CN112876252A - 高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺 - Google Patents

高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺 Download PDF

Info

Publication number
CN112876252A
CN112876252A CN202110038256.1A CN202110038256A CN112876252A CN 112876252 A CN112876252 A CN 112876252A CN 202110038256 A CN202110038256 A CN 202110038256A CN 112876252 A CN112876252 A CN 112876252A
Authority
CN
China
Prior art keywords
powder
silicon
self
titanium
propagating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110038256.1A
Other languages
English (en)
Other versions
CN112876252B (zh
Inventor
张洪涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Zhongse New Material Technology Co ltd
Original Assignee
Liaoning Zhongse New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Zhongse New Material Technology Co ltd filed Critical Liaoning Zhongse New Material Technology Co ltd
Priority to CN202110038256.1A priority Critical patent/CN112876252B/zh
Publication of CN112876252A publication Critical patent/CN112876252A/zh
Application granted granted Critical
Publication of CN112876252B publication Critical patent/CN112876252B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5611Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides
    • C04B35/5615Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on titanium carbides based on titanium silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • C04B35/651Thermite type sintering, e.g. combustion sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

一种高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺,将硅粉和石墨粉加入粘合剂,装入真空球磨机中混料;将混好的料压成圆饼,放入真空电阻烧结炉烧制,得到硅碳合金;将钛粉和硅碳加入硝酸钠和粘合剂,装入真空球磨机中,在氩气保护下混料;将混好的物料压成圆饼,装入真空自蔓延炉,圆饼逐层堆放,装入镁粉作为点火剂;抽真空,送电升温,引燃镁粉,通过热传递引燃全部圆饼,发生自蔓延反应,自蔓延反应完毕,随炉降温,得到碳化硅钛块体。优点是:工艺条件简单、可控,产品纯度高,自蔓延反应过程中加入硝酸钠,使自蔓延反应热能达到原料反应要求,合金率可达100%。

Description

高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺
技术领域
本发明涉及一种高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺。
背景技术
碳化硅钛(Ti3SiC2)具有金属和陶瓷的很多优点,似金属一样是良好的电和热的导体,易加工,柔软,对热冲击不敏感,高温表现为塑性;又似陶瓷具有抗氧化,耐高温,其耐高温强度超过所有的高温合金。碳化硅钛应用十分广泛,是一种具有重要研究价值和应用前景的高温材料。
目前,关于合成碳化硅钛的方法主要有气相合成法和固相合成法这两种。气相合成法容易反应不完全,而且单质与氢气容易化合形成杂相,产品纯度不高,且危险性较高。固相合成法要求高温,烧结时间长,反应条件要求高,且容易形成TiC杂相;且生产过程复杂,成本高。
发明内容
本发明提供了一种成本低,工艺简单,成品纯度高,工艺可控,可以大规模工业化生产的高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺。
本发明的技术方案是:
一种高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺,具体步骤如下:
(1)将硅粉和石墨粉按照1:2的摩尔比称重,加入粘合剂,装入20L真空球磨机中,每次装料5kg-8kg,混料15小时;将混好的料按每份500g称重,用400吨油压机在20MPa-25MPa压力下压成圆饼,放入真空电阻烧结炉烧制,每次装料50kg-120kg;开启真空泵,真空度达到5Pa-10Pa后开始升温,送电功率120kw;温度达到1200℃,保温5小时,保温期间真空度保持在5Pa-8Pa;继续升温至1500℃-1600℃,保温6小时,保温期间真空度保持在5Pa-15Pa,保温结束,停电,随炉冷却,得到硅碳合金;
(2)将钛粉和硅碳合金(以硅粉摩尔数计)按照摩尔比3:1称重,加入硝酸钠和粘合剂,硝酸钠的加入量以钛粉和硅碳合金总质量计,每千克钛粉和硅碳合金加入45g硝酸钠,装入20L的真空球磨机中,每次装8kg-10kg,在氩气保护下混料48小时;将混好的物料按照每份1kg称重,用400t油压机在20MPa压力压成圆饼,装入真空自蔓延炉的纯钼坩埚中;圆饼逐层堆放成锥形,每次装入量45公斤-55公斤,顶部放入50g镁粉作为点火剂;抽真空至5Pa-10Pa,送电升温,送电功率为4kw-8kw;加热钨丝至750℃-1000℃,引燃镁粉,通过热传递引燃全部圆饼,炉内温度会瞬间达到1500℃-1550℃,自蔓延反应完毕,随炉降温,得到碳化硅钛块体。
进一步的,钛粉纯度为99.8%,粒度为325目;硅粉纯度为99.99%,粒度为400目;石墨粉纯度为99.99%,粒度为325目;硝酸钠纯度为99.9%,粒度为200目;镁粉纯度为99.5%,粒度为325目。
进一步的,步骤(1)加入的粘合剂为羧甲基纤维素,按照硅粉和石墨粉总质量计每千克加入粘合剂5g。
进一步的,步骤(2)粘合剂为羧甲基纤维素,羧甲基纤维素加入量以钛粉和硅碳合金总质量计,每千克钛粉和硅碳合金加入5g羧甲基纤维素。
采用如上所述的技术方案,具有如下有益效果:
通过硅粉和石墨粉烧结为碳硅合金,再通过自蔓延反应由钛粉和碳硅合金得到碳化硅钛,共两步完成,实现了工艺条件简单、可控,通过先合成碳硅合金,避免杂相产生,产品纯度高,自蔓延反应过程中加入硝酸钠,使自蔓延反应热能达到原料反应要求,合金率可达100%。
附图说明
图1是本发明生产的碳化硅钛电镜图像;
图2是本发明生产的碳化硅钛的X射线衍射图谱。
具体实施方式
通过下面的实施例可以更详细的解释本发明,本发明并不局限于下面的实施例。
高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺,具体步骤如下:
原料的纯度及粒度:
钛粉纯度为99.8%,粒度为325目;
硅粉纯度为99.99%,粒度为400目;
石墨粉纯度为99.99%,粒度为325目;
硝酸钠纯度为99.9%,粒度为200目;
镁粉纯度为99.5%,粒度为325目。
(1)将硅粉8.43kg和石墨粉7.21kg(摩尔比1:2),加入粘合剂羧甲基纤维素78.2g,装入20L真空球磨机中,每次装5kg-8kg,混料15小时。将混好的料按每份500g称重,用400吨油压机在20MPa-25MPa压成圆饼,放入真空电阻烧结炉烧制,每次装料50kg-120kg。开启真空泵,真空度达到5Pa-10Pa后开始升温,送电功率120kw。温度达到1200℃,保温5小时,保温期间真空度保持在5Pa-8Pa。继续升温至1500℃-1600℃,保温6小时,保温期间真空度保持在5Pa-15Pa,保温结束,停电,随炉冷却,得到碳硅合金。
(2)将钛粉43kg和碳硅合金15.64kg(钛粉与硅粉摩尔比3:1),加入硝酸钠2.64kg和粘合剂羧甲基纤维素293g,装入20L的真空球磨机中,每次装8kg-10kg,在氩气保护下混料48小时。将混好的物料按照每份1kg称重,用400t油压机在20MPa压力压成圆饼,装入真空自蔓延炉的纯钼坩埚中。圆饼逐层堆放成锥形,堆放时圆饼数量由底层至顶层逐层递减,每次装入量45公斤-55公斤,顶部放入50g镁粉作为点火剂。抽真空至5Pa-10Pa,送电升温,送电功率为4kw-8kw。加热钨丝至750℃-1000℃,引燃镁粉,通过热传递引燃全部圆饼,炉内温度会瞬间达到1500℃-1550℃,自蔓延反应完毕,随炉降温,得到碳化硅钛块料,获得的碳化硅钛的X射线衍射图谱如图2所示,由图2可以看出其与碳化硅钛标准卡片基本一致,该方法生产的样品无明显杂项,合金率为100%。
实施例1
(1)选取原料:钛粉纯度为99.8%,粒度为325目;硅粉纯度为99.99%,粒度为400目;石墨粉纯度为99.99%,粒度为325目;硝酸钠纯度为99.9%,粒度为200目;镁粉纯度为99.5%,粒度为325目;
将硅粉8.43kg和石墨粉7.21kg(摩尔比1:2),加入粘合剂羧甲基纤维素78.2g,装入20L真空球磨机中,每次装料5kg,混料15小时;将混好的料按每份500g称重,用400吨油压机在20MPa压力下压成圆饼,放入真空电阻烧结炉烧制,每次装料50kg;开启真空泵,真空度达到5Pa-10Pa后开始升温,送电功率120kw;温度达到1200℃,保温5小时,保温期间真空度保持在5Pa-8Pa;继续升温至1500℃,在1500℃-1600℃,保温6小时,保温期间真空度保持在5Pa-15Pa,保温结束,停电,随炉冷却,得到硅碳合金;
(2)将钛粉43kg和碳硅合金15.64kg(钛粉与硅粉摩尔比3:1),加入硝酸钠2.64kg和粘合剂羧甲基纤维素293g,装入20L的真空球磨机中,每次装8kg,在氩气保护下混料48小时;将混好的物料按照每份1kg称重,用400t油压机在20MPa压力压成圆饼,装入200公斤真空自蔓延炉的纯钼坩埚中;圆饼逐层堆放成锥形,圆饼逐层堆放时,圆饼数量由底层至顶层逐层递减,最上层为1个,相邻两层圆饼相差数量为1个;每次装入量45公斤,顶部放入50g镁粉作为点火剂;抽真空至5Pa-10Pa,送电升温,送电功率为4kw;加热钨丝至750℃-1000℃,引燃镁粉,通过热传递引燃全部圆饼,炉内温度会瞬间达到1500℃,自蔓延反应完毕,随炉降温,得到碳化硅钛块体,碳化硅钛的X射线衍射图如图2所示。生产的碳化硅钛电镜图如图1所示,由图2可以看出其与碳化硅钛(Ti3SiC2)标准卡片基本一致,该方法生产的样品无明显杂项,合金化程度100%。
实施例2
(1)选取原料:钛粉纯度为99.8%,粒度为325目;硅粉纯度为99.99%,粒度为400目;石墨粉纯度为99.99%,粒度为325目;硝酸钠纯度为99.9%,粒度为200目;镁粉纯度为99.5%,粒度为325目;
将硅粉8.43kg和石墨粉7.21kg(摩尔比1:2),加入粘合剂羧甲基纤维素78.2g,装入20L真空球磨机中,每次装料6kg,混料15小时;将混好的料按每份500g称重,用400吨油压机在22MPa压力下压成圆饼,放入真空电阻烧结炉烧制,每次装料80kg;开启真空泵,真空度达到5Pa-10Pa后开始升温,送电功率120kw;温度达到1200℃,保温5小时,保温期间真空度保持在5Pa-8Pa;继续升温至1530℃,在1500℃-1600℃,保温6小时,保温期间真空度保持在5Pa-15Pa,保温结束,停电,随炉冷却,得到硅碳合金;
(2)将钛粉43kg和碳硅合金15.64kg(钛粉与硅粉摩尔比3:1),加入硝酸钠2.64kg和粘合剂羧甲基纤维素293g,装入20L的真空球磨机中,每次装9kg,在氩气保护下混料48小时;将混好的物料按照每份1kg称重,用400t油压机在20MPa压力压成圆饼,装入200公斤真空自蔓延炉的纯钼坩埚中;圆饼逐层堆放成锥形,圆饼逐层堆放时,圆饼数量由底层至顶层逐层递减,最上层为1个,相邻两层圆饼相差数量为1个;每次装入量55公斤,顶部放入50g镁粉作为点火剂;抽真空至5Pa-10Pa,送电升温,送电功率为6kw;加热钨丝至750℃-1000℃,引燃镁粉,通过热传递引燃全部圆饼,炉内温度会瞬间达到1528℃,自蔓延反应完毕,随炉降温,得到碳化硅钛块体。碳化硅钛的X射线衍射图如图2所示。生产的碳化硅钛电镜图如图1所示,由图2可以看出其与碳化硅钛(Ti3SiC2)标准卡片基本一致,该方法生产的样品无明显杂项,合金化程度100%。
实施例3
(1)选取原料:钛粉纯度为99.8%,粒度为325目;硅粉纯度为99.99%,粒度为400目;石墨粉纯度为99.99%,粒度为325目;硝酸钠纯度为99.9%,粒度为200目;镁粉纯度为99.5%,粒度为325目;
将硅粉8.43kg和石墨粉7.21kg(摩尔比1:2),加入粘合剂羧甲基纤维素78.2g,装入20L真空球磨机中,每次装料8kg,混料15小时;将混好的料按每份500g称重,用400吨油压机在25MPa压力下压成圆饼,放入真空电阻烧结炉烧制,每次装料120kg;开启真空泵,真空度达到5Pa-10Pa后开始升温,送电功率120kw;温度达到1200℃,保温5小时,保温期间真空度保持在5Pa-8Pa;继续升温至1550℃,在1500℃-1600℃,保温6小时,保温期间真空度保持在5Pa-15Pa,保温结束,停电,随炉冷却,得到硅碳合金;
(2)将钛粉43kg和碳硅合金15.64kg(钛粉与硅粉摩尔比3:1),加入硝酸钠2.64kg和粘合剂羧甲基纤维素293g,装入20L的真空球磨机中,每次装10kg,在氩气保护下混料48小时;将混好的物料按照每份1kg称重,用400t油压机在20MPa压力压成圆饼,装入200公斤真空自蔓延炉的纯钼坩埚中;圆饼逐层堆放成锥形,圆饼逐层堆放时,圆饼数量由底层至顶层逐层递减,最上层为1个,相邻两层圆饼相差数量为1个;每次装入量55公斤,顶部放入50g镁粉作为点火剂;抽真空至5Pa-10Pa,送电升温,送电功率为8kw;加热钨丝至750℃-1000℃,引燃镁粉,通过热传递引燃全部圆饼,炉内温度会瞬间达到1550℃,自蔓延反应完毕,随炉降温,得到碳化硅钛块体。碳化硅钛的X射线衍射图如图2所示。生产的碳化硅钛电镜图如图1所示,由图2可以看出其与碳化硅钛(Ti3SiC2)标准卡片基本一致,该方法生产的样品无明显杂项,合金化程度100%。
以上仅为本发明的具体实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺,其特征是,具体步骤如下:
(1)将硅粉和石墨粉按照1:2的摩尔比称重,加入粘合剂,装入20L真空球磨机中,每次装料5kg-8kg,混料15小时;将混好的料按每份500g称重,用400吨油压机在20MPa-25MPa压力下压成圆饼,放入真空电阻烧结炉烧制,每次装料50kg-120kg;开启真空泵,真空度达到5Pa-10Pa后开始升温,送电功率120kw;温度达到1200℃,保温5小时,保温期间真空度保持在5Pa-8Pa;继续升温至1500℃-1600℃,保温6小时,保温期间真空度保持在5Pa-15Pa,保温结束,停电,随炉冷却,硅碳合金;
(2)将钛粉和硅碳合金以硅粉摩尔数计按照摩尔比3:1称重,加入硝酸钠和粘合剂,硝酸钠的加入量以钛粉和硅碳合金总质量计,每千克钛粉和硅碳合金加入45g硝酸钠,装入20L的真空球磨机中,每次装8kg-10kg,在氩气保护下混料48小时;将混好的物料按照每份1kg称重,用400t油压机在20MPa压力压成圆饼,装入真空自蔓延炉的纯钼坩埚中;圆饼逐层堆放成锥形,每次装入量45公斤-55公斤,顶部放入50g镁粉作为点火剂;抽真空至5Pa-10Pa,送电升温,送电功率为4kw-8kw;加热钨丝至750℃-1000℃,引燃镁粉,通过热传递引燃全部圆饼,炉内温度会瞬间达到1500℃-1550℃,自蔓延反应完毕,随炉降温,得到碳化硅钛块体。
2.根据权利要求1所述的高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺,其特征是,钛粉纯度为99.8%,粒度为325目;硅粉纯度为99.99%,粒度为400目;石墨粉纯度为99.99%,粒度为325目;硝酸钠纯度为99.9%,粒度为200目;镁粉纯度为99.5%,粒度为325目。
3.根据权利要求1所述的高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺,其特征是,步骤(1)加入的粘合剂为羧甲基纤维素,按照硅粉和石墨粉总质量计每千克加入粘合剂5g。
4.根据权利要求1所述的高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺,其特征是,步骤(2)粘合剂为羧甲基纤维素,羧甲基纤维素加入量以钛粉和硅碳合金总质量计,每千克钛粉和硅碳合金加入5g羧甲基纤维素。
CN202110038256.1A 2021-01-12 2021-01-12 高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺 Active CN112876252B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110038256.1A CN112876252B (zh) 2021-01-12 2021-01-12 高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110038256.1A CN112876252B (zh) 2021-01-12 2021-01-12 高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺

Publications (2)

Publication Number Publication Date
CN112876252A true CN112876252A (zh) 2021-06-01
CN112876252B CN112876252B (zh) 2022-05-20

Family

ID=76044614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110038256.1A Active CN112876252B (zh) 2021-01-12 2021-01-12 高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺

Country Status (1)

Country Link
CN (1) CN112876252B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594210A (zh) * 2004-06-18 2005-03-16 北京交通大学 一种制备钛硅碳陶瓷粉的方法
CN101066869A (zh) * 2007-06-13 2007-11-07 北京交通大学 一种无TiC杂质相的碳化硅钛陶瓷粉体的合成方法
WO2010085006A1 (en) * 2009-01-20 2010-07-29 The Industry & Academic Cooperation In Chungnam National University (Iac) Fabrication method of nano-sized metal carbide powder using self-propagating high-temperature synthesis
JP2011088804A (ja) * 2009-09-28 2011-05-06 National Institute Of Advanced Industrial Science & Technology チタンシリコンカーバイドセラミックスの製造方法
CN102166652A (zh) * 2011-03-30 2011-08-31 北京科技大学 一种热喷涂用碳化钛基金属陶瓷粉末材料的制备方法
CN108558404A (zh) * 2018-07-18 2018-09-21 陕西科技大学 一种Ti3SiC2金属陶瓷的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1594210A (zh) * 2004-06-18 2005-03-16 北京交通大学 一种制备钛硅碳陶瓷粉的方法
CN101066869A (zh) * 2007-06-13 2007-11-07 北京交通大学 一种无TiC杂质相的碳化硅钛陶瓷粉体的合成方法
WO2010085006A1 (en) * 2009-01-20 2010-07-29 The Industry & Academic Cooperation In Chungnam National University (Iac) Fabrication method of nano-sized metal carbide powder using self-propagating high-temperature synthesis
JP2011088804A (ja) * 2009-09-28 2011-05-06 National Institute Of Advanced Industrial Science & Technology チタンシリコンカーバイドセラミックスの製造方法
CN102166652A (zh) * 2011-03-30 2011-08-31 北京科技大学 一种热喷涂用碳化钛基金属陶瓷粉末材料的制备方法
CN108558404A (zh) * 2018-07-18 2018-09-21 陕西科技大学 一种Ti3SiC2金属陶瓷的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
路金蓉 等: "高纯Ti3SiC2 的合成及其反应机理", 《机械工程材料》 *

Also Published As

Publication number Publication date
CN112876252B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
Subrahmanyam et al. Self-propagating high-temperature synthesis
JP5051168B2 (ja) 窒化物分散Ti−Al系ターゲット及びその製造方法
US4689077A (en) Method for manufacturing a reaction-sintered metal/ceramic composite body and metal/ceramic composite body
US4877759A (en) One step process for producing dense aluminum nitride and composites thereof
WO1997012999A1 (en) Single step synthesis and densification of ceramic-ceramic and ceramic-metal composite materials
CN114605154B (zh) 一种基于金属预合金化的高熵陶瓷材料及其制备方法
CN113044842B (zh) 一种高纯碳化铝钛的生产工艺
CN101734917B (zh) 氮化硼基陶瓷复合材料及其制备方法
US5640666A (en) Composite silicide/silicon carbide mechanical alloy
WO1994021407A1 (en) Method for producing articles by reactive infiltration
CN112125315B (zh) 一种低成本高纯六硼化硅生产工艺
CN113560571A (zh) 一种利用冷等静压及真空烧结设备的低成本钛铝合金靶材制备方法
CA3023036C (en) Metallic compounds and metallic matrix composites made using compression activated synthesis
CN116768629B (zh) 一种低成本一步法生产高纯碳化铝钛的工艺
CN112876252B (zh) 高温烧结和自蔓延热结合的两步法生产碳化硅钛的工艺
JP4362582B2 (ja) 金属性セラミック焼結体チタンシリコンカーバイドの製造方法
CN112919470B (zh) 一种碳化硅钛的生产工艺
JP5308296B2 (ja) チタンシリコンカーバイドセラミックスの製造方法
CN113044846B (zh) 一种自蔓延法生产高纯硅化铪的工艺
CN109112331B (zh) 一种原位合成高性能Fe3Al-TiC复合材料的方法及其应用
Koizumi et al. RECENT PROGRESS IN COMBUSTION SYNTHESIS OF HIGH PERFORMANCE MATERIALS IN JAPAN
Jiang et al. Combustion synthesis of tungsten carbides under electric fieldII. Field-activated pressure-assisted combustion synthesis
CN101186507B (zh) 一种在铝碳耐火材料内合成贝塔赛隆的方法
Fu et al. Processing of composite materials by the micropyretic synthesis method
CN116924811B (zh) 一步法生产高纯六硼化硅的工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant