CN112912077A - 用于治疗三阴性乳腺癌的组合疗法 - Google Patents

用于治疗三阴性乳腺癌的组合疗法 Download PDF

Info

Publication number
CN112912077A
CN112912077A CN201980059875.XA CN201980059875A CN112912077A CN 112912077 A CN112912077 A CN 112912077A CN 201980059875 A CN201980059875 A CN 201980059875A CN 112912077 A CN112912077 A CN 112912077A
Authority
CN
China
Prior art keywords
compound
breast cancer
individual
group
pyridin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980059875.XA
Other languages
English (en)
Other versions
CN112912077B (zh
Inventor
艾立克·坎珀
劳拉·辻川
桑杰·拉霍堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengyi Biomedical Technology Shanghai Co Ltd
Original Assignee
Hengyi Biomedical Technology Shanghai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengyi Biomedical Technology Shanghai Co Ltd filed Critical Hengyi Biomedical Technology Shanghai Co Ltd
Publication of CN112912077A publication Critical patent/CN112912077A/zh
Application granted granted Critical
Publication of CN112912077B publication Critical patent/CN112912077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/4161,2-Diazoles condensed with carbocyclic ring systems, e.g. indazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41661,3-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. phenytoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4525Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/502Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with carbocyclic ring systems, e.g. cinnoline, phthalazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/5025Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明提供用于治疗三阴性乳腺癌(TB‑NC)的方法,所述方法通过向有需要的个体共施用BET溴结构域抑制剂与第二治疗剂,所述BET溴结构域抑制剂选自:1‑苯甲基‑6‑(3,5‑二甲基异噁唑‑4‑基)‑N‑甲基‑1H‑咪唑并[4,5‑b]吡啶‑2‑胺(化合物I)、1‑苯甲基‑6‑(3,5‑二甲基异噁唑‑4‑基)‑1H‑咪唑并[4,5‑b]吡啶‑2‑胺,和其药学上可接受的盐/共晶体。所述第二治疗剂是PARP抑制剂,优选他拉唑帕尼、奥拉帕尼或维利帕尼。

Description

用于治疗三阴性乳腺癌的组合疗法
发明领域
发明涉及乳腺癌的治疗。
背景技术
三阴性乳腺癌(triple-negative breast cancer,TNBC)占所有乳腺癌的约10%至20%,所述三阴性乳腺癌由雌激素受体(“ER”)和孕酮受体(“PR”)表达的缺乏和人类表皮生长因子受体2(“HER2”)过度表达和扩增的缺失所定义。相较于其他类型的乳腺癌,TNBC患者的总体预后较差,早期远程复发和死亡的可能性更大(Bauer等人,2007)。转移性疾病体现为内脏和中枢神经转移率高,中值存活期约为1年(Kassam等人,2009)。因此迫切需要新型治疗策略。
疾病生物学的最近发展可提供将此异质实体分类成具有不同驱动子的分子亚型的机会(Bareche等人,2018)。特定来说,患有乳腺癌和生殖系BRCA1和BRCA2突变的患者受益于用一类称为聚(ADP-核糖)聚合酶(PARP)抑制剂的靶向剂进行的治疗,所述PARP抑制剂靶向碱基切除式修复(DNA修复机制)且在具有DNA修复机制(例如同源重组)缺陷的肿瘤中导致合成杀伤力。实际上,募集具有生殖系BRCA1或BRCA2突变的转移性乳腺癌患者的两次3期试验已报道了用PARP抑制剂奥拉帕尼(Olaparib)(Robson等人,2017)和他拉唑帕尼(Talazoparib)(Litton等人,2017)相对于标准化学疗法的阳性结果。根据这些结果,由美国FDA审批通过的奥拉帕尼用于治疗生殖系BRCA突变型转移性乳腺癌。
即使TNBC中BRCA1和BRCA2突变的发病率较高(在一些群体中高达24%)(Copson等人,2018),绝大部分患有TNBC的患者不携带生殖系BRCA1或BRCA2突变,且因此无法受益于PARP抑制剂的治疗(O'Shaughnessy等人,2014)。
在临床前环境中,组合策略有望使BRCA有效的肿瘤对PARP抑制剂敏感,且已用一些溴结构域和外末端域(BET)抑制剂产生了新数据。BET蛋白质为表观遗传阅读器且展现出针对组蛋白和其他蛋白质中的乙酰化赖氨酸残基的高选择性。其通过与许多基因启动子或强化子结合来充当转录调节因子。使用BET抑制剂(BETi)的早期临床试验显示,在患有血液科恶性疾病(Berthon等人,2016)、NUT癌(Stathis等人,2016)和最近的实体瘤(Aftimos等人,2017)的患者中有限的单一药剂活性。然而,有望将BETi与其他药剂组合,因为其调节抗性机制且赋予对各种药剂的敏感性。BETi正在进行若干探索性组合临床试验,包括与检查点单克隆抗体、雄激素受体拮抗剂、雌激素调节剂、BCL2抑制剂和其他的组合。
然而,目前尚不清楚何种BET抑制剂将与PARP抑制剂协同组合;需要何种水平的协同作用;和对于每种BET抑制剂,何种PARP抑制剂将为最佳组合搭配物,从而当向患有TNBC的患者施用时产生临床益处。除临床益处以外,组合还必须安全且在有效剂量下具有良好耐受性。无法从所属领域预测何种组合将展现出最佳总体概况。
发明内容
本发明公开治疗三阴性乳腺癌的方法,所述方法通过向有需要的个体共施用式Ia或式Ib的BET溴结构域抑制剂、或其药学上可接受的盐或共晶体,与第二治疗剂。
在一些实施方式中,BET溴结构域抑制剂与第二治疗剂同时施用。在一些实施方式中,BET溴结构域抑制剂与第二治疗剂依序施用。在一些实施方式中,BET溴结构域抑制剂以单一药物组合物形式与第二治疗剂施用。在一些实施方式中,BET溴结构域抑制剂和第二治疗剂以单独组合物形式施用。在一些实施方式中,BET溴结构域抑制剂和第二治疗剂与检查点抑制剂组合施用。
在一些实施方式中,第二治疗剂为用于治疗乳腺癌的药剂。在一些实施方式中,乳腺癌为TNBC。
在一些实施方式中,第二治疗剂为PARP抑制剂。
在一些实施方式中,BET溴结构域抑制剂和PARP抑制剂与检查点抑制剂组合施用。
用于本发明的组合疗法中的BET溴结构域抑制剂为一种式Ia或式Ib所示的化合物
Figure BDA0002973431330000021
或其立体异构体、互变异构体、药学上可接受的盐或共晶体,
其中:
环A和环B可任选地经独立地选自以下的基团取代:氢、氘、-NH2、氨基、杂环(C4-C6)、碳环(C4-C6)、卤素、-CN、-OH、-CF3、烷基(C1-C6)、硫代烷基(C1-C6)、烯基(C2-C6)和烷氧基(C1-C6);
X选自:-NH-、-CH2-、-CH2CH2-、-CH2CH2CH2-、-CH2CH2O-、-CH2CH2NH-、-CH2CH2S-、-C(O)-、-C(O)CH2-、-C(O)CH2CH2-、-CH2C(O)-、-CH2CH2C(O)-、-C(O)NH-、-C(O)O-、-C(O)S-、-C(O)NHCH2-、-C(O)OCH2-、-C(O)SCH2-,其中一个或多个氢可独立地经氘、羟基、甲基、卤素、-CF3、酮置换,并且其中S可氧化成亚砜或砜;
R4选自任选地经取代的3元至7元碳环和杂环;和
D1选自以下5元单环杂环:
Figure BDA0002973431330000031
其任选地经氘、烷基(C1-C4)、烷氧基(C1-C4)、氨基、卤素、酰胺、-CF3、-CN、-N3、酮(C1-C4)、-S(O)烷基(C1-C4)、-SO2烷基(C1-C4)、-硫代烷基(C1-C4)、-COOH和/或酯取代,其中的每一个可任选地经氢、F、Cl、Br、-OH、-NH2、-NHMe、-OMe、-SMe、氧代基和/或硫基-氧代基取代。
在一些实施方式中,用于本发明的组合疗法中的BET溴结构域抑制剂为一种式Ia的化合物。在一些实施方式中,式Ia的化合物为:1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-N-甲基-1H-咪唑并[4,5-b]吡啶-2-胺(“化合物I”),其具有以下式:
Figure BDA0002973431330000032
在一些实施方式中,式Ia的BET溴结构域抑制剂为化合物I的药学上可接受的盐或共晶体。在一些实施方式中,BET溴结构域抑制剂为呈结晶形式I的化合物I的甲磺酸盐/共晶体。
附图说明
图1展示了化合物I、他拉唑帕尼和化合物I与他拉唑帕尼的组合对TNBC HCC1937细胞(突变BRCA1)的细胞生存力的影响。
图2展示了化合物I、奥拉帕尼和化合物I与奥拉帕尼的组合对TNBC HCC1937细胞(突变BRCA1)的细胞生存力的影响。
图3展示了化合物I、维利帕尼(veliparib)和化合物I与维利帕尼的组合对TNBC细胞系HCC1937(BRCA1突变)的细胞生存力的影响。
图4展示了化合物I、奥拉帕尼和化合物I与奥拉帕尼的组合对TNBC HCC1599细胞(突变BRCA2)的细胞生存力的影响。
图5展示了化合物I、他拉唑帕尼和化合物I与他拉唑帕尼的组合对TNBC BT549细胞(野生型BRCA1和BRCA2)的细胞生存力的影响。
图6展示了化合物I、维利帕尼和化合物I与维利帕尼的组合对TNBC BT549细胞(野生型BRCA1和BRCA2)的细胞生存力的影响。
图7展示了化合物I、奥拉帕尼和化合物I与奥拉帕尼的组合对TNBC BT549细胞(野生型BRCA1和BRCA2)的细胞生存力的影响。
图8展示了化合物I、尼拉帕尼(niraparib)和化合物I与尼拉帕尼的组合对HCC-70细胞(野生型BRCA-1和BRCA-2)的细胞生存力的影响。
图9展示了化合物I的甲磺酸盐/共晶体的X射线粉末衍射图(XRPD)。
图10展示了化合物I的甲磺酸盐/共晶体的差示扫描量热计(DSC)曲线。
图11展示了化合物I的甲磺酸盐/共晶体的热解重量分析(TGA)。
图12A展示了mCRPC患者对化合物I与恩杂鲁胺(enzalutamide)的组合的反应诱导肿瘤中的免疫反应。在前化合物I与后化合物I样品中连续存在恩杂鲁胺。图12B展示了在肿瘤中上调的一些免疫反应基因。
具体实施方式
定义
如本文所用,“治疗(treatment/treating)”是指改善疾病或病症,或其至少一个可辨别的症状。在另一实施方式中,“治疗(treatment/treating)”是指改善患者未必能辨别的至少一个可测量的物理参数。在另一实施方式中,“治疗(treatment/treating)”是指在物理上抑制疾病或病症的进展,例如稳定可辨别的症状,或生理上抑制疾病或病症的进展,例如稳定物理参数,或二者兼具。在另一实施方式中,“治疗(treatment/treating)”是指延迟疾病或病症的发作。
“任选的”或“任选地”意味着随后描述的事件或情况可能发生或可能不发生,并且意味着所述描述包括事件或情况发生的例子和其不发生的例子。举例来说,“任选地经取代的芳基”涵盖下文所定义的“芳基”和“经取代的芳基”。所属领域技术人员应了解,对于含有一个或多个取代基的任何基团,这类基团不打算引入空间上不切实际、合成上不可行和/或本身不稳定的任何取代或取代模式。
如本文所用,术语“水合物”是指将化学计量或非化学计量的量的水的晶体形式并入晶体结构中。
如本文所用,术语“烯基”是指具有至少一个碳-碳双键的不饱和的直链或分支链烃,例如2至8个碳原子的直链或分支链基团,在本文中称为(C2-C8)烯基。示例性烯基包括(但不限于):乙烯基、烯丙基、丁烯基、戊烯基、己烯基、丁二烯基、戊二烯基、己二烯基、2-乙基己烯基、2-丙基-2-丁烯基和4-(2-甲基-3-丁烯)-戊烯基。
如本文所用,术语“烷氧基”是指连接至氧的烷基(-O-烷基-)。“烷氧基”还包括连接至氧的烯基(“烯基氧基”)或连接至氧的炔基(“炔基氧基”)。示例性烷氧基包括(但不限于):具有1至8个碳原子的烷基、烯基或炔基的基团,在本文中称为(C1-C8)烷氧基。示例性烷氧基包括(但不限于)甲氧基和乙氧基。
如本文所用,术语“烷基”是指饱和的直链或分支链烃,例如1至8个碳原子的直链或分支链基团,在本文中称为(C1-C8)烷基。示例性烷基包括(但不限于):甲基、乙基、丙基、异丙基、2-甲基-1-丙基、2-甲基-2-丙基、2-甲基-1-丁基、3-甲基-1-丁基、2-甲基-3-丁基、2,2-二甲基-1-丙基、2-甲基-1-戊基、3-甲基-1-戊基、4-甲基-1-戊基、2-甲基-2-戊基、3-甲基-2-戊基、4-甲基-2-戊基、2,2-二甲基-1-丁基、3,3-二甲基-1-丁基、2-乙基-1-丁基、丁基、异丁基、叔丁基、戊基、异戊基、新戊基、己基、庚基和辛基。
如本文所用,术语“酰胺”是指-NRaC(O)(Rb)或-C(O)NRbRc,其中Ra、Rb和Rc各独立地选自:烷基、烯基、炔基、芳基、芳基烷基、环烷基、卤代烷基、杂芳基、杂环基和氢。酰胺可通过碳、氮、Ra、Rb或Rc连接至另一基团。酰胺还可以是环状的,例如Rb与Rc可结合形成3元至8元环,例如5元或6元环。术语“酰胺”涵盖例如以下的基团:磺酰胺、脲、脲基、氨基甲酸酯、氨基甲酸和其环状形式。术语“酰胺”还涵盖连接至羧基的酰胺基(例如-酰胺-COOH或盐,例如-酰胺-COONa)、连接至羧基的氨基(例如-氨基-COOH或盐,例如-氨基-COONa)。
如本文所用,术语“胺”或“氨基”是指-NRdRe或-N(Rd)Re-形式,其中Rd和Re独立地选自:烷基、烯基、炔基、芳基、芳基烷基、氨基甲酸酯、环烷基、卤代烷基、杂芳基、杂环和氢。氨基可通过氮连接至母分子基团。氨基还可以是环状的,例如Rd与Re中的任何两个可结合在一起或与N结合形成3元至12元环(例如吗啉基或哌啶基)。术语氨基还包括任何氨基的对应的季铵盐。示例性氨基包括烷基氨基,其中Rd或Re中的至少一个是烷基。在一些实施方式中,Rd和Re各自可任选地经羟基、卤素、烷氧基、酯或氨基取代。
如本文所用,术语“芳基”是指单环、双环或其他多碳环芳环系统。芳基可任选地稠合至选自芳基、环烷基和杂环基的一个或多个环。本公开的芳基可经选自以下的基团取代:烷氧基、芳氧基、烷基、烯基、炔基、酰胺、氨基、芳基、芳基烷基、氨基甲酸酯、羧基、氰基、环烷基、酯、醚、甲酰基、卤素、卤代烷基、杂芳基、杂环基、羟基、酮、硝基、磷酸酯基、硫基、亚磺酰基、磺酰基、磺酸、磺酰胺和硫酮。示例性芳基包括(但不限于):苯基、甲苯基、蒽基、芴基、茚基、薁基和萘基,以及苯并稠合的碳环部分,例如5,6,7,8-四氢萘基。示例性芳基还包括(但不限于):单环芳环系统,其中环包含6个碳原子,在本文中称为“(C6)芳基”。
如本文所用,术语“芳基烷基”是指具有至少一个芳基取代基的烷基(例如,-芳基-烷基-)。示例性芳基烷基包括(但不限于):具有单环芳环系统的芳基烷基,其中环包含6个碳原子,在本文中称为“(C6)芳基烷基”。
如本文所用,术语“氨基甲酸酯”是指-RgOC(O)N(Rh)-、-RgOC(O)N(Rh)Ri-或-OC(O)NRhRi形式,其中Rg、Rh和Ri各自独立地选自烷基、烯基、炔基、芳基、芳基烷基、环烷基、卤代烷基、杂芳基、杂环基和氢。示例性氨基甲酸酯包括(但不限于):氨基甲酸芳基酯或氨基甲酸杂芳基酯(例如其中Rg、Rh和Ri中的至少一个独立地选自芳基或杂芳基,例如吡啶、哒嗪、嘧啶和吡嗪)。
如本文所用,术语“碳环”是指芳基或环烷基。
如本文所用,术语“羧基”是指-COOH或其相应的羧酸盐(例如,-COONa)。术语羧基还包括“羧基羰基”,例如连接至羰基的羧基,例如-C(O)-COOH或盐,例如-C(O)-COONa。
如本文所用,术语“环烷氧基”是指连接至氧的环烷基。
如本文所用,术语“环烷基”是指由环烷衍生的3至12个碳或3至8个碳的饱和或不饱和的环状、双环或桥接双环状烃基,在本文中称为“(C3-C8)环烷基”。示例性环烷基包括(但不限于):环己烷、环己烯、环戊烷和环戊烯。环烷基可经以下的基团取代:烷氧基、芳氧基、烷基、烯基、炔基、酰胺、氨基、芳基、芳基烷基、氨基甲酸酯、羧基、氰基、环烷基、酯、醚、甲酰基、卤素、卤代烷基、杂芳基、杂环基、羟基、酮、硝基、磷酸酯、硫基、亚磺酰基、磺酰基、磺酸、磺酰胺和硫酮。环烷基可稠合至其他饱和或不饱和的环烷基、芳基或杂环基。
如本文所用,术语“二羧酸”是指含有至少两个羧酸基团的基团,例如饱和和不饱和的烃二羧酸和其盐。示例性二羧酸包括烷基二羧酸。二羧酸可经以下的基团取代:烷氧基、芳氧基、烷基、烯基、炔基、酰胺、氨基、芳基、芳基烷基、氨基甲酸酯、羧基、氰基、环烷基、酯、醚、甲酰基、卤素、卤代烷基、杂芳基、杂环基、氢、羟基、酮、硝基、磷酸酯、硫基、亚磺酰基、磺酰基、磺酸、磺酰胺和硫酮。二羧酸包括(但不限于):丁二酸、戊二酸、己二酸、辛二酸、癸二酸、壬二酸、顺丁烯二酸、邻苯二甲酸、天冬氨酸、谷氨酸、丙二酸、反丁烯二酸、(+)/(-)-苹果酸、(+)/(-)酒石酸、间苯二羧酸和对苯二羧酸。二羧酸进一步包括其羧酸衍生物,例如酸酐、酰亚胺、酰肼(例如丁二酸酐和丁二酰亚胺)。
术语“酯”是指结构-C(O)O-、-C(O)O-Rj-、-RkC(O)O-Rj-或-RkC(O)O-,其中O不结合至氢,并且Rj和Rk可独立地选自:烷氧基、芳氧基、烷基、烯基、炔基、酰胺、氨基、芳基、芳基烷基、环烷基、醚、卤代烷基、杂芳基和杂环基。Rk可为氢,但Rj不能为氢。酯可为环状的,例如碳原子与Rj、氧原子与Rk,或Rj与Rk可结合形成3元至12元环。示例性酯包括(但不限于)烷基酯,其中Rj或Rk中的至少一个为烷基,例如-O-C(O)-烷基、-C(O)-O-烷基-和-烷基-C(O)-O-烷基-。示例性酯还包括芳基或杂芳基酯,例如其中Rj或Rk中的至少一个为杂芳基,例如吡啶、哒嗪、嘧啶和吡嗪,例如烟酸酯。示例性酯还包括具有结构-RkC(O)O-的反向酯(reverseester),其中氧结合至母分子。示例性反向酯包括丁二酸酯、D-精氨酸酯、L-精氨酸酯、L-赖氨酸酯和D-赖氨酸酯。酯还包括羧酸酐和酸卤化物。
如本文所用,术语“卤基”或“卤素”是指F、Cl、Br或I。
如本文所用,术语“卤代烷基”是指经一个或多个卤素原子取代的烷基。“卤代烷基”还涵盖经一个或多个卤素原子取代的烯基或炔基。
如本文所用,术语“杂芳基”是指含有一个或多个杂原子(例如1至3个杂原子,例如氮、氧和硫)的单环、双环或多环芳环系统。杂芳基可经包括以下的一个或多个取代基取代:烷氧基、芳氧基、烷基、烯基、炔基、酰胺、氨基、芳基、芳基烷基、氨基甲酸酯、羧基、氰基、环烷基、酯、醚、甲酰基、卤素、卤代烷基、杂芳基、杂环基、羟基、酮、硝基、磷酸酯、硫基、亚磺酰基、磺酰基、磺酸、磺酰胺和硫酮。杂芳基还可稠合至非芳香环。杂芳基的说明性实例包括(但不限于):吡啶基、哒嗪基、嘧啶基、吡嗪基、三嗪基、吡咯基、吡唑基、咪唑基、(1,2,3)-三唑基和(1,2,4)-三唑基、吡嗪基、嘧啶基、四唑基、呋喃基、噻吩基、异噁唑基、噻唑基、呋喃基、苯基、异噁唑基和噁唑基。示例性杂芳基包括(但不限于)单环芳环,其中环包含2至5个碳原子和1至3个杂原子,在本文中称为“(C2-C5)杂芳基”。
如本文所用,术语“杂环”、“杂环基”或“杂环”是指饱和或不饱和的3元、4元、5元、6元或7元环,其含有一个、两个或三个独立地选自氮、氧和硫的杂原子。杂环可为芳族(杂芳基)或非芳族。杂环可经包括以下的一个或多个取代基取代:烷氧基、芳氧基、烷基、烯基、炔基、酰胺、氨基、芳基、芳基烷基、氨基甲酸酯、羧基、氰基、环烷基、酯、醚、甲酰基、卤素、卤代烷基、杂芳基、杂环基、羟基、酮、硝基、磷酸酯、硫基、亚磺酰基、磺酰基、磺酸、磺酰胺和硫酮。杂环还包括双环、三环和四环基团,其中以上杂环中的任一个稠合至独立地选自芳基、环烷基和杂环的一个或两个环。示例性杂环包括:吖啶基、苯并咪唑基、苯并呋喃基、苯并噻唑基、苯并噻吩基、苯并噁唑基、生物素基、
Figure BDA0002973431330000081
啉基、二氢呋喃基、二氢吲哚基、二氢哌喃基、二氢噻吩基、二噻唑基、呋喃基、高哌啶基、咪唑啶基、咪唑啉基、咪唑基、吲哚基、异喹啉基、异噻唑啶基、异噻唑基、异噁唑啶基、异噁唑基、吗啉基、噁二唑基、噁唑啶基、噁唑基、哌嗪基、哌啶基、哌喃基、吡唑啶基、吡嗪基、吡唑基、吡唑啉基、哒嗪基、吡啶基、嘧啶基(pyrimidinyl)、嘧啶基(pyrimidyl)、吡咯烷基、吡咯烷-2-酮基、吡咯啉基、吡咯基、喹啉基、喹噁啉基(quinoxaloyl)、四氢呋喃基、四氢异喹啉基、四氢哌喃基、四氢喹啉基、四唑基、噻二唑基、噻唑啶基、噻唑基、噻吩基、硫代吗啉基、硫代哌喃基和三唑基。
如本文所用,术语“羟基(hydroxy)”和“羟基(hydroxyl)”是指-OH。
如本文所用,术语“羟基烷基”是指连接至烷基的羟基。
如本文所用,术语“羟基芳基”是指连接至芳基的羟基。
如本文所用,术语“酮”是指结构-C(O)-Rn(例如乙酰基、-C(O)CH3)或-Rn-C(O)-Ro。酮可通过Rn或Ro连接至另一基团。Rn或Ro可为烷基、烯基、炔基、环烷基、杂环基或芳基,或Rn或Ro可结合形成3元至12元环。
如本文所用,术语“苯基”是指6元碳环芳环。苯基还可以稠合至环己烷或环戊烷环。苯基可经包括以下的一个或多个取代基取代:烷氧基、芳氧基、烷基、烯基、炔基、酰胺、氨基、芳基、芳基烷基、氨基甲酸酯、羧基、氰基、环烷基、酯、醚、甲酰基、卤素、卤代烷基、杂芳基、杂环基、羟基、酮、磷酸酯、硫基、亚磺酰基、磺酰基、磺酸、磺酰胺和硫酮。
如本文所用,术语“硫代烷基”是指连接至硫的烷基(-S-烷基-)。
“烷基”、“烯基”、“炔基”、“烷氧基”、“氨基”和“酰胺”基团可任选地经至少一个选自以下的基团取代或间杂有所述基团或由其分支:烷氧基、芳氧基、烷基、烯基、炔基、酰胺、氨基、芳基、芳基烷基、氨基甲酸酯、羰基、羧基、氰基、环烷基、酯、醚、甲酰基、卤素、卤代烷基、杂芳基、杂环基、羟基、酮、磷酸酯、硫基、亚磺酰基、磺酰基、磺酸、磺酰胺、硫酮、脲基和N。取代基可经分支化形成经取代或未经取代的杂环或环烷基。
如本文所用,任选地经取代的取代基上的适合的取代是指不会破坏本发明化合物或适用于制备其的中间体的合成或医药效用的基团。适合的取代的实例包括(但不限于):C1-8烷基、烯基或炔基;C1-6芳基、C2-5杂芳基;C37环烷基;C1-8烷氧基;C6芳氧基;-CN;-OH;氧代基;卤基、羧基;氨基,例如-NH(C1-8烷基)、-N(C1-8烷基)2、-NH((C6)芳基)或-N((C6)芳基)2;甲酰基;酮,例如-CO(C1-8烷基)、-CO((C6芳基)酯,例如-CO2(C1-8烷基)和-CO2(C6芳基)。所属领域技术人员可基于本公开化合物的稳定性以及药理学和合成活性容易地选择适合的取代。
如本文所用,术语“药学上可接受的组合物”是指一种包含与一种或多种药学上可接受的载体一起调配的至少一种本文所公开的化合物的组合物。
如本文所用,术语“药学上可接受的载体”是指与药物施用相容的任何和所有溶剂、分散介质、包衣、等张剂和吸收推迟剂等。这类介质和药剂用于药物活性物质的用途为所属领域中众所周知的。组合物还可含有提供补充、额外或增强治疗功能的其他活性化合物。
如本文所用,术语“三阴性乳腺癌”或“TNBC”是指具有以下特征的乳腺癌:对雌激素受体和孕酮受体呈阳性的细胞低于10%且不具有HER2扩增的肿瘤以及不适合内分泌治疗的患者(Dawood 2010)。TNBC倾向于比其他类型的乳腺癌更具攻击性,且因此更可能扩散到乳房外和/或在治疗之后复发。
如本文所用,术语“免疫治疗剂”是指通过激活或抑制免疫系统来治疗疾病的药剂。
如本文所用,术语“检查点抑制剂”是指靶向免疫检查点的治疗剂。
本发明的示例性实施方式
如上文所概述,本发明提供了用组合疗法治疗TNBC的方法,所述组合疗法包括向有需要的个体施用式Ia或式Ib的BET溴结构域抑制剂、或其药学上可接受的盐或共晶体,与第二治疗剂。
在一个实施方式中,本发明提供一种用于治疗TNBC的方法,所述方法包括施用式Ia或式Ib所示的BET溴结构域抑制剂
Figure BDA0002973431330000101
或其立体异构体、互变异构体、药学上可接受的盐或共晶体或水合物,与第二治疗剂,其中:
环A和环B可任选地经独立地选自以下的基团取代:氢、氘、-NH2、氨基、杂环(C4-C6)、碳环(C4-C6)、卤素、-CN、-OH、-CF3、烷基(C1-C6)、硫代烷基(C1-C6)、烯基(C1-C6)和烷氧基(C1-C6);
X选自:-NH-、-CH2-、-CH2CH2-、-CH2CH2CH2-、-CH2CH2O-、-CH2CH2NH-、-CH2CH2S-、-C(O)-、-C(O)CH2-、-C(O)CH2CH2-、-CH2C(O)-、-CH2CH2C(O)-、-C(O)NH-、-C(O)O-、-C(O)S-、-C(O)NHCH2-、-C(O)OCH2-、-C(O)SCH2-,其中一个或多个氢可独立地经氘、羟基、甲基、卤素、-CF3、酮置换,并且其中S可氧化成亚砜或砜;
R4选自任选地经取代的3元至7元碳环和杂环;和
D1选自以下5元单环杂环:
Figure BDA0002973431330000111
其任选地经氢、氘、烷基(C1-C4)、烷氧基(C1-C4)、氨基、卤素、酰胺、-CF3、-CN、-N3、酮(C1-C4)、-S(O)烷基(C1-C4)、-SO2烷基(C1-C4)、-硫代烷基(C1-C4)、-COOH和/或酯取代,其中的每一个可任选地经氢、F、Cl、Br、-OH、-NH2、-NHMe、-OMe、-SMe、氧代基和/或硫基-氧代基取代。
式Ia和Ib的化合物(包括化合物I)先前已描述于国际专利公开WO 2015/002754中(该专利公开以全文引用的方式并入本文中),并且尤其关于其对式Ia和式Ib的化合物(包括化合物I)的描述、其合成和其BET溴结构域抑制剂活性的证明。
在一些实施方式中,式Ia或式Ib的BET溴结构域抑制剂选自:
1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-N-乙基-1H-咪唑并[4,5-b]吡啶-2-胺;
1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-N-甲基-1H-咪唑并[4,5-b]吡啶-2-胺;
N,1-二苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺;
1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-N-(吡啶-3-基甲基)-1H-咪唑并[4,5-b]吡啶-2-胺;
4-(1-苯甲基-2-(吡咯烷-1-基)-1H-咪唑并[4,5-b]吡啶-6-基)-3,5-二甲基异噁唑;
4-(2-(氮杂环丁-1-基)-1-(环戊基甲基)-1H-咪唑并[4,5-b]吡啶-6-基)-3,5-二甲基异噁唑;
1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺;
1-(环戊基甲基)-6-(3,5-二甲基异噁唑-4-基)-N-(四氢-2H-哌喃-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺;
4-氨基-1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-苯并[d]咪唑-2(3H)-酮;
4-氨基-6-(3,5-二甲基异噁唑-4-基)-1-(4-甲氧基苯甲基)-1H-苯并[d]咪唑-2(3H)-酮;
4-氨基-6-(3,5-二甲基异噁唑-4-基)-1-(1-苯基乙基)-1H-苯并[d]咪唑-2(3H)-酮;
4-氨基-1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-3-甲基-1H-苯并[d]咪唑-2(3H)-酮;
或其药学上可接受的盐或共晶体。
在一些实施方式中,本发明提供一种用于治疗TMBC的方法,所述方法包括向有需要的个体伴随施用BET溴结构域抑制剂与另一治疗剂,BET溴结构域抑制剂选自:1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-N-甲基-1H-咪唑并[4,5-b]吡啶-2-胺(化合物I)、1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺,和其药学上可接受的盐或共晶体。
在一个实施方式中,第二治疗剂为PARP抑制剂。在一些实施方式中,PARP抑制剂选自奥拉帕尼、他拉唑帕尼、芦卡帕尼(rucaparib)、维利帕尼、尼拉帕尼、帕米帕利(pamiparib)、CEP9722和E7016。
在一个实施方式中,第二治疗剂为奥拉帕尼。
在一个实施方式中,第二治疗剂为他拉唑帕尼。
在一个实施方式中,个体先前已用乳腺癌疗法治疗。
在一个实施方式中,个体先前已用化学疗法治疗。
在一个实施方式中,个体先前已用PARP抑制剂治疗。
在一个实施方式中,个体先前已用PARP抑制剂与免疫治疗剂的组合治疗。
在一个实施方式中,个体先前已用PARP与检查点抑制剂的组合治疗。
在一个实施方式中,个体先前在用PARP抑制剂治疗时已显示出疾病进展。
在一个实施方式中,个体先前在用PARP抑制剂与免疫治疗剂的组合治疗时已显示出疾病进展。
在一个实施方式中,个体先前已用含有凯素(abraxane)作为其中一个治疗剂的组合疗法治疗。
在一个实施方式中,个体先前已用免疫疗法治疗。
在一个实施方式中,个体先前在用免疫疗法治疗时已显示出疾病进展。
在一个实施方式中,在新辅助或转移性环境中,个体在铂治疗期间未显示出疾病进展的迹象。对于在新辅助环境中接受铂的个体,在最后一次基于铂治疗的给药与招募入组之间必须至少相隔12个月。
在一个实施方式中,个体先前已用含有特森催克(Tecentriq)作为其中一个治疗剂的组合疗法治疗。
在一个实施方式中,BET溴结构域抑制剂为化合物I的药学上可接受的盐或共晶体。在一个实施方式中,BET溴结构域抑制剂为化合物I的甲磺酸盐或共晶体。
在一个实施方式中,个体为人类。
在一个实施方式中,患有乳腺癌的个体具有一个或两个生殖系突变BRCA1和BRCA2。
在一个实施方式中,患有TNBC的个体具有一个或两个生殖系突变BRCA1和BRCA2。
在一个实施方式中,患有乳腺癌的个体不携带对BRCA1或BRCA2的生殖系突变。
在一个实施方式中,患有TNBC的个体不携带对BRCA1或BRCA2的生殖系突变。
在一个实施方式中,患有乳腺癌的个体具有对BRCA1和BRCA2的体细胞突变。
在一个实施方式中,患有TNBC的个体具有对BRCA1和BRCA2的体细胞突变。
在一个实施方式中,患有乳腺癌的个体具有对BRCA1或BRCA2的体细胞突变。
在一个实施方式中,患有TNBC的个体具有对BRCA1或BRCA2的体细胞突变。
在一个实施方式中,患有乳腺癌的个体具有影响BRCA1和/或BRCA2基因表达的突变或改变,包括阻止BRCA1或BRCA2基因表达的其启动子的甲基化。
在一个实施方式中,患有TNBC的个体具有影响BRCA1和/或BRCA2基因表达的突变或改变,包括阻止BRCA1或BRCA2基因表达的其启动子的甲基化。
在一个实施方式中,患有乳腺癌的个体对同源重组(HR)或非同源末端结合(NHEJ)基因的一种或多种体细胞突变,同源重组或非同源末端结合基因包括ATM、CHEK2、NBN、PALB2、ATR、RAD51、RAD54、DSS1、RPA1、CHK1、FANCD2、FANCA、FANCC、FANCM、BARD1、RAD51C、RAD51D、RIF1和BRIP1。
在一个实施方式中,患有TNBC的个体具有对同源重组(HR)或非同源末端结合(NHEJ)基因的一种或多种体细胞突变,同源重组或非同源末端结合基因包括ATM、CHEK2、NBN、PALB2、ATR、RAD51、RAD54、DSS1、RPA1、CHK1、FANCD2、FANCA、FANCC、FANCM、BARD1、RAD51C、RAD51D、RIF1和BRIP1。
在一个实施方式中,患有乳腺癌的个体具有对同源重组(HR)基因或非同源末端结合(NHEJ)的一种或多种生殖系突变,同源重组基因或非同源末端结合基因包括ATM、CHEK2、NBN、PALB2、ATR、RAD51、RAD54、DSS1、RPA1、CHK1、FANCD2、FANCA、FANCC、FANCM、BARD1、RAD51C、RAD51D、RIF1和BRIP1。
在一个实施方式中,患有TNBC的个体具有对同源重组(HR)或非同源末端结合(NHEJ)基因的一种或多种生殖系突变,同源重组或非同源末端结合基因包括ATM、CHEK2、NBN、PALB2、ATR、RAD51、RAD54、DSS1、RPA1、CHK1、FANCD2、FANCA、FANCC、FANCM、BARD1、RAD51C、RAD51D、RIF1和BRIP1。
在一个实施方式中,个体患有特征为同源重组(HR)有效(proficient)的肿瘤。
在一个实施方式中,个体患有特征为同源重组缺陷(HRD)的肿瘤。
在一个实施方式中,将一种选自以下的化合物与PARP抑制剂一起给药而不会导致剂量限制性血小板减少:1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-N-甲基-1H-咪唑并[4,5-b]吡啶-2-胺(化合物I)和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺,和其药学上可接受的盐或共晶体。
在一个实施方式中,将一种选自以下的化合物与他拉唑帕尼一起给药而不会导致血小板减少作为剂量限制性毒性:1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-N-甲基-1H-咪唑并[4,5-b]吡啶-2-胺(化合物I)和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺,和其药学上可接受的盐或共晶体。
在一个实施方式中,本文所述的BET溴结构域抑制剂可与其他治疗剂伴随施用。伴随意味着将本文所述的BET溴结构域抑制剂与其他治疗剂以数秒(例如15秒、30秒、45秒、60秒或更低)、若干分钟(例如1分钟、2分钟、5分钟或更低、10分钟或更低、15分钟或更低)或1至12小时的时间间隔施用。当伴随施用时,BET溴结构域抑制剂与其他治疗剂可以两种或更多种施用方式施用,且包含于独立的组合物或剂型中,组合物或剂型可包含于相同包装或不同包装中。
在一个实施方式中,本文所述的BET溴结构域抑制剂与PARP抑制剂(PARPi)可在相同或不同时程施用。
在一个实施方式中,本文所述的化合物I与他拉唑帕尼可在相同或不同时程施用,包括:
化合物I(连续)+PARPi(连续)
化合物I(持续3周、停止一周)+PARPi(连续);
化合物I(持续2周、停止两周)+PARPi(连续);
化合物I(持续3周、停止一周)+PARPi(持续3周、停止一周);
化合物I(持续2周、停止两周)+PARPi(持续3周、停止一周);
化合物I(连续)+PARPi(持续3周、停止一周);或
化合物I(连续)+PARPi(持续2周、停止两周)。
在某些实施方式中,将一种用于本发明的组合疗法的化合物以25至200毫克/天的剂量给药,化合物选自化合物I和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺。在一些实施方式中,将选自化合物I和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺的化合物以36至144毫克/天的剂量向个体施用。在一些实施方式中,将用于本发明的组合疗法的化合物以48至96毫克/天的剂量向个体施用,化合物选自化合物I和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺。在一些实施方式中,将用于本发明的组合疗法的化合物以48毫克、60毫克、72毫克或96毫克/天的剂量向个体施用,化合物选自化合物I和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺。在本文所述的任一实施方式中,可将选自化合物I和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺的化合物与0.25至1毫克的他拉唑帕尼组合施用。在一些实施方式中,将36至144毫克的化合物I与0.25至1毫克的他拉唑帕尼组合施用。
在某些实施方式中,可将选自化合物I和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺的药学上可接受的盐或共晶体的化合物在本发明的组合疗法中以一剂量水平施用,所述剂量水平在人类中提供类似于25至200毫克/天的对应游离碱的暴露量。在某些实施方式中,可将选自化合物I和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺的药学上可接受的盐或共晶体的化合物在本发明的组合疗法中以一剂量水平施用,所述剂量水平在人类中提供类似于36至144毫克/天的对应游离碱的暴露量。在某些实施方式中,可将选自化合物I和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺的药学上可接受的盐或共晶体的化合物在本发明的组合疗法中以一剂量水平施用,所述剂量水平在人类中提供类似于48至96毫克/天的对应游离碱的暴露量。在本文所述的任一实施方式中,可将选自化合物I和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺的药学上可接受的盐或共晶体的化合物与0.25至1毫克的他拉唑帕尼组合施用。
文献
Aftimos P,Bechter O,Awada A,Jungels C,Dumez H,Huyvaert N,CostermansJ,Lee C,Meeus MA,Burkard U,Musa H,Zhao Y,Schoffski P.Phase I first-in-mantrial of a novel bromodomain and extra-terminal domain(BET)inhibitor(BI894999)in patients(Pts)with advanced solid tumors.J Clin Oncol 35,2017(suppl;abstr 2504)
Bareche Y,Venet D,Ignatiadis M,Aftimos P,Piccart M,Rothe F,SotiriouC.Unravelling triple-negative breast cancer molecular heterogeneity using anintegrative multiomic analysis.Ann Oncol.2018Jan 22
Bauer,KR,Brown M,Cress RD,Parise CA,Caggiano V.Descriptive analysisof estrogen receptor(ER)negative,progesterone receptor(PR)-negative,and HER2-negative invasive breast cancer,the so-called triple-negative phenotype:apopulation-based study from the California cancer Registry.Cancer.2007May 1;109(9):1721-8
Berthon C,Raffoux E,Thomas X,Vey N,Gomez-Roca C,Yee K,Taussig DC,Rezai K,Roumier C,Herait P,Kahatt C,Quesnel B,Michallet M,Recher C,Lokiec F,Preudhomme C,Dombret H.Bromodomain inhibitor OTX015 in patients with acuteleukaemia:a dose-escalation,phase 1study.Lancet Haematol.2016Apr;3(4):e186-95
Copson ER,Maishman TC,Tapper WJ,Cutress RI,Greville-Heygate S,AltmanDG,Eccles B,Gerty S,Durcan LT,Jones L,Evans DG,Thompson AM,Pharoah P,EastonDF,Dunning AM,Hanby A,Lakhani S,Eeles R,Gilbert FJ,Hamed H,Hodgson S,SimmondsP,Stanton L,Eccles DM.Germline BRCA mutation and outcome in young-onsetbreast cancer(POSH):a prospective cohort study.Lancet Oncol.2018Feb;19(2):169-180.doi:10.1016/S1470-2045(17)30891-4
Dawood S,Triple-Negative Breast Cancer.Drugs(2010)70(17):2247-2258
Kassam F,Enright K,Dent R,Dranitsaris G,Myers J,Flynn C,Fralick M,Kumar R,Clemons M.Survival outcomes for patients with metastatic triple-negative breast cancer:implications for clinical practice and trialdesign.Clin Breast Cancer.2009Feb;9(1):29-33
Litton J,Rugo HS,Ettl J,Hurvitz S,
Figure BDA0002973431330000161
A,Lee K-H,Fehrenbacher L,Yerushalmi R,Mina LA,Martin M,RochéH,Im Y-H,Quek RGW,Tudor IC,Hannah AL,Eiermann W,Blum JL.EMBRACA:A phase 3trial comparing talazoparib,an oral PARPinhibitor,to physician's choice of therapy in patients with advanced breastcancer and a germline BRCAmutation[abstract].In:Proceedings of the 2017SanAntonio Breast Cancer Symposium;2017Dec 5-9;San Antonio,TX.Philadelphia(PA):AACR;Cancer Res 2018;78(4Suppl):Abstract nr GS6-07
O'Shaughnessy J,Schwartzberg L,Danso MA,Miller KD,Rugo HS,Neubauer M,Robert N,Hellerstedt B,Saleh M,Richards P,Specht JM,Yardley DA,Carlson RW,Finn RS,Charpentier E,Garcia-Ribas I,Winer EP.Phase III study of iniparibplus gemcitabine and carboplatin versus gemcitabine and carboplatin inpatients with metastatic triple-negative breast cancer.J Clin Oncol.2014Dec1;32(34):3840-7
Robson M,Im SA,Senkus E,Xu B,Domchek SM,Masuda N,Delaloge S,Li W,TungN,Armstrong A,Wu W,Goessl C,Runswick S,Conte P.Olaparib for Metastatic BreastCancer in Patients with a Germline BRCA Mutation.N Engl J Med.2017Aug 10;377(6):523-533
Stathis A,Zucca E,Bekradda M,Gomez-Roca C,Delord JP,de La Motte RougeT,Uro-Coste E,de Braud F,Pelosi G,French CA.Clinical Response of CarcinomasHarboring the BRD4-NUT Oncoprotein to the Targeted Bromodomain InhibitorOTX015/MK-8628.Cancer Discov.2016May;6(5):492-500
实施例
由赛默飞世尔科技(ThermoFisher Scientific)获得组织培养基和试剂。由Selleck Chemicals获得他拉唑帕尼、奥拉帕尼、尼拉帕尼和维利帕尼。
实施例1:化合物I的合成
步骤A:5-溴-N3-(苯基亚甲基)吡啶-2,3-二胺(化合物B)的合成
Figure BDA0002973431330000171
将起始物质A溶解于甲醇和乙酸中。将溶液冷却至0℃至5℃且逐滴添加苯甲醛。一旦反应完成,那么逐滴添加处理水和NaHCO3溶液,保持低温(0℃至5℃)。滤出固体且用甲醇/水(1:1)洗涤,接着干燥,得到产率为94%和纯度为+99%(由HPLC测得)的化合物B。1H-NMR(DMSO-d6):δ8.75(1H),8.04(2H),7.93(1H),7.65(1H),7.50-7.60(3H)。
步骤B:N3-苯甲基-5-溴吡啶-2,3-二胺(化合物C)的合成
Figure BDA0002973431330000181
将化合物B溶解于乙醇中并且逐份添加NaHB4,保持温度为15℃与25℃之间。将反应混合物搅拌8至15小时,直至由HPLC监测到反应完成。添加HCl溶液,将pH调节为6至7,接着添加处理水,保持温度为15℃至25℃之间。将混合物搅拌1至5小时,过滤并且用乙醇/水混合物洗涤。在约60℃下干燥15至20小时后,得到化合物C。1H-NMR(DMSO-d6):d 7.2-7.4(6H),6.55(1H),5.70-5.83(3H),4.30(2H)。
步骤C:N3-苯甲基-5-(3,5-二甲基-1,2-噁唑-4-基)吡啶-2,3-二胺(化合物D)的合成
Figure BDA0002973431330000182
将化合物C、化合物G和磷酸三钾三水合物混合,接着添加1,4-二噁烷和处理水。将所得混合物用氮气彻底吹扫。添加四(三苯基膦)钯(0)并且将混合物加热至≥90℃,直至化合物C与化合物D的比率不超过1%。冷却后,将反应混合物过滤,用1,4-二噁烷洗涤固体且随后浓缩。添加处理水并且搅拌混合物,直至母液中的剩余化合物D的量不超过0.5%。通过过滤分离化合物D且将其用1,4-二噁烷/水和叔丁基甲基醚依序洗涤。将湿滤饼在二氯甲烷和硅胶中混合。搅拌后,将混合物过滤,随后浓缩。将混合物冷却并且添加叔丁基甲基醚。通过过滤分离产物并且干燥,直至二氯甲烷、叔丁基甲基醚和水分含量不超过0.5%。1H-NMR(DMSO-d6):δ7.30-7.45(4H),7.20-7.25(2H),6.35(1H),5.65-5.80(3H),4.30-4.40(2H),2.15(3H),1.95(3H)。
步骤D:1-苯甲基-6-(3,5-二甲基-1,2-噁唑-4-基)-3H-咪唑并[4,5-b]吡啶-2-酮(化合物E)的合成
Figure BDA0002973431330000191
将羰基二咪唑固体添加至化合物D与二甲基亚砜的搅拌混合物中。加热混合物,直至化合物D与化合物E的比率为NMT 0.5%。将混合物冷却并且添加处理水历经若干小时。将所得混合物在环境温度下搅拌至少2小时。通过过滤分离产物并且用处理水洗涤。在使用加热和真空干燥之前,二甲基亚砜经检验为NMT 0.5%。当水分含量为NMT 0.5%时,干燥完成,得到化合物E。1H-NMR(DMSO-d6):δ11.85(1H),7.90(1H),7.20-7.45(6H),5.05(2H),3.57(3H),2.35(3H),2.15(3H)。
步骤E:4-[1-苯甲基-2-氯-1H-咪唑并[4,5-b]吡啶-6-基]-3,5-二甲基-1,2-噁唑(化合物F)的合成
Figure BDA0002973431330000192
将化合物E与三氯氧磷混合,并且随后用可逐滴添加的二异丙基乙基胺(DIPEA)处理。将所得混合物加热若干小时,冷却并且取样检测反应是否完成。如果化合物E与化合物F的比率不超过0.5%,那么反应完成。否则,将反应物再加热一段时间并且如前所述进行取样。反应完成后,将混合物浓缩,随后冷却。添加乙酸乙酯并且将混合物在真空下浓缩若干次。将乙酸乙酯(EtOAc)添加至浓缩物中,将混合物冷却并且随后添加至碳酸氢钠水溶液。分离有机相且将有机层用碳酸氢钠水溶液洗涤,并且随后用水洗涤。浓缩有机相,添加乙酸乙酯,并且将混合物浓缩以确保水分含量不超过0.2%。将含混合物的乙酸乙酯用碳脱色。将混合物浓缩并且添加正庚烷。通过过滤分离产物并且在真空下干燥。当残余水分、乙酸乙酯和正庚烷不超过0.5%时,干燥完成。1H-NMR(MeOH-d4):δ8.40(1H),7.90(1H),7.25-7.45(5H),5.65(2H),2.37(3H),2.22(3H)。
步骤F:1-苯甲基-6-(3,5-二甲基-1,2-噁唑-4-基)-N-甲基-1H-咪唑并[4,5-b]吡啶-2-胺(化合物I)的合成
Figure BDA0002973431330000201
将化合物F与甲胺于四氢呋喃(THF)中混合并且在环境温度下搅拌,直至化合物F与化合物I的比率为NMT 0.1%(由HPLC测得)。反应完成后,将混合物在真空下浓缩,添加处理水,并且通过过滤分离产物。将滤饼用处理水洗涤。将湿滤饼溶解于盐酸中并且将所得溶液用二氯甲烷洗涤以去除杂质。将水溶液用氢氧化钠溶液中和,且通过过滤分离化合物I,用处理水洗涤并且在真空下干燥。为了去除任何剩余盐酸,必要时可将经干燥的物质溶解于乙醇中,用氢氧化钠于乙醇中的溶液处理,接着添加处理水,以使产物沉淀。通过过滤分离化合物I,用处理水洗涤并且干燥。1H-NMR(DMSO-d6):δ7.96(d,1H,J=2.0Hz),7.42(d,1H,J=2.0Hz),7.37(q,1H,J=4.2Hz),7.32(m,2H),7.26(m,1H),7.24(m,2H),5.30(s,2H),3.00(d,3H,4.5Hz),2.34(s,3H),2.16(s,3H).13C-NMR(DMSO-d6):δ164.8,158.4,157.7,156.0,141.1,136.4,128.6(2C),127.5,127.4,127.2(2C),115.8,114.2(2C),44.5,29.3,11.2,10.3。
实施例2:化合物I的结晶甲磺酸盐
将约5g化合物I溶解于乙醇(115mL)中并且根据1:1的摩尔比添加甲磺酸于乙醇中的溶液(10mL,158.7mg/mL)。在50℃下将混合物振荡2小时,随后浓缩至一半体积并且搅拌过夜。将所形成的固体(化合物I的甲磺酸盐/共晶体形式I)分离、干燥和表征。
化合物I的甲磺酸盐/共晶体形式I还由其他溶剂和溶剂混合物(包括丙酮和乙腈)获得。
化合物I的甲磺酸盐/共晶体形式I通过XRPD表征为包含以2θ表示的以下峰:8.4±0.2、10.6±0.2、11.7±0.2、14.5±0.2、15.3±0.2、16.9±0.2、18.2±0.2、19.0±0.2、19.9±0.2、20.5±0.2、22.6±0.2、23.8±0.2、24.5±0.2和27.6±0.2,其如使用Cu-Kα辐射管在衍射仪上测定(图9)。
化合物I的甲磺酸盐/共晶体形式I通过DSC表征为在约207℃的温度下具有吸热峰(图10)。
化合物I的甲磺酸盐/共晶体形式I通过TGA表征为具有如图10中所示的热分析图,这证实了化合物I的形式I为无水形式。
实施例3:HCC1937(BRCA1突变)细胞中的化合物I与他拉唑帕尼
通过化合物I与他拉唑帕尼的组合来协同抑制HCC1937细胞生存力
将HCC1937细胞(CRL-2336)以每孔1,000个细胞的密度铺板于具有RPMI-1640培养基(含有10%FBS和青霉素/链霉素)的96孔平底板,且在37℃、5%CO2下培育24小时。将培养基用RPMI-1640培养基置换并且在37℃、5%CO2下培育7天,所述RPMI-1640培养基含有10%FBS,且具有不同剂量的单一药剂形式的化合物I或他拉唑帕尼,或两种药物的组合。每种浓度使用三个重复孔并且将仅含有具有0.1%DMSO的培养基的孔用作对照。为了测量细胞生存力,将100μL以1:100稀释至分析缓冲液(CellTiter Fluor细胞生存力检定(普洛麦格))中的GF-AFC底物添加至各孔中,并且在37℃、5%CO2下再培育30至90分钟。在荧光计中读取380nm至400nm激发/505nm发射下的荧光,并且在通过减去空白孔信号校正背景之后,对相对于经DMSO处理的细胞的细胞效价百分比进行计算。使用GraphPad Prism软件计算单一药剂的IC50值。通过使用CalcuSyn软件(Biosoft)基于Chou-Talalay算法(Chou和Talalay,1984)计算组合指数(CI)和对有效剂量(ED)50、75和90的CI值取平均值来进行协同定量。如图1中所示,相较于平均CI值为0.5的任一单一药剂,将化合物I添加至他拉唑帕尼提高了对细胞生存力的抑制。
实施例4:HCC1937(BRCA1突变)细胞中的化合物I与奥拉帕尼
通过化合物I与奥拉帕尼的组合来协同抑制HCC1937细胞生存力
将HCC1937细胞(CRL-2336)以每孔1,000个细胞的密度铺板于具有RPMI-1640培养基(含有10%FBS和青霉素/链霉素)的96孔平底板,并且在37℃、5%CO2下培育24小时。将培养基用RPMI-1640培养基置换并且在37℃、5%CO2下培育7天,所述RPMI-1640培养基含有10%FBS,且具有不同剂量的单一药剂形式的化合物I或奥拉帕尼,或两种药物的组合。将细胞如上文所述在第3天或第4天进行再处理。每种浓度使用三个重复孔并且将仅含有具有0.1%DMSO的培养基的孔用作对照。为了测量细胞生存力,将100μL以1:100稀释至分析缓冲液(CellTiter Fluor细胞生存力检定(普洛麦格))中的GF-AFC底物添加至各孔中,并且在37℃、5%CO2下再培育30至90分钟。在荧光计中读取380nm至400nm激发/505nm发射下的荧光,并且在通过减去空白孔信号校正背景之后,对相对于经DMSO处理的细胞的细胞效价百分比进行计算。使用GraphPad Prism软件计算单一药剂的IC50值。通过使用CalcuSyn软件(Biosoft)基于Chou-Talalay算法(Chou和Talalay,1984)计算组合指数(CI)和对有效剂量(ED)50、75和90的CI值取平均值来进行协同定量。如图2中所示,相较于平均CI值为0.4的任一单一药剂,将化合物I添加至奥拉帕尼提高了对细胞生存力的抑制。
实施例5:HCC1937(BRCA1突变)细胞中的化合物I与维利帕尼
通过化合物I与维利帕尼的组合来协同抑制HCC1937细胞生存力
将HCC1937细胞(CRL-2336)以每孔10,000个细胞的密度铺板于具有RPMI-1640培养基(含有10%FBS和青霉素/链霉素)的96孔平底板,并且在37℃、5%CO2下培育24小时。将培养基用RPMI-1640培养基置换并且在37℃、5%CO2下培育7天,所述RPMI-1640培养基含有10%FBS,且具有不同剂量的单一药剂形式的化合物I或维利帕尼,或两种药物的组合。将细胞如上文所述在第3天或第4天进行再处理。每种浓度使用三个重复孔并且将仅含有具有0.1%DMSO的培养基的孔用作对照。为了测量细胞生存力,将100μL以1:100稀释至分析缓冲液(CellTiter Fluor细胞生存力检定(普洛麦格))中的GF-AFC底物添加至各孔中,并且在37℃、5%CO2下再培育30至90分钟。在荧光计中读取380nm至400nm激发/505nm发射下的荧光,并且在通过减去空白孔信号校正背景之后,对相对于经DMSO处理的细胞的细胞效价百分比进行计算。使用GraphPad Prism软件计算单一药剂的IC50值。通过使用CalcuSyn软件(Biosoft)基于Chou-Talalay算法(Chou和Talalay,1984)计算组合指数(CI)并且针对有效剂量(ED)50、75和90的CI值取平均值来进行协同定量。如图3中所示,相较于平均CI值为0.1的任一单一药剂,将化合物I添加至维利帕尼提高了对细胞生存力的抑制。
实施例6:HCC1599(BRCA2突变)细胞中的化合物I与奥拉帕尼
将汇合的HCC1599细胞(CRL-2331)以1:2稀释,并且以50μL/孔铺板于具有RPMI-1640培养基(含有10%FBS和青霉素/链霉素)的96孔平底板。将50μL/孔的具有RPMI-1640的培养基添加到细胞中并且在37℃、5%CO2下培育3天,所述培养基含有10%FBS,且具有不同剂量的单一药剂形式的化合物I或奥拉帕尼,或两种药物的组合。针对每个浓度使用三个复孔,并且将仅含有具有0.2%DMSO的培养基的孔用作对照。为了测量细胞生存力,将20μLMTS四唑鎓化合物(CellTiter
Figure BDA0002973431330000221
水溶液细胞增殖检定(普洛麦格))添加至各孔中,并且在37℃、5%CO2下再培育3小时。使用96孔板读取器(MultiSkan GO)读取490nm下的吸光度,并且在通过减去空白孔信号校正背景之后,对相对于经DMSO处理的细胞的细胞效价百分比进行计算。使用GraphPad Prism软件计算单一药剂的IC50值。通过使用CalcuSyn软件(Biosoft)基于Chou-Talalay算法(Chou和Talalay,1984)计算组合指数(CI)并且针对有效剂量(ED)50、75和90的CI值取平均值来进行协同定量。如图4中所示,相较于任一单一药剂,将化合物I添加至奥拉帕尼提高了对细胞生存力的抑制。
实施例7:BT549(BRCA1/2野生型)细胞中的化合物I与他拉唑帕尼
通过化合物I与他拉唑帕尼的组合来协同抑制BT549细胞生存力
将BT-549细胞(HTB-122)以每孔1,000个细胞的密度铺板于具有RPMI-1640培养基(含有10%FBS、0.023IU/mL胰岛素和青霉素/链霉素)的96孔平底板,并且在37℃、5%CO2下培育24小时。将培养基用RPMI-1640培养基置换并且在37℃、5%CO2下培育7天,所述RPMI-1640培养基含有10%FBS、0.023IU/mL胰岛素,且具有不同剂量的单一药剂形式的化合物I或他拉唑帕尼,或两种药物的组合。将细胞如上文所述在第3天或第4天进行再处理。每种浓度使用三个重复孔并且将仅含有具有0.1%DMSO的培养基的孔用作对照。为了测量细胞生存力,将100μL以1:100稀释至分析缓冲液(CellTiter Fluor细胞生存力检定(普洛麦格))中的GF-AFC底物添加至各孔中,并且在37℃、5%CO2下再培育30至90分钟。在荧光计中读取380nm至400nm激发/505nm发射下的荧光,并且在通过减去空白孔信号校正背景之后,对相对于经DMSO处理的细胞的细胞效价百分比进行计算。使用GraphPad Prism软件计算单一药剂的IC50值。通过使用CalcuSyn软件(Biosoft)基于Chou-Talalay算法(Chou和Talalay,1984)计算组合指数(CI)并且针对有效剂量(ED)50、75和90的CI值取平均值来进行协同定量。如图5中所示,相较于平均CI值为0.2的任一单一药剂,将化合物I添加至他拉唑帕尼提高了对细胞生存力的抑制。
实施例8:BT549(BRCA1/2野生型)细胞中的化合物I与维利帕尼
通过化合物I与维利帕尼的组合来协同抑制BT549细胞生存力
将BT-549细胞(HTB-122)以每孔1,000个细胞的密度铺板于具有RPMI-1640培养基(含有10%FBS、0.023IU/mL胰岛素和青霉素/链霉素)的96孔平底板,并且在37℃、5%CO2下培育24小时。将培养基用RPMI-1640培养基置换并且在37℃、5%CO2下培育7天,所述RPMI-1640培养基含有10%FBS、0.023IU/mL胰岛素,且具有不同剂量的单一药剂形式的化合物I或奥拉帕尼,或两种药物的组合。将细胞如上文所述在第3天或第4天进行再处理。每种浓度使用三个重复孔并且将仅含有具有0.1%DMSO的培养基的孔用作对照。为了测量细胞生存力,将100μL以1:100稀释至分析缓冲液(CellTiter Fluor细胞生存力检定(普洛麦格))中的GF-AFC底物添加至各孔中,并且在37℃、5%CO2下再培育30至90分钟。在荧光计中读取380nm至400nm激发/505nm发射下的荧光,并且在通过减去空白孔信号校正背景之后,对相对于经DMSO处理的细胞的细胞效价百分比进行计算。使用GraphPad Prism软件计算单一药剂的IC50值。通过使用CalcuSyn软件(Biosoft)基于Chou-Talalay算法(Chou和Talalay,1984)计算组合指数(CI)和针对有效剂量(ED)50、75和90的CI值取平均值来进行协同定量。如图6中所示,相较于平均CI值为0.2的任一单一药剂,将化合物I添加至维利帕尼提高了对细胞生存力的抑制。
实施例9:BT549(BRCA1/2野生型)细胞中的化合物I与奥拉帕尼
通过化合物I与奥拉帕尼的组合来协同抑制BT549细胞生存力
将BT-549细胞(HTB-122)以每孔1,000个细胞的密度铺板于具有RPMI-1640培养基(含有10%FBS、0.023IU/mL胰岛素和青霉素/链霉素)的96孔平底板,并且在37℃、5%CO2下培育24小时。将培养基用RPMI-1640培养基置换并且在37℃、5%CO2下培育7天,所述RPMI-1640培养基含有10%FBS、0.023IU/mL胰岛素,且具有不同剂量的单一药剂形式的化合物I或维利帕尼,或两种药物的组合。将细胞如上文所述在第3天或第4天进行再处理。每种浓度使用三个重复孔并且将仅含有具有0.1%DMSO的培养基的孔用作对照。为了测量细胞生存力,将100μL以1:100稀释至分析缓冲液(CellTiter Fluor细胞生存力检定(普洛麦格))中的GF-AFC底物添加至各孔中,并且在37℃、5%CO2下再培育30至90分钟。在荧光计中读取380nm至400nm激发/505nm发射下的荧光,并且在通过减去空白孔信号校正背景之后,对相对于经DMSO处理的细胞的细胞效价百分比进行计算。使用GraphPad Prism软件计算单一药剂的IC50值。通过使用CalcuSyn软件(Biosoft)基于Chou-Talalay算法(Chou和Talalay,1984)计算组合指数(CI)和针对有效剂量(ED)50、75和90的CI值取平均值来进行协同定量。如图7中所示,相较于平均CI值为0.2的任一单一药剂,将化合物I添加至奥拉帕尼提高了对细胞生存力的抑制。
实施例10:HCC-70(BRCA1/2野生型细胞)中的化合物I与尼拉帕尼
通过化合物I与尼拉帕尼的组合来协同抑制HCC-70细胞生存力
将HCC-70细胞以每孔2,500个细胞的密度铺板于具有1640-RPMI培养基(含有10%FBS和青霉素/链霉素)的96孔平底板,并且在37℃、5%CO2下培育24小时。将培养基用1640-RPMI培养基置换并且在37℃、5%CO2下培育7天,所述1640-RPMI培养基含有10%FBS,且具有恒定比率的化合物I或尼拉帕尼作为单一药剂,或四种不同浓度(2×IC50,1×IC50,0.5×IC50,0.25×IC50)的两种药物的组合。将细胞如上文所述在第3天或第4天进行再处理。每种浓度使用三个重复孔并且将仅含有具有0.1%DMSO的培养基的孔用作对照。为了测量细胞生存力,将100μL以1:100稀释至分析缓冲液(CellTiter Fluor细胞生存力检定(普洛麦格))中的GF-AFC底物添加至各孔中,并且在37℃、5%CO2下再培育30至90分钟。在荧光计中读取380nm至400nm激发/505nm发射下的荧光,并且在通过减去空白孔信号校正背景之后,对相对于经DMSO处理的细胞的细胞效价百分比进行计算。使用GraphPad Prism软件计算单一药剂的IC50值。通过使用CalcuSyn软件(Biosoft)基于Chou-Talalay算法(Chou和Talalay,1984)计算组合指数(CI)并且针对有效剂量(ED)50、75和90的CI值取平均值来进行协同定量。如图8中所示,相较于平均CI值为0.2至0.4的任一单一药剂,将化合物I添加至尼拉帕尼提高了对细胞生存力的抑制。
实施例11:临床发展
第1部分可以是在患有不具有生殖系BRCA1/2突变的TNBC的患者中化合物I与他拉唑帕尼组合的开放式、非随机剂量递增,其目标为评估安全性、药物动力学和活性。利用3+3组标准设计。对于各剂量每组至多6名患者,且每名患者将仅参与一个组。每个周期将持续28天。在组内所有患者均完成28天1周期的DLT观察期之后,将继续剂量递增。毒性将根据美国国家癌症研究所不良事件常见术语标准(NCI CTCAE)5.0版本进行分级和记录。DLT经定义为临床上显著AE或实验室异常,其被认为可能、很可能或确切地与研究药物有关且满足以下标准中的任一个:
3级或更高的非血液科临床毒性:除3级恶心或3/4级呕吐或腹泻之外,除非经过最大程度的医学疗法,否则仍持续超过72小时。基线处存在的疲乏严重程度增加至少2级。
4级贫血。4级中性粒细胞减少症,持续超过5天。3级或更高的发热性中性粒细胞减少症(温度≥38.5℃)。4级血小板减少症,或具有临床显著出血或任何需要血小板输注的3级血小板减少症。需要住院的任何其他3级或4级实验室异常
ALT>3×ULN,伴随总胆红素>2×ULN。在处理第1个周期,致使超过25%的遗漏剂量的任何毒性。最大耐受剂量的定义:MTD定义为将化合物1与他拉唑帕尼组合的最高剂量,其中在第一个治疗周期中,6名患者中不超过1名经历了DLT。
第2部分:Simon 2阶段:阶段1:一旦在研究的剂量递增部分中确定了化合物I与他拉唑帕尼的组合的建议剂量,那么17名患者将选入Simon 2阶段设计的阶段1,其通过RECIST 1.1对客观反应进行评估(≥4个周期的完全反应(CR)、部分反应(PR)或稳定疾病(SD))。如果已存在≥4客观反应,那么研究将进入阶段2。Simon 2阶段中的患者群体与剂量递增患者群体相同。
阶段2:如果阶段1中的至少4名患者具有通过RECIST 1.1的客观反应(≥4个周期的CR、PR或SD),那么20名患者将选入Simon 2阶段设计的阶段2。患者将接受化合物I与他拉唑帕尼的组合的每天建议剂量。患者可继续接受化合物I与他拉唑帕尼的组合,直至放射或临床进展、不可接受的毒性、需要接受非方案疗法或患者退出研究。
实施例12:mCRPC患者中应答于化合物I与恩杂鲁胺组合的免疫反应的诱导和肿瘤中干扰素γ信号传递
对具有恩杂鲁胺先前进展的mCRPC患者用化合物I进行给药QD,同时继续给药恩杂鲁胺。在筛选(其中患者只接受恩杂鲁胺)时和在用恩杂鲁胺与化合物I给药8周后获得肿瘤活组织检查。在两个活组织检查上进行总转录组(RNA-Seq)分析并且使用STAR软件进行比对,且使用2018年12月与2019年8月之间的BaseSpaceTM序列Hub预设参数进行Cufflinks的差示基因表达分析。使用SALMON比对软件和BioConductor进行额外独立分析。使用基因集富集分析(GSEA)鉴别差示表达基因标签,其使用来自分子标签数据库(MolecularSignature Database)的基因标签(Subramanian A,Tamayo P等人(2005,PNAS 102,15545-15550);Liberzon A等人(2011,Bionformatics 27,1739-1740);Liberzon A等人(2015,Cell Systems 1,417-425)。如图12A中所示,处理时活组织检查中的若干免疫相关标签显著上调。图中指出了相关基因集,并且各基因集中所涉及的基因可从MSigDB下载。在图12B中,图示了在这些基因集中发现的一些基因的上调程度。适应性免疫反应、抗原提呈和干扰素γ信号传递所涉及的基因集的上调表明化合物I与恩杂鲁胺的组合已诱导免疫反应表型。鉴于PARP抑制剂已显示出通过上调患者的免疫反应来增加对检查点抑制剂反应的潜能,其表明在乳腺癌的情形下化合物I、PARP抑制剂与检查点抑制剂的组合也可能增加反应。

Claims (23)

1.一种用于治疗乳腺癌的方法,所述方法包括向有需要的患者施用BET溴结构域抑制剂与第二治疗剂,所述BET溴结构域抑制剂选自1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-N-甲基-1H-咪唑并[4,5-b]吡啶-2-胺(化合物I)、1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺,和其药学上可接受的盐/共晶体。
2.根据权利要求1所述的方法,其中所述BET溴结构域抑制剂为化合物I。
3.根据权利要求1或权利要求2所述的方法,其中所述BET溴结构域抑制剂为化合物I的甲磺酸盐/共晶体形式I。
4.根据权利要求1至3中任一项所述的方法,其中所述第二治疗剂为PARP抑制剂。
5.根据权利要求4所述的方法,其进一步包括施用检查点抑制剂。
6.根据权利要求1至3中任一项所述的方法,其中所述第二治疗剂为他拉唑帕尼(talazoparib)。
7.根据权利要求1至6中任一项所述的方法,其中所述乳腺癌为三阴性乳腺癌(TNBC)。
8.根据权利要求1至7中任一项所述的方法,其中所述个体先前已用乳腺癌疗法治疗。
9.根据权利要求8中任一项所述的方法,其中所述乳腺癌疗法为化学疗法。
10.根据权利要求8中任一项所述的方法,其中所述乳腺癌疗法为免疫疗法。
11.根据权利要求1至10中任一项所述的方法,其中所述个体先前在用PARP抑制剂治疗时已显示出疾病进展。
12.根据权利要求1至11中任一项所述的方法,其中所述个体为人类。
13.根据权利要求1至12中任一项所述的方法,其中所述患有乳腺癌的个体具有一个或两个生殖系突变BRCA1和BRCA2。
14.根据权利要求1至12中任一项所述的方法,其中所述患有乳腺癌的个体具有一个或两个生殖系突变BRCA1和BRCA2。
15.根据权利要求1至12中任一项所述的方法,其中所述患有乳腺癌的个体不携带生殖系突变BRCA1或BRCA2。
16.根据权利要求1至12中任一项所述的方法,其中所述患有乳腺癌的个体具有对BRCA1和BRCA2的体细胞突变。
17.根据权利要求1至12中任一项所述的方法,其中所述患有乳腺癌的个体具有对BRCA1或BRCA2的体细胞突变。
18.根据权利要求1至12中任一项所述的方法,其中所述患有乳腺癌的个体具有对同源重组(HR)基因的一个或多个体细胞突变,所述同源重组基因包括ATM、CHEK2、NBN、PALB2、ATR、RAD51、RAD54、DSS1、RPA1、CHK1、FANCD2、FANCA、FANCC、FANCM、BARD1、RAD51C、RAD51D、RIF1和BRIP1。
19.根据权利要求1至12中任一项所述的方法,其中所述患有乳腺癌的个体具有对同源重组(HR)基因的一个或多个生殖系突变,所述同源重组基因包括ATM、CHEK2、NBN、PALB2、ATR、RAD51、RAD54、DSS1、RPA1、CHK1、FANCD2、FANCA、FANCC、FANCM、BARD1、RAD51C、RAD51D、RIF1和BRIP1。
20.根据权利要求1至12中任一项所述的方法,其中所述个体患有特征为同源重组(HR)有效(proficient)的肿瘤。
21.根据权利要求1至12中任一项所述的方法,其中所述个体患有特征为同源重组缺陷(HRD)的肿瘤。
22.根据权利要求1所述的方法,其中将选自以下的化合物与PARP抑制剂一起给药而不会导致血小板减少作为剂量限制性毒性:1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-N-甲基-1H-咪唑并[4,5-b]吡啶-2-胺(化合物I)和1-苯甲基-6-(3,5-二甲基异噁唑-4-基)-1H-咪唑并[4,5-b]吡啶-2-胺,和其药学上可接受的盐或共晶体。
23.根据权利要求22所述的方法,其中所述PARP抑制剂为他拉唑帕尼。
CN201980059875.XA 2018-09-13 2019-09-13 用于治疗三阴性乳腺癌的组合疗法 Active CN112912077B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862730879P 2018-09-13 2018-09-13
US62/730,879 2018-09-13
US201862737628P 2018-09-27 2018-09-27
US62/737,628 2018-09-27
PCT/IB2019/001009 WO2020053655A1 (en) 2018-09-13 2019-09-13 Combination therapy for the treatment of triple-negative breast cancer

Publications (2)

Publication Number Publication Date
CN112912077A true CN112912077A (zh) 2021-06-04
CN112912077B CN112912077B (zh) 2023-04-04

Family

ID=69777478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980059875.XA Active CN112912077B (zh) 2018-09-13 2019-09-13 用于治疗三阴性乳腺癌的组合疗法

Country Status (12)

Country Link
US (1) US11607405B2 (zh)
EP (1) EP3849549A4 (zh)
JP (1) JP2022500435A (zh)
KR (1) KR20210087440A (zh)
CN (1) CN112912077B (zh)
AU (1) AU2019337470A1 (zh)
CA (1) CA3111371A1 (zh)
IL (1) IL281256A (zh)
MX (1) MX2021002886A (zh)
SG (1) SG11202102483SA (zh)
TW (1) TWI816881B (zh)
WO (1) WO2020053655A1 (zh)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2935860T3 (es) 2015-04-10 2023-03-13 Spatial Transcriptomics Ab Análisis de ácidos nucleicos múltiplex, espacialmente distinguidos de especímenes biológicos
FI3891300T3 (fi) 2019-12-23 2023-05-10 10X Genomics Inc Menetelmät spatiaalista analyysiä varten rna-templatoitua ligaatiota käyttäen
CN115715329A (zh) 2020-01-10 2023-02-24 10X基因组学有限公司 确定生物样品中靶核酸位置的方法
US11702693B2 (en) 2020-01-21 2023-07-18 10X Genomics, Inc. Methods for printing cells and generating arrays of barcoded cells
US11732299B2 (en) 2020-01-21 2023-08-22 10X Genomics, Inc. Spatial assays with perturbed cells
US11821035B1 (en) 2020-01-29 2023-11-21 10X Genomics, Inc. Compositions and methods of making gene expression libraries
US11898205B2 (en) 2020-02-03 2024-02-13 10X Genomics, Inc. Increasing capture efficiency of spatial assays
US11732300B2 (en) 2020-02-05 2023-08-22 10X Genomics, Inc. Increasing efficiency of spatial analysis in a biological sample
US11835462B2 (en) 2020-02-11 2023-12-05 10X Genomics, Inc. Methods and compositions for partitioning a biological sample
US11891654B2 (en) 2020-02-24 2024-02-06 10X Genomics, Inc. Methods of making gene expression libraries
US11768175B1 (en) 2020-03-04 2023-09-26 10X Genomics, Inc. Electrophoretic methods for spatial analysis
ES2965354T3 (es) 2020-04-22 2024-04-12 10X Genomics Inc Métodos para análisis espacial que usan eliminación de ARN elegido como diana
CN116134308A (zh) 2020-05-19 2023-05-16 10X基因组学有限公司 电泳盒和仪器
EP4153775A1 (en) 2020-05-22 2023-03-29 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
WO2021237056A1 (en) 2020-05-22 2021-11-25 10X Genomics, Inc. Rna integrity analysis in a biological sample
AU2021275906A1 (en) 2020-05-22 2022-12-22 10X Genomics, Inc. Spatial analysis to detect sequence variants
WO2021242834A1 (en) 2020-05-26 2021-12-02 10X Genomics, Inc. Method for resetting an array
CN116249785A (zh) 2020-06-02 2023-06-09 10X基因组学有限公司 用于抗原-受体的空间转录组学
EP4025692A2 (en) 2020-06-02 2022-07-13 10X Genomics, Inc. Nucleic acid library methods
EP4162074B1 (en) 2020-06-08 2024-04-24 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
WO2021252591A1 (en) 2020-06-10 2021-12-16 10X Genomics, Inc. Methods for determining a location of an analyte in a biological sample
US20230279474A1 (en) 2020-06-10 2023-09-07 10X Genomics, Inc. Methods for spatial analysis using blocker oligonucleotides
CN116034166A (zh) 2020-06-25 2023-04-28 10X基因组学有限公司 Dna甲基化的空间分析
US11761038B1 (en) 2020-07-06 2023-09-19 10X Genomics, Inc. Methods for identifying a location of an RNA in a biological sample
WO2022025965A1 (en) 2020-07-31 2022-02-03 10X Genomics, Inc. De-crosslinking compounds and methods of use for spatial analysis
US11981958B1 (en) 2020-08-20 2024-05-14 10X Genomics, Inc. Methods for spatial analysis using DNA capture
CN116547388A (zh) 2020-09-15 2023-08-04 10X基因组学有限公司 从基材中释放延伸的捕获探针的方法及其应用
WO2022060953A1 (en) 2020-09-16 2022-03-24 10X Genomics, Inc. Methods of determining the location of an analyte in a biological sample using a plurality of wells
US11926822B1 (en) 2020-09-23 2024-03-12 10X Genomics, Inc. Three-dimensional spatial analysis
WO2022109181A1 (en) 2020-11-18 2022-05-27 10X Genomics, Inc. Methods and compositions for analyzing immune infiltration in cancer stroma to predict clinical outcome
US11827935B1 (en) 2020-11-19 2023-11-28 10X Genomics, Inc. Methods for spatial analysis using rolling circle amplification and detection probes
WO2022140028A1 (en) 2020-12-21 2022-06-30 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
US20240068017A1 (en) 2020-12-30 2024-02-29 10X Genomics, Inc. Methods for analyte capture determination
EP4301870A1 (en) 2021-03-18 2024-01-10 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
WO2022226057A1 (en) 2021-04-20 2022-10-27 10X Genomics, Inc. Methods for assessing sample quality prior to spatial analysis using templated ligation
WO2022271820A1 (en) 2021-06-22 2022-12-29 10X Genomics, Inc. Spatial detection of sars-cov-2 using templated ligation
EP4370675A1 (en) 2021-08-12 2024-05-22 10X Genomics, Inc. Methods, compositions and systems for identifying antigen-binding molecules
EP4196605A1 (en) 2021-09-01 2023-06-21 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
TW202327594A (zh) * 2021-09-23 2023-07-16 大陸商恒翼生物醫藥(上海)股份有限公司 用bet溴結構域抑制劑和parp抑制劑的組合治療預選患者群體的三陰性乳腺癌的方法
WO2023102313A1 (en) 2021-11-30 2023-06-08 10X Genomics, Inc. Systems and methods for identifying regions of aneuploidy in a tissue
EP4305195A2 (en) 2021-12-01 2024-01-17 10X Genomics, Inc. Methods, compositions, and systems for improved in situ detection of analytes and spatial analysis
WO2023150163A1 (en) 2022-02-01 2023-08-10 10X Genomics, Inc. Methods, compositions, and systems for capturing analytes from lymphatic tissue
WO2023150171A1 (en) 2022-02-01 2023-08-10 10X Genomics, Inc. Methods, compositions, and systems for capturing analytes from glioblastoma samples
US20230306593A1 (en) 2022-02-15 2023-09-28 10X Genomics, Inc. Systems and methods for spatial analysis of analytes using fiducial alignment
WO2023215552A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Molecular barcode readers for analyte detection
WO2023229982A2 (en) 2022-05-24 2023-11-30 10X Genomics, Inc. Porous structure confinement for convection suppression
WO2023250077A1 (en) 2022-06-22 2023-12-28 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
WO2024035844A1 (en) 2022-08-12 2024-02-15 10X Genomics, Inc. Methods for reducing capture of analytes
WO2024081212A1 (en) 2022-10-10 2024-04-18 10X Genomics, Inc. In vitro transcription of spatially captured nucleic acids
WO2024086167A2 (en) 2022-10-17 2024-04-25 10X Genomics, Inc. Methods, compositions, and kits for determining the location of an analyte in a biological sample
WO2024102809A1 (en) 2022-11-09 2024-05-16 10X Genomics, Inc. Methods, compositions, and kits for determining the location of multiple analytes in a biological sample

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100261679A1 (en) * 2007-10-18 2010-10-14 James Sutton CSF-1R, Inhibitors, Compositions, and Methods of Use
US20140162971A1 (en) * 2011-12-30 2014-06-12 Abbvie Inc. Bromodomain inhibitors
WO2014128655A1 (en) * 2013-02-25 2014-08-28 Aurigene Discovery Technologies Limited Substituted imidazo[4,5-c]quinoline derivatives as bromodomain inhibitors
CN104736144A (zh) * 2012-07-27 2015-06-24 A·M·G·邦特 外排抑制剂组合物和使用此组合物治疗的方法
CN105407888A (zh) * 2013-06-21 2016-03-16 齐尼思表观遗传学公司 新双环溴结构域抑制剂
CN105899207A (zh) * 2013-12-10 2016-08-24 艾伯维公司 用于治疗三阴性乳腺癌的维利帕尼与卡铂的组合
WO2017015027A1 (en) * 2015-07-20 2017-01-26 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813939B2 (en) * 2014-12-05 2020-10-27 H. Lee Moffitt Cancer Center And Research Institute, Inc. Bromodomain inhibitor as adjuvant in cancer immunotherapy
CN108289957A (zh) * 2015-10-02 2018-07-17 达纳-法伯癌症研究所股份有限公司 溴区结构域抑制剂和检查点阻断的组合疗法
US20180141939A1 (en) * 2016-11-22 2018-05-24 Gilead Sciences, Inc. Solid forms of a bet inhibitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100261679A1 (en) * 2007-10-18 2010-10-14 James Sutton CSF-1R, Inhibitors, Compositions, and Methods of Use
US20140162971A1 (en) * 2011-12-30 2014-06-12 Abbvie Inc. Bromodomain inhibitors
CN104736144A (zh) * 2012-07-27 2015-06-24 A·M·G·邦特 外排抑制剂组合物和使用此组合物治疗的方法
WO2014128655A1 (en) * 2013-02-25 2014-08-28 Aurigene Discovery Technologies Limited Substituted imidazo[4,5-c]quinoline derivatives as bromodomain inhibitors
CN105407888A (zh) * 2013-06-21 2016-03-16 齐尼思表观遗传学公司 新双环溴结构域抑制剂
CN105899207A (zh) * 2013-12-10 2016-08-24 艾伯维公司 用于治疗三阴性乳腺癌的维利帕尼与卡铂的组合
WO2017015027A1 (en) * 2015-07-20 2017-01-26 Mayo Foundation For Medical Education And Research Methods and materials for treating cancer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANNA MARIE MULLIGAN ET AL.,: "Validation of Intratumoral T-bet+ Lymphoid Cells as Predictors of Disease-Free Survival in Breast Cancer", 《CANCER IMMUNOL RES》 *
JENNIFER M. SAHNI ET AL.: "Targeting bromodomain and extraterminal proteins in breast cancer", 《PHARMACOLOGICAL RESEARCH》 *
姚舒洋等: "三阴性乳腺癌的分子靶向治疗", 《临床药物治疗杂志》 *
师柳等: "溴化结构域蛋白抑制剂JQ1对人乳腺癌细胞的作用", 《武汉大学学报(医学版)》 *

Also Published As

Publication number Publication date
TW202027746A (zh) 2020-08-01
JP2022500435A (ja) 2022-01-04
CN112912077B (zh) 2023-04-04
TWI816881B (zh) 2023-10-01
SG11202102483SA (en) 2021-04-29
US20220062246A1 (en) 2022-03-03
CA3111371A1 (en) 2020-03-19
WO2020053655A1 (en) 2020-03-19
US11607405B2 (en) 2023-03-21
KR20210087440A (ko) 2021-07-12
EP3849549A4 (en) 2022-06-08
AU2019337470A1 (en) 2021-03-25
IL281256A (en) 2021-04-29
EP3849549A1 (en) 2021-07-21
MX2021002886A (es) 2021-07-15

Similar Documents

Publication Publication Date Title
CN112912077B (zh) 用于治疗三阴性乳腺癌的组合疗法
KR102117982B1 (ko) 암 치료용 병용 요법
AU2012361581B2 (en) Effect potentiator for antitumor agents
JP7399079B2 (ja) 癌を処置するための併用療法
CN108137593A (zh) 新型蛋白激酶抑制剂的制备和用途
JP2023022190A (ja) 癌治療
AU2018352382A1 (en) Compounds and methods for treating cancer
JP2020522687A (ja) 癌を処置するためのezh2阻害剤の使用
CN112912075B (zh) 治疗前列腺癌的组合疗法
JP2021527071A (ja) Epac阻害剤としてのチエノ[2,3−b]ピリジン誘導体及びその医薬用途
WO2015150516A1 (en) New derivatives of cephalosporin for treating cancer
EA043826B1 (ru) Комбинированная терапия для лечения трижды негативного рака молочной железы
US20220047563A1 (en) Combination therapy for the treatment of estrogen-receptor positive breast cancer
EA044198B1 (ru) Комбинированная терапия для лечения рака предстательной железы
WO2024137751A1 (en) Methods of treating advanced solid tumors
WO2021046178A1 (en) Compounds and methods for treating cancer
WO2021046220A1 (en) Compounds and methods for treating cancer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40054127

Country of ref document: HK

CB02 Change of applicant information
CB02 Change of applicant information

Address after: 201203 building 10, No. 860, Xinyang Road, Lingang xinpian District, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai

Applicant after: Hengyi biomedicine (Shanghai) Co.,Ltd.

Address before: Room 413, building 3, 1690 Cailun Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai, 201203

Applicant before: Hengyi biomedical technology (Shanghai) Co.,Ltd.

GR01 Patent grant
GR01 Patent grant