Desarrollo S L | |
EP2895635B1 (de) | 2012-09-14 | 2019-03-06 | Mannesmann Precision Tubes GmbH | Stahllegierung für einen niedrig legierten, hochfesten stahl |
WO2015177582A1 (fr) * | 2014-05-20 | 2015-11-26 | Arcelormittal Investigación Y Desarrollo Sl | Tôle d'acier doublement recuite à hautes caractéristiques mécaniques de résistance et ductilité, procédé de fabrication et utilisation de telles tôles |
JP6179461B2 (ja) * | 2014-05-27 | 2017-08-16 | Jfeスチール株式会社 | 高強度鋼板の製造方法 |
CN105506478B (zh) * | 2014-09-26 | 2017-10-31 | 宝山钢铁股份有限公司 | 一种高成形性的冷轧超高强度钢板、钢带及其制造方法 |
JP6348436B2 (ja) * | 2015-02-27 | 2018-06-27 | 株式会社神戸製鋼所 | 高強度高延性鋼板 |
JP6472692B2 (ja) * | 2015-03-23 | 2019-02-20 | 株式会社神戸製鋼所 | 成形性に優れた高強度鋼板 |
JP6554396B2 (ja) * | 2015-03-31 | 2019-07-31 | 株式会社神戸製鋼所 | 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法 |
JP6620474B2 (ja) * | 2015-09-09 | 2019-12-18 | 日本製鉄株式会社 | 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 |
JP6696208B2 (ja) * | 2016-02-18 | 2020-05-20 | 日本製鉄株式会社 | 高強度鋼板の製造方法 |
JP6762868B2 (ja) * | 2016-03-31 | 2020-09-30 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
CN106636899B (zh) * | 2016-12-12 | 2018-08-03 | 东北大学 | 一种1000MPa级高扩孔型冷轧贝氏体钢的制造方法 |
WO2018203111A1 (en) * | 2017-05-05 | 2018-11-08 | Arcelormittal | Method for producing a high strength steel sheet having high ductility, formability and weldability, and obtained steel sheet |
WO2019092483A1 (en) * | 2017-11-10 | 2019-05-16 | Arcelormittal | Cold rolled and heat treated steel sheet and a method of manufacturing thereof |
-
2018
- 2018-11-30 CN CN201880099124.6A patent/CN112930409B/zh active Active
- 2018-11-30 FI FIEP18829480.5T patent/FI3887556T3/fi active
- 2018-11-30 PL PL18829480.5T patent/PL3887556T3/pl unknown
- 2018-11-30 RU RU2021118946A patent/RU2768717C1/ru active
- 2018-11-30 MX MX2021005866A patent/MX2021005866A/es unknown
- 2018-11-30 HU HUE18829480A patent/HUE061197T2/hu unknown
- 2018-11-30 JP JP2021527170A patent/JP7213973B2/ja active Active
- 2018-11-30 ES ES18829480T patent/ES2939457T3/es active Active
- 2018-11-30 BR BR112021005688-2A patent/BR112021005688B1/pt active IP Right Grant
- 2018-11-30 MA MA54266A patent/MA54266B1/fr unknown
- 2018-11-30 WO PCT/IB2018/059510 patent/WO2020109850A1/en active Application Filing
- 2018-11-30 CA CA3115030A patent/CA3115030C/en active Active
- 2018-11-30 EP EP18829480.5A patent/EP3887556B1/en active Active
- 2018-11-30 KR KR1020217012757A patent/KR102544854B1/ko active IP Right Grant
- 2018-11-30 US US17/294,173 patent/US20220010398A1/en active Pending
- 2018-11-30 UA UAA202103667A patent/UA126731C2/uk unknown
-
2021
- 2021-03-18 ZA ZA2021/01829A patent/ZA202101829B/en unknown
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617188A (ja) * | 1992-03-11 | 1994-01-25 | Nkk Corp | 加工性および溶接性に優れた耐摩耗鋼 |
JP2014523478A (ja) * | 2011-06-07 | 2014-09-11 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | 亜鉛または亜鉛合金で被覆された冷延鋼板、この製造方法、およびかかる鋼板の使用 |
US20140120371A1 (en) * | 2011-06-07 | 2014-05-01 | Arcelormittal Investigacion Y Desarrollo Sl | Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate |
CN105408503A (zh) * | 2013-07-24 | 2016-03-16 | 安赛乐米塔尔研发有限公司 | 具有极高的强度及延展性机械性能的钢板、其制造方法及用途 |
WO2015011554A1 (fr) * | 2013-07-24 | 2015-01-29 | Arcelormittal Investigación Y Desarrollo Sl | Tôle d'acier à très hautes caractéristiques mécaniques de résistance et de ductilité, procédé de fabrication et utilisation de telles tôles |
CN105518175A (zh) * | 2013-08-22 | 2016-04-20 | 蒂森克虏伯钢铁欧洲股份公司 | 用于制造钢构件的方法 |
CN103695618A (zh) * | 2013-12-16 | 2014-04-02 | 北京科技大学 | 一种制备亚微米复相钢的热机械处理方法 |
WO2015151443A1 (ja) * | 2014-03-31 | 2015-10-08 | Jfeスチール株式会社 | 厚鋼板およびその製造方法 |
CN106661650A (zh) * | 2014-07-03 | 2017-05-10 | 安赛乐米塔尔公司 | 用于制造具有改进的可成形性和延展性的高强度钢板的方法及获得的板 |
WO2016001706A1 (en) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability and obtained sheet |
CN107002155A (zh) * | 2014-11-18 | 2017-08-01 | 安赛乐米塔尔公司 | 用于制造高强度钢产品的方法和由此获得的钢产品 |
CN104388821A (zh) * | 2014-12-08 | 2015-03-04 | 钢铁研究总院 | TiC粒子增强型复相组织高塑性耐磨钢板及制造方法 |
CN107614732A (zh) * | 2015-06-10 | 2018-01-19 | 安赛乐米塔尔公司 | 高强度钢及生产方法 |
WO2017108959A1 (en) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a high strength coated steel sheet having improved ductility and formability, and obtained coated steel sheet |
CN108884512A (zh) * | 2015-12-21 | 2018-11-23 | 安赛乐米塔尔公司 | 用于生产具有改善的强度和可成形性的高强度钢板的方法以及所获得的高强度钢板 |
CN108463340A (zh) * | 2016-01-18 | 2018-08-28 | 安赛乐米塔尔公司 | 具有优异的可成形性的高强度钢板及其制造方法 |
WO2018127984A1 (ja) * | 2017-01-06 | 2018-07-12 | Jfeスチール株式会社 | 高強度冷延鋼板およびその製造方法 |
Non-Patent Citations (3)
Title |
---|
C.P.SCOTT 等: "New insights into martensite strength and the damage behaviour of dual phase steels", 《ACTA MATERIALIA》, 15 October 2018 (2018-10-15), pages 112 - 122 * |
吴迪等: "超高强铁素体/贝氏体双相钢的控轧控冷", 《钢铁》, no. 08, 15 August 2012 (2012-08-15), pages 36 - 42 * |
曾松盛等: "碳配分时间和锰含量对VC_p增强耐磨合金奥氏体含量和性能的影响", 《金属热处理》, no. 11, 25 November 2018 (2018-11-25), pages 113 - 118 * |
Also Published As
Publication number | Publication date |
---|---|
ES2939457T3 (es) | 2023-04-24 |
FI3887556T3 (fi) | 2023-03-25 |
UA126731C2 (uk) | 2023-01-11 |
PL3887556T3 (pl) | 2023-05-15 |
MA54266B1 (fr) | 2023-03-31 |
JP2022510809A (ja) | 2022-01-28 |
EP3887556B1 (en) | 2023-02-01 |
CN112930409B (zh) | 2023-01-31 |
MA54266A (fr) | 2022-03-09 |
KR20210068090A (ko) | 2021-06-08 |
CA3115030A1 (en) | 2020-06-04 |
RU2768717C1 (ru) | 2022-03-24 |
EP3887556A1 (en) | 2021-10-06 |
MX2021005866A (es) | 2021-07-16 |
ZA202101829B (en) | 2022-01-26 |
JP7213973B2 (ja) | 2023-01-27 |
HUE061197T2 (hu) | 2023-05-28 |
CA3115030C (en) | 2023-06-27 |
BR112021005688B1 (pt) | 2023-05-02 |
BR112021005688A2 (pt) | 2021-06-22 |
KR102544854B1 (ko) | 2023-06-19 |
US20220010398A1 (en) | 2022-01-13 |
WO2020109850A1 (en) | 2020-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3135015C (en) | Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof | |
RU2606361C2 (ru) | Стальной лист с высокой механической прочностью, пластичностью и формуемостью, способ изготовления и применение таких листов | |
US10752968B2 (en) | Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor | |
CN112752862B (zh) | 具有高扩孔性的高强度冷轧钢板、高强度热浸镀锌钢板及它们的制造方法 | |
JP2020509208A (ja) | 降伏比が低く均一伸びに優れた焼戻しマルテンサイト鋼及びその製造方法 | |
KR20150023566A (ko) | 강, 강판 제품 및 강판 제품을 제조하기 위한 방법 | |
JP7239685B2 (ja) | 穴広げ率の高い熱間圧延鋼板及びその製造方法 | |
CN112673122A (zh) | 屈强比优异的超高强度高延展性钢板及其制造方法 | |
KR101714930B1 (ko) | 구멍확장성이 우수한 초고강도 강판 및 그 제조방법 | |
CN112930409B (zh) | 具有高扩孔率的冷轧退火钢板及其制造方法 | |
CN113825854B (zh) | 具有超高强度的冷轧钢板及其制造方法 | |
JP6843245B2 (ja) | 曲げ性及び伸びフランジ性に優れた高張力亜鉛系めっき鋼板及びその製造方法 | |
KR20150001469A (ko) | 고강도 냉연강판 및 그 제조 방법 | |
KR20120132834A (ko) | 고강도 냉연강판 및 그 제조 방법 | |
CN114080463A (zh) | 高强度钢板及其制造方法 | |
KR20200062428A (ko) | 냉연 도금 강판 및 그 제조방법 | |
KR101412311B1 (ko) | 고강도 냉연강판 제조 방법 | |
KR101185269B1 (ko) | 버링 가공성이 우수한 780MPa급 고강도 냉연강판 및 그 제조 방법 | |
JP2024526116A (ja) | 曲げ特性に優れた高降伏比超高強度鋼板及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |