CN112886952A - 一种高速时钟电路的动态延时补偿电路 - Google Patents

一种高速时钟电路的动态延时补偿电路 Download PDF

Info

Publication number
CN112886952A
CN112886952A CN202110043559.2A CN202110043559A CN112886952A CN 112886952 A CN112886952 A CN 112886952A CN 202110043559 A CN202110043559 A CN 202110043559A CN 112886952 A CN112886952 A CN 112886952A
Authority
CN
China
Prior art keywords
fine
circuit
delay
value
synchronization module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110043559.2A
Other languages
English (en)
Other versions
CN112886952B (zh
Inventor
赵捷
赵野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202110043559.2A priority Critical patent/CN112886952B/zh
Publication of CN112886952A publication Critical patent/CN112886952A/zh
Application granted granted Critical
Publication of CN112886952B publication Critical patent/CN112886952B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/135Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals by the use of time reference signals, e.g. clock signals

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

本发明属于数字时钟电路技术领域,公开了一种高速时钟电路的动态延时补偿电路,包括:锁相环、粗计数器、第一细采样电路、三个同步模块以及输出选择模块;锁相环电路分别向粗计数器和第一细采样电路输出整体时钟信号和相位信号;粗计数器分别向三个同步模块输出粗计数器值;第一细采样电路生成细编码值并将细编码值以及经过延时DB和两次延时DB分别得到三路细计数器值;三个同步模块分别与第一细采样电路相连对应接收三路细计数器值并分别与粗计数器值同步而后生成三路同步信号值;输出选择模块基于预设的选取规则选取一路同步信号值输出。本发明提供的补偿电路具有简单,高效,低成本的优点,能够弥补温度对于电路的影响,本质上解决延时对于电路的影响。

Description

一种高速时钟电路的动态延时补偿电路
技术领域
本发明涉及数字时钟电路技术领域,特别涉及一种高速时钟电路的动态延时补偿电路。
背景技术
高速高精度的系统设计是肯定离不开可靠性高的校准系统的,然而目前绝大多数的校准方法所采用的算法复杂,成本高,普适性低,不适用于多通道的拓展。常见的高速高精度的系统由于PVT变化和亚稳态等非理想情况的存在,严重影响了时间数字转换器的精度与线性度。基于多相位内插实现细量化的粗细结合的TDC主要是通过对计数器和内插于一个时钟周期的一组多相位时钟同时采样来锁存输入时刻。但是由于上述的非理想因素,导致在粗细协调的过程中粗计数器的路径延时与细计数的延时不匹配。目前已有的大多数校准方案是对单一输入的信号进行多次延时来获得不同的激励信号,利用这些激励信号的不同来推测无延迟输入信号的真实时刻,在这个过程中需要多次对信号进行处理,带来的功耗成本急剧上升,由于高精度的时数转换器对于时钟抖动、PVT变化及其敏感,因此简单的算法可能无法适应电路需求,而复杂的算法带来的成本过高。且,都没有本质上解决延时对于电路的影响,而是通过或是电路结构或是统计思想的算法来进行校准,总体而言,目前还没有一种简单高效低成本的做法,可以弥补温度对于电路的影响。
发明内容
本发明提供一种高速时钟电路的动态延时补偿电路,达到了简单高效低成本的弥补温度对于电路的影响,本质上解决延时对于电路的影响的技术效果。
为解决上述技术问题,本发明提供了一种高速时钟电路的动态延时补偿电路,包括:锁相环、粗计数器、第一细采样电路、第一同步模块、第二同步模块、第三同步模块以及输出选择模块;
所述锁相环电路与所述粗计数器相连输出整体时钟信号,所述锁相环电路与所述第一细采样电路相连,输出相位信号;
所述粗计数器与所述第一同步模块、所述第二同步模块、所述第三同步模块相连,并输出粗计数器值;
所述第一细采样电路生成细编码值,并将所述细编码值以及经过延时DB和两次延时DB分别得到第一路细计数器值、第二路细计数器值以及第三路细计数器值;
所述第一同步模块、所述第二同步模块和所述第三同步模块分别与所述第一细采样电路相连,对应接收所述第一路细计数器值、所述第二路细计数器值以及所述第三路细计数器值并分别与所述粗计数器值同步而后生成第一路同步信号值、第二路同步信号值以及第三路同步信号值;
所述输出选择模块与所述所述第一同步模块、所述第二同步模块和所述第三同步模块相连,并基于预设的选取规则选取一路同步信号值输出。
进一步地,所述高速时钟电路的动态延时补偿电路还包括:第二细采样电路和延时采样电路;
所述延时采样电路与所述粗计数器相连,动态提取出延时采样值;
所述第二细采样电路与所述延时采样电路以及所述锁相环相连,获取所述延时采样值和相位信号,生成延时编码DA
所述第一同步模块、所述第二同步模块和所述第三同步模块分别与所述第二细采样电路相连,获取所述延时编码DA
其中,所述第一同步模块、所述第二同步模块和所述第三同步模块分别同步所述第一路细计数器值、所述第二路细计数器值以及所述第三路细计数器值与所述粗计数器值和所述延时编码DA生成将所述第一路同步信号值、所述第二路同步信号值以及所述第三路同步信号值。
进一步地,所述相位信号包括16个相位。
进一步地,所述第一路细计数器值、所述第二路细计数器值、所述第三路细计数器值以及所述延时编码DA均为4bit编码。
进一步地,所述粗计数值为11bit编码。
进一步地,所述粗计数器为双边沿格雷码计数器。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请实施例中提供的高速时钟电路的动态延时补偿电路,是首次提出的基于动态延时提取电路并在其基础上进行编码算法改进的方案,该方案不需要大幅度修改电路结构,简单高效,且仅通过编码形式的反馈,并通过算法选取出合适的输出值,该过程并不需要基于大量数据进行统计学的选取,通过两步延迟值的做法,有效的抑制了PVT变化和时钟抖动对电路采样误差的影响,且由于结构简单,易于进行多通道的移植,获得良好的一致性。采用了延时提取电路并且在其基础上增加了全自动的校准算法电路,使得相对于现有技术而言,无论从复杂度还是代价都有了较大的改善。
附图说明
图1为本发明实施例提供的高速时钟电路的动态延时补偿电路的结构示意图;
图2为本发明实施例提供的输出选择模块可选的一种选取规则流程图;
图3为基于图2的输出选择模块的选取规则表。
具体实施方式
本申请实施例通过提供高速时钟电路的动态延时补偿电路,达到了简单高效低成本地弥补温度对于电路的影响,及本质上解决延时对于电路的影响的技术效果。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细说明,应当理解本发明实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。
参见图1,一种高速时钟电路的动态延时补偿电路,通过纯数字电路的方式进行延时补偿,分别针对亚稳态和PVT因素进行针对性补偿。
所述补偿电路具体包括:锁相环PLL、粗计数器Gray counter、第一细采样电路1、第一同步模块41、第二同步模块42、第三同步模块43以及输出选择模块。
所述锁相环电路与所述粗计数器相连输出600MHZ整体时钟信号,所述锁相环电路与所述第一细采样电路相连,输出相位信号,本实施例中为16位。
所述粗计数器与所述第一同步模块41、所述第二同步模块42、所述第三同步模块43相连,并输出粗计数器值,本实施例中为11bit;
所述第一细采样电路1生成细编码值,并将所述细编码值以及经过延时DB和两次延时DB分别得到第一路细计数器值F1、第二路细计数器值F2以及第三路细计数器值F3;
所述第一同步模块41、所述第二同步模块42和所述第三同步模块43分别与所述第一细采样电路1相连,对应接收所述第一路细计数器值F1、所述第二路细计数器值F2以及所述第三路细计数器值F3并分别与所述粗计数器值同步而后生成第一路同步信号值C1、第二路同步信号值C2以及第三路同步信号值C3。
所述输出选择模块与所述所述第一同步模块、所述第二同步模块和所述第三同步模块相连,并基于预设的选取规则选取一路同步信号值输出。
通过上述电路设计针对亚稳态因素进行补偿,实质上消除延时误差。
为了针对PVT因素,所述高速时钟电路的动态延时补偿电路还包括:第二细采样电路和延时采样电路;
所述延时采样电路与所述粗计数器相连,动态提取出延时采样值;
所述第二细采样电路与所述延时采样电路以及所述锁相环相连,获取所述延时采样值和相位信号,生成延时编码DA
所述第一同步模块、所述第二同步模块和所述第三同步模块分别与所述第二细采样电路相连,获取所述延时编码DA
其中,所述第一同步模块、所述第二同步模块和所述第三同步模块分别同步所述第一路细计数器值、所述第二路细计数器值以及所述第三路细计数器值与所述粗计数器值和所述延时编码DA生成将所述第一路同步信号值、所述第二路同步信号值以及所述第三路同步信号值。
本实施例中,所述相位信号包括16个相位。所述第一路细计数器值、所述第二路细计数器值、所述第三路细计数器值以及所述延时编码DA均为4bit编码。所述粗计数值为11bit编码。
进一步地,所述粗计数器为双边沿格雷码计数器。
参见图2和图3,值得说明的是,在本示例中输出选择模块可考虑以下选取原则。
1、粗计数本身延时减去补偿延时得到了结果应当大于0,及补偿本身不可过补偿以免导致不匹配。
2、亚稳态区间以及补偿后的结果相加不可超过时钟半个周期长度,否则会导致在选取过程中,会有情况上升沿计数器和下降沿计数器同时进入亚稳态区间,导致无法通过算法进行补偿。
3、选取延时间隔应当为亚稳态区间以及补偿后结果二者的较大值,这样可以最大限度容忍产生的情况。
4、两倍的选取延时间隔应当小于补偿后结果加半个周期长度的值,这样即可确定选取延时间隔为多少。
在确定各个值的情况之后,拟定校准思路如下,其中本次实验将Db及延时值设定为3个细计数间隔:
1、将细编码值按照规则延时两次,得到三组细编码值;
2、按照选取规则表通过两组格雷码计数器值与延迟信息编码选择合适的粗编码值;
3、将粗细编码值结合,得到最终的结果。
本实施例中,定义粗细计数本身延时为Td,延时提取电路补偿延时为Da,亚稳态区间为Tg,选取延时间隔为Db。Db按照选取规则避开可能带来的亚稳态和不可预估的系统延时带来的影响。
本实施例结合了动态的延时采样电路进行延时提取,相比于现有技术中使用PLL与DLL锁定相位的方法,该方案可以更快的更新延时信息,且需要的代价和新引入的延时更小。相比于复杂的数模混合结构,纯数字的解决方案设计结构简单,便于多通道复制。相比于现有技术的算法,需要基于多数据的统计学原理得到最终的值,该方案的算法结构简单可靠,不需要占用大量资源,且结果良好,快速高效。
本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本申请实施例中提供的高速时钟电路的动态延时补偿电路,是首次提出的基于动态延时提取电路并在其基础上进行编码算法改进的方案,该方案不需要大幅度修改电路结构,简单高效,且仅通过编码形式的反馈,并通过算法选取出合适的输出值,该过程并不需要基于大量数据进行统计学的选取,通过两步延迟值的做法,有效的抑制了PVT变化和时钟抖动对电路采样误差的影响,且由于结构简单,易于进行多通道的移植,获得良好的一致性。采用了延时提取电路并且在其基础上增加了全自动的校准算法电路,使得相对于现有技术而言,无论从复杂度还是代价都有了较大的改善。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种高速时钟电路的动态延时补偿电路,其特征在于,包括:锁相环、粗计数器、第一细采样电路、第一同步模块、第二同步模块、第三同步模块以及输出选择模块;
所述锁相环电路与所述粗计数器相连,输出整体时钟信号,所述锁相环电路与所述第一细采样电路相连,输出相位信号;
所述粗计数器与所述第一同步模块、所述第二同步模块、所述第三同步模块相连,并输出粗计数器值;
所述第一细采样电路生成细编码值,并将所述细编码值以及经过延时DB和两次延时DB分别得到第一路细计数器值、第二路细计数器值以及第三路细计数器值;
所述第一同步模块、所述第二同步模块和所述第三同步模块分别与所述第一细采样电路相连,对应接收所述第一路细计数器值、所述第二路细计数器值以及所述第三路细计数器值并分别与所述粗计数器值同步而后生成第一路同步信号值、第二路同步信号值以及第三路同步信号值;
所述输出选择模块与所述所述第一同步模块、所述第二同步模块和所述第三同步模块相连,并基于预设的选取规则选取一路同步信号值输出。
2.如权利要求1所述的高速时钟电路的动态延时补偿电路,其特征在于,所述高速时钟电路的动态延时补偿电路还包括:第二细采样电路和延时采样电路;
所述延时采样电路与所述粗计数器相连,动态提取出延时采样值;
所述第二细采样电路与所述延时采样电路以及所述锁相环相连,获取所述延时采样值和相位信号,生成延时编码DA
所述第一同步模块、所述第二同步模块和所述第三同步模块分别与所述第二细采样电路相连,获取所述延时编码DA
其中,所述第一同步模块、所述第二同步模块和所述第三同步模块分别同步所述第一路细计数器值、所述第二路细计数器值以及所述第三路细计数器值与所述粗计数器值和所述延时编码DA生成将所述第一路同步信号值、所述第二路同步信号值以及所述第三路同步信号值。
3.如权利要求2所述的高速时钟电路的动态延时补偿电路,其特征在于,所述相位信号包括16个相位。
4.如权利要求3所述的高速时钟电路的动态延时补偿电路,其特征在于,所述第一路细计数器值、所述第二路细计数器值、所述第三路细计数器值以及所述延时编码DA均为4bit编码。
5.如权利要求4所述的高速时钟电路的动态延时补偿电路,其特征在于,所述粗计数值为11bit编码。
6.如权利要求1所述的高速时钟电路的动态延时补偿电路,其特征在于,所述粗计数器为双边沿格雷码计数器。
CN202110043559.2A 2021-01-13 2021-01-13 一种高速时钟电路的动态延时补偿电路 Active CN112886952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110043559.2A CN112886952B (zh) 2021-01-13 2021-01-13 一种高速时钟电路的动态延时补偿电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110043559.2A CN112886952B (zh) 2021-01-13 2021-01-13 一种高速时钟电路的动态延时补偿电路

Publications (2)

Publication Number Publication Date
CN112886952A true CN112886952A (zh) 2021-06-01
CN112886952B CN112886952B (zh) 2024-04-05

Family

ID=76045584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110043559.2A Active CN112886952B (zh) 2021-01-13 2021-01-13 一种高速时钟电路的动态延时补偿电路

Country Status (1)

Country Link
CN (1) CN112886952B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376999A (zh) * 2021-06-08 2021-09-10 西安电子科技大学 一种用于高时间分辨率时间数字转换器的特殊加法器
CN117439609A (zh) * 2023-12-21 2024-01-23 杭州万高科技股份有限公司 基于脉冲展宽及斩波pll的时间数字转换电路

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001650A1 (en) * 2001-07-02 2003-01-02 Xianguo Cao Delay compensation circuit including a feedback loop
US20030177272A1 (en) * 2002-03-13 2003-09-18 Yoshinori Shimosakoda Synchronization correction circuit for correcting the period of clock signals
JP2006324752A (ja) * 2005-05-17 2006-11-30 Yokogawa Electric Corp 同期回路
CN101783665A (zh) * 2009-12-31 2010-07-21 广东正业科技股份有限公司 一种可编程步进延时时基和采样系统
CN103944568A (zh) * 2014-04-08 2014-07-23 北京时代民芯科技有限公司 一种用于多通道时间交织模数转换器的采样时钟产生电路
CN104155640A (zh) * 2014-08-15 2014-11-19 中国科学院上海技术物理研究所 一种具备采样点时间定位的激光雷达回波全波形采集器
CN104917582A (zh) * 2015-06-30 2015-09-16 中国科学技术大学 高精度时钟分发和相位自动补偿系统及其相位调节方法
CN107346964A (zh) * 2017-06-09 2017-11-14 中国电子科技集团公司第四十研究所 一种带自校准功能的高速脉冲信号脉宽精密控制电路及控制方法
CN107643674A (zh) * 2016-07-20 2018-01-30 南京理工大学 一种基于FPGA进位链的Vernier型TDC电路
CN108599743A (zh) * 2018-05-11 2018-09-28 中国工程物理研究院流体物理研究所 一种基于相位补偿的精密数字延时同步方法
CN208521008U (zh) * 2018-07-04 2019-02-19 吉林大学 一种用于井下多节点采集系统时间同步的补偿装置
CN111385047A (zh) * 2018-12-28 2020-07-07 中兴通讯股份有限公司 一种时间同步方法及电子设备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030001650A1 (en) * 2001-07-02 2003-01-02 Xianguo Cao Delay compensation circuit including a feedback loop
US20030177272A1 (en) * 2002-03-13 2003-09-18 Yoshinori Shimosakoda Synchronization correction circuit for correcting the period of clock signals
JP2006324752A (ja) * 2005-05-17 2006-11-30 Yokogawa Electric Corp 同期回路
CN101783665A (zh) * 2009-12-31 2010-07-21 广东正业科技股份有限公司 一种可编程步进延时时基和采样系统
CN103944568A (zh) * 2014-04-08 2014-07-23 北京时代民芯科技有限公司 一种用于多通道时间交织模数转换器的采样时钟产生电路
CN104155640A (zh) * 2014-08-15 2014-11-19 中国科学院上海技术物理研究所 一种具备采样点时间定位的激光雷达回波全波形采集器
CN104917582A (zh) * 2015-06-30 2015-09-16 中国科学技术大学 高精度时钟分发和相位自动补偿系统及其相位调节方法
CN107643674A (zh) * 2016-07-20 2018-01-30 南京理工大学 一种基于FPGA进位链的Vernier型TDC电路
CN107346964A (zh) * 2017-06-09 2017-11-14 中国电子科技集团公司第四十研究所 一种带自校准功能的高速脉冲信号脉宽精密控制电路及控制方法
CN108599743A (zh) * 2018-05-11 2018-09-28 中国工程物理研究院流体物理研究所 一种基于相位补偿的精密数字延时同步方法
CN208521008U (zh) * 2018-07-04 2019-02-19 吉林大学 一种用于井下多节点采集系统时间同步的补偿装置
CN111385047A (zh) * 2018-12-28 2020-07-07 中兴通讯股份有限公司 一种时间同步方法及电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376999A (zh) * 2021-06-08 2021-09-10 西安电子科技大学 一种用于高时间分辨率时间数字转换器的特殊加法器
CN113376999B (zh) * 2021-06-08 2023-01-06 西安电子科技大学 一种用于高时间分辨率时间数字转换器的特殊加法器
CN117439609A (zh) * 2023-12-21 2024-01-23 杭州万高科技股份有限公司 基于脉冲展宽及斩波pll的时间数字转换电路
CN117439609B (zh) * 2023-12-21 2024-03-08 杭州万高科技股份有限公司 基于脉冲展宽及斩波pll的时间数字转换电路

Also Published As

Publication number Publication date
CN112886952B (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
JP5300671B2 (ja) クロックリカバリ回路およびデータ再生回路
US5107264A (en) Digital frequency multiplication and data serialization circuits
CN111512369B (zh) 多通道数据接收器的时钟数据恢复装置及方法
US8634503B2 (en) Fast lock clock-data recovery for phase steps
CN210168032U (zh) 用于对准高数据速率时钟和数据恢复解串器的采样实例的系统
CN112886952A (zh) 一种高速时钟电路的动态延时补偿电路
US8922264B1 (en) Methods and apparatus for clock tree phase alignment
KR19990029900A (ko) 클럭 복구 회로
US7071750B2 (en) Method for multiple-phase splitting by phase interpolation and circuit the same
CN107346964B (zh) 一种带自校准功能的高速脉冲信号脉宽精密控制电路及控制方法
CN114421967B (zh) 相位插值电路、锁相环、芯片及电子设备
CN111262578B (zh) 针对高速ad/da芯片的多芯片同步电路、系统及方法
US8861648B2 (en) Receiving device and demodulation device
CN108768387B (zh) 一种快速锁定的延时锁定环
JP7037318B2 (ja) 高速及び低電力のデジタル/アナログアップコンバータ
KR101828104B1 (ko) 고속 신호 처리를 위한 dac 장치들 사이의 동기화 방법 및 시스템
JP2013005050A (ja) クロック生成装置および電子機器
US7236552B2 (en) Data transmission
JP3705273B2 (ja) クロック抽出回路およびクロック抽出方法
CN109283832B (zh) 一种低功耗的时间数字转换器及其phv补偿方法
CN114142855B (zh) 嵌套的延时锁定环
CN114675525B (zh) 一种时间数字转换器和时钟同步系统
Liu et al. A New Multilevel Interpolated TDC Method Based on a Two-Step Synchronizer
CN115664413A (zh) 分频时钟的相位调整电路
CN118118013A (zh) 一种基于双数字延迟锁相环的定时恢复方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant