CN112853312A - 一种制备红外复合材料的方法和真空化学气相沉积炉 - Google Patents

一种制备红外复合材料的方法和真空化学气相沉积炉 Download PDF

Info

Publication number
CN112853312A
CN112853312A CN202011645398.6A CN202011645398A CN112853312A CN 112853312 A CN112853312 A CN 112853312A CN 202011645398 A CN202011645398 A CN 202011645398A CN 112853312 A CN112853312 A CN 112853312A
Authority
CN
China
Prior art keywords
gas
deposition
crucible
znse
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011645398.6A
Other languages
English (en)
Inventor
刘羊
于金凤
王和风
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Zhongfei Technology Co.,Ltd.
Original Assignee
First Semiconductor Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Semiconductor Materials Co ltd filed Critical First Semiconductor Materials Co ltd
Priority to CN202011645398.6A priority Critical patent/CN112853312A/zh
Publication of CN112853312A publication Critical patent/CN112853312A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • C23C16/306AII BVI compounds, where A is Zn, Cd or Hg and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种制备红外复合材料的方法和真空化学气相沉积炉,其中,所述方法包括在同一真空化学气相沉积炉内连续沉积ZnSe和ZnS,将装有固体锌料的坩埚加热至500~750℃,使锌升华产生锌蒸汽,然后将沉积室加热至650~800℃,通入硒化氢,开始沉积ZnSe,沉积完成后,停止通入硒化氢,沉积室降温至600~750℃,通入硫化氢气体,开始沉积ZnS,整个沉积过程载流气体的流量保持不变,沉积完成后进行升温退火处理,出炉即得ZnSe/ZnS红外复合材料。本发明有效缩短了ZnSe/ZnS红外复合材料的生产周期,简化了生产工艺,降低了生产成本。

Description

一种制备红外复合材料的方法和真空化学气相沉积炉
技术领域
本发明属于红外光学材料技术领域,具体涉及一种制备红外复合材料的方法和真空化学气相沉积炉。
背景技术
ZnSe与ZnS同属Ⅱ-Ⅵ族化合物,目前主要使用化学气相沉积(chemical vapordeposition,CVD)方法生长,CVD ZnS和CVD ZnSe已成为应用非常广泛的长波红外窗口和光学材料。CVD ZnSe与CVD ZnS不仅在制备方法上相似,而且具有许多相近似的性能。在光学性能方面,CVD ZnSe红外透过波段比CVD ZnS宽,特别是在12μm以外的长波区,它具备吸收系数小、高温下折射率变化小等优点,而且CVD ZnSe比CVD ZnS更容易生长出结构均匀、无散射的光学材料。在力学性能方面,CVD ZnS的断裂强度和硬度都比CVD ZnSe高。因此提出了将CVD ZnS足够的耐侵蚀、抗断裂强度和硬度等和CVD ZnSe优异的光学性能有机结合起来制备ZnSe/ZnS红外复合材料。
直到目前,获得ZnSe/ZnS红外复合材料的方法中,基本都是先将ZnSe材料通过化学气相沉积法生长出来,在对ZnSe材料制作成合适的尺寸,并经过抛光、热处理、等离子清洗等表面处理后,将其重新安装在化学气相沉积炉中,在ZnSe材料表面上沉积覆盖一层ZnS。但此方法费时费力,从ZnSe沉积出炉,再经过切割断料,表面处理等工序,还需将处理好的ZnSe材料重新装炉沉积ZnS,此过程耗费时间长,生产成本高,不利于材料的产业化生产。
发明内容
为解决上述现有技术中存在的不足之处,本发明的目的在于提供一种制备红外复合材料的方法和真空化学气相沉积炉,以简化ZnSe/ZnS红外复合材料的生产工艺,缩短耗时,以及降低生产成本。
为达到其目的,本发明所采用的技术方案如下:
一种制备红外复合材料的方法,其包括如下步骤:
步骤一、沉积ZnSe:
a)将固体锌料装入化学气相沉积器的坩埚中,然后将化学气相沉积器安装于真空化学气相沉积炉内,合炉,通入载流气体,维持炉内压力在2000~10000Pa;
b)沉积室和坩埚热场升温,坩埚升温至锌的升华温度500~750℃,沉积室升温至ZnSe的沉积温度650~800℃;
c)坩埚中锌的升华速率稳定后,通入硒化氢气体,进行化学气相沉积ZnSe;
d)待ZnSe沉积到所需厚度时,停止通入硒化氢气体,载流气体的流量保持不变,将沉积室降温到ZnS的沉积温度600~750℃;
步骤二、沉积ZnS:
通入硫化氢气体,在ZnSe上沉积ZnS,直至ZnS的沉积厚度达到3mm以上;
步骤三、退火处理:
将坩埚的温度降至400℃以下,停止锌的升华,停止通入硫化氢气体,载流气体的流量保持不变,将沉积室的温度升高50~100℃,然后保温20~50h进行退火,保温完成后,将沉积室的温度降至室温,出炉,即得ZnSe/ZnS红外复合材料。
现有技术在采用化学气相沉积法制备ZnSe/ZnS红外复合材料时,基本都是分次沉积ZnSe和ZnS。然而,ZnSe材料降温出炉后,其表面会被杂质污染,无法直接进行二次沉积,必须经过特殊的表面处理后才能继续沉积ZnS。而本发明在同一真空炉内连续沉积ZnSe和ZnS,ZnSe无需降温出炉,表面不会被污染,表面活性得以保持,可继续沉积ZnS,而且在沉积ZnS时也不会引入杂质,最后还通过升温退火的方式消除复合材料的应力,最终获得优质的ZnSe/ZnS红外复合材料。
作为上述技术方案的优选,所述步骤一中采用的坩埚为石墨坩埚,采用的载流气体为惰性气体,如氩气。
作为上述技术方案的优选,所述步骤b)中,坩埚升温的速率为0.4~5℃/min,沉积室升温的速率为0.1~4℃/min。
作为上述技术方案的优选,所述步骤d)中,沉积室降温的速率为0.1~1.0℃/min。
作为上述技术方案的优选,所述步骤三中,沉积室升温和降温的速率为0.1~0.8℃/min。
各步骤中,采用本发明提供的升温速率可有效控制真空化学气相沉积炉中加热器的输出功率,使其保持在良性的使用功率范围内;采用本发明提供的降温速率是为了控制材料的热膨胀速率,使复合材料缓慢释放热应力,避免产品出现开裂问题。
另一方面,本发明还提供了一种制备红外复合材料的真空化学气相沉积炉,其包括真空炉壳,所述真空炉壳内设有坩埚、沉积室、第一加热器和第二加热器,所述沉积室设于所述坩埚的上方,所述第一加热器设于所述沉积室的外部,所述第二加热器设于所述坩埚的外部,所述沉积室与第一进气管的一端连通,所述第一进气管的另一端与混气管连通,所述混气管分别与载流气体、硒化氢气体和硫化氢气体的气源连通,所述坩埚与第二进气管的一端连通,所述第二进气管的另一端与载流气体的气源连通,所述坩埚上开设有与所述沉积室连通的喷嘴。
作为上述技术方案的优选,所述沉积室的上部设有废料区,所述废料区通过管道依次与过滤器和真空泵连接。由于沉积尾气中会存在粉尘,而过滤器可先将尾气中的粉尘截留,然后将过滤后的尾气经真空泵排放到尾气处理系统进行处理。
作为上述技术方案的优选,所述混气管上设有载流气体管路、硒化氢管路和硫化氢管路,所述载流气体管路、硒化氢管路和硫化氢管路依次与载流气体、硒化氢气体和硫化氢气体的气源连通。由此,流入第一进气管的气体均会先通过混气管。
作为上述技术方案的优选,所述载流气体管路、硒化氢管路和硫化氢管路上分别设有阀门。由此,可灵活控制各气体管路的通断。
作为上述技术方案的优选,所述真空炉壳的内壁上设有保温层。
所述真空化学气相沉积炉的使用方法为:将固体锌料装入坩埚内,沉积开始前,通过第一进气管和第二进气管同时通入载流气体以维持炉内气压,通过第一加热器加热沉积室,通过第二加热器加热坩埚。沉积ZnSe时,通过第一进气管向沉积室通入硒化氢与载流气体的混合气体,而坩埚中升华的锌会随载流气体从喷嘴流入沉积室内,因此,通过附加的MFC(质量流量控制器)控制通入坩埚内携带锌蒸气的氩气流量、与硒化氢混合的氩气流量、以及硒化氢的流量,即可调整硒化氢与锌蒸气反应的摩尔比。沉积ZnS时,关闭输送硒化氢的管路,打开输送硫化氢的管路,通过第一进气管向沉积室通入硫化氢与载流气体的混合气体,坩埚中升华的锌依然随载流气体从喷嘴流入沉积室内,通过控制通入坩埚内携带锌蒸气的氩气流量、与硫化氢混合的氩气流量、以及硫化氢的流量,即可调整硫化氢与锌蒸气反应的摩尔比。
本发明提供的真空化学气相沉积炉在ZnSe/ZnS红外复合材料的制备过程中,可灵活调控坩埚和沉积室的温度、以及控制载流气体、硒化氢气体和硫化氢气体输送的通断和流量。
与现有技术相比,本发明的有益效果为:通过本发明提供的制备红外复合材料的方法,结合使用本发明提供的真空化学气相沉积炉,可实现连续沉积ZnSe和ZnS,从而制得具有良好的光学性能、机械性能、耐侵蚀性和界面结合性的ZnSe/ZnS红外复合材料。本发明有效缩短了ZnSe/ZnS红外复合材料的生产周期,简化了生产工艺,降低了生产成本。
附图说明
图1为本发明所述制备红外复合材料的真空化学气相沉积炉的结构示意图。
图中,坩埚1、沉积室2、第一喷嘴3和第二喷嘴4、第一进气管5、废料区6、第一加热器7、第二加热器8、保温层9、真空炉壳10、第二进气管11、混气管12、硒化氢管路13、载流气体管路14、硫化氢管路15、管道16、过滤器17、真空泵18。
具体实施方式
下面将结合实施例对本发明的技术方案作进一步描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本实施例提供了一种制备红外复合材料的真空化学气相沉积炉,如图1所示,该真空化学气相沉积炉包括真空炉壳10,真空炉壳10的内壁上设有保温层9,真空炉壳10的内部设有坩埚1、沉积室2、第一加热器7和第二加热器8。具体地,沉积室2设于坩埚1的上方;第一加热器7设于沉积室2的外部,用于加热沉积室2;第二加热器8设于坩埚1的外部,用于加热坩埚1。沉积室2与第一进气管5的一端连通,第一进气管5的另一端与混气管12连通,混气管12上设有载流气体管路14、硒化氢管路13和硫化氢管路15,载流气体管路14、硒化氢管路13和硫化氢管路15依次与载流气体、硒化氢气体和硫化氢气体的气源连通,载流气体管路14、硒化氢管路13和硫化氢管路15上分别设有阀门。由此,可灵活控制各气体管路的通断。坩埚1与第二进气管11的一端连通,第二进气管11的另一端与载流气体的气源连通,坩埚1上开设有与沉积室2连通的第一喷嘴3和第二喷嘴4。
此外,沉积室2的上部设有废料区6,废料区6通过管道16依次与过滤器17和真空泵18连接。由于沉积尾气中会存在粉尘,而过滤器17可先将尾气中的粉尘截留,然后将过滤后的尾气经真空泵18排放到尾气处理系统进行处理。
实施例2
本实施例提供了一种制备ZnSe/ZnS红外复合材料的方法,采用实施例1的真空化学气相沉积炉,以氩气作为载流气体,坩埚为石墨坩埚,具体步骤如下:
向石墨坩埚内装入锌料,合炉,抽真空保压,检漏,压升率合格后,开始程序升温,坩埚以0.5℃/min的速率升温至650℃,沉积室以0.7℃/min的速率升温至760℃。坩埚内通入氩气30L/min,锌升华速率5L/min,流量比Ar:Zn=6:1,与硒化氢混合的氩气流量80L/min,硒化氢流量5L/min,Ar:H2Se=16:1,控制炉内压力3000Pa。通入硒化氢开始沉积ZnSe,ZnSe的生长速率约为70um/h,沉积144h后,ZnSe沉积层的平均厚度为10mm;此时,停止通入硒化氢,氩气持续通入,流量保持不变;沉积室开始按0.3℃/min的速率程序降温到690℃,然后开始通入硫化氢;硫化氢通入流量4.0L/min;Ar:H2S=20:1;ZnS的生长速率约为50um/h,沉积60h后,坩埚拉闸自然降温,使坩埚的温度快速降到400℃以下,停止坩埚剩余锌的升华,停止通入硫化氢,氩气流量维持不变。将沉积室的温度以0.4℃/min的速率升高50℃,然后保温20h进行退火;保温完成后,将沉积室的温度以0.3℃/min的速率降至室温;出炉后得到的ZnSe/ZnS红外复合材料的平均厚度为13mm,ZnS沉积层的平均厚度为3mm。
实施例3
本实施例提供了一种制备ZnSe/ZnS红外复合材料的方法,与实施例2的区别仅在于沉积温度和沉积时间不同,具体如下:
本实施例沉积ZnSe的温度为750℃,沉积时间为96h;沉积ZnS的温度为690℃,沉积时间为80h。出炉后得到的ZnSe/ZnS红外复合材料的平均厚度为10.6mm,ZnS沉积层的平均厚度为4mm。
实施例4
本实施例提供了一种制备ZnSe/ZnS红外复合材料的方法,与实施例2的区别仅在于ZnS的沉积温度和沉积时间不同,具体如下:
本实施例沉积ZnS的温度为670℃,沉积时间为100h。出炉后得到的ZnSe/ZnS红外复合材料的平均厚度为15.3mm,ZnS沉积层的平均厚度为5.2mm。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (9)

1.一种制备红外复合材料的方法,其特征在于,包括如下步骤:
步骤一、沉积ZnSe:
a)将固体锌料装入化学气相沉积器的坩埚中,然后将化学气相沉积器安装于真空化学气相沉积炉内,合炉,通入载流气体,维持炉内压力在2000~10000Pa;
b)沉积室和坩埚热场升温,坩埚升温至锌的升华温度500~750℃,沉积室升温至ZnSe的沉积温度650~800℃;
c)坩埚中锌的升华速率稳定后,通入硒化氢气体,进行化学气相沉积ZnSe;
d)待ZnSe沉积到所需厚度时,停止通入硒化氢气体,载流气体的流量保持不变,将沉积室降温到ZnS的沉积温度600~750℃;
步骤二、沉积ZnS:
通入硫化氢气体,在ZnSe上沉积ZnS,直至ZnS的沉积厚度达到3mm以上;
步骤三、退火处理:
将坩埚的温度降至400℃以下,停止锌的升华,停止通入硫化氢气体,载流气体的流量保持不变,将沉积室的温度升高50~100℃,然后保温20~50h进行退火,保温完成后,将沉积室的温度降至室温,出炉,即得ZnSe/ZnS红外复合材料。
2.如权利要求1所述的制备红外复合材料的方法,其特征在于,所述步骤b)中,坩埚升温的速率为0.4~5℃/min,沉积室升温的速率为0.1~4℃/min。
3.如权利要求1所述的制备红外复合材料的方法,其特征在于,所述步骤d)中,沉积室降温的速率为0.1~1.0℃/min。
4.如权利要求1所述的制备红外复合材料的方法,其特征在于,所述步骤三中,沉积室升温和降温的速率为0.1~0.8℃/min。
5.一种制备红外复合材料的真空化学气相沉积炉,其特征在于,包括真空炉壳,所述真空炉壳内设有坩埚、沉积室、第一加热器和第二加热器,所述沉积室设于所述坩埚的上方,所述第一加热器设于所述沉积室的外部,所述第二加热器设于所述坩埚的外部,所述沉积室与第一进气管的一端连通,所述第一进气管的另一端与混气管连通,所述混气管分别与载流气体、硒化氢气体和硫化氢气体的气源连通,所述坩埚与第二进气管的一端连通,所述第二进气管的另一端与载流气体的气源连通,所述坩埚上开设有与所述沉积室连通的喷嘴。
6.如权利要求5所述的真空化学气相沉积炉,其特征在于,所述沉积室的上部设有废料区,所述废料区通过管道依次与过滤器和真空泵连接。
7.如权利要求5所述的真空化学气相沉积炉,其特征在于,所述混气管上设有载流气体管路、硒化氢管路和硫化氢管路,所述载流气体管路、硒化氢管路和硫化氢管路依次与载流气体、硒化氢气体和硫化氢气体的气源连通。
8.如权利要求7所述的真空化学气相沉积炉,其特征在于,所述载流气体管路、硒化氢管路和硫化氢管路上分别设有阀门。
9.如权利要求5所述的真空化学气相沉积炉,其特征在于,所述真空炉壳的内壁上设有保温层。
CN202011645398.6A 2020-12-31 2020-12-31 一种制备红外复合材料的方法和真空化学气相沉积炉 Pending CN112853312A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011645398.6A CN112853312A (zh) 2020-12-31 2020-12-31 一种制备红外复合材料的方法和真空化学气相沉积炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011645398.6A CN112853312A (zh) 2020-12-31 2020-12-31 一种制备红外复合材料的方法和真空化学气相沉积炉

Publications (1)

Publication Number Publication Date
CN112853312A true CN112853312A (zh) 2021-05-28

Family

ID=76001251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011645398.6A Pending CN112853312A (zh) 2020-12-31 2020-12-31 一种制备红外复合材料的方法和真空化学气相沉积炉

Country Status (1)

Country Link
CN (1) CN112853312A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622028A (zh) * 2021-08-11 2021-11-09 苏州步科斯新材料科技有限公司 一种提高cvd法碳化硅沉积炉利用率的热场结构及工艺方法
CN115573037A (zh) * 2022-10-20 2023-01-06 西安全谱红外技术有限公司 用于化学气相沉积反应生长的硒化锌的硬度提高方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604340A (zh) * 2017-08-31 2018-01-19 清远先导材料有限公司 化学气相沉积炉

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604340A (zh) * 2017-08-31 2018-01-19 清远先导材料有限公司 化学气相沉积炉

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JITENDRA S ETAL.: "Monolithic material fabrication by chemical vapor deposition", 《JOURNAL OF MATERIALS SCIENCE》 *
王海龙等: "ZnSe-ZnS超晶格材料的光学特性", 《半导体学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113622028A (zh) * 2021-08-11 2021-11-09 苏州步科斯新材料科技有限公司 一种提高cvd法碳化硅沉积炉利用率的热场结构及工艺方法
CN115573037A (zh) * 2022-10-20 2023-01-06 西安全谱红外技术有限公司 用于化学气相沉积反应生长的硒化锌的硬度提高方法

Similar Documents

Publication Publication Date Title
CN112853312A (zh) 一种制备红外复合材料的方法和真空化学气相沉积炉
CN105541412A (zh) 一种C/C复合材料表面SiC纳米线增韧SiC陶瓷涂层的制备方法
CN104060236B (zh) 一种片状基片的连续镀膜生产系统
CN102492934B (zh) 一种制备石墨烯薄膜的装置、方法及所得石墨烯薄膜
CN101649449B (zh) 硫化锌/硒化锌复合红外透过材料的制备方法
CN104357902A (zh) 一种利用温度梯度合成碲锌镉多晶的合成装置和方法
CN113026106B (zh) 一种碳化硅晶体的生长工艺
CN110335901A (zh) 光伏电池表面钝化系统及钝化方法
WO2021008057A1 (zh) 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法
CN104532211A (zh) 一种激光辅助低温生长氮化物材料的方法与装备
CN115108852B (zh) 一种石墨复合材料及其制备方法和应用
CN100489154C (zh) 晶体生长的石英坩埚镀碳膜方法与装置
CN205856602U (zh) 一种高效节能式硒化锌气相沉积炉
CN112851387B (zh) 一种在炭炭复合材料表面制备碳化硅涂层的方法
CN103469147B (zh) 一种钛合金低压脉冲真空渗氮方法及装置
CN101397651A (zh) 一种CdZnTe晶体生长用石英安瓿内壁镀覆碳膜的方法及其装置
CN102796995B (zh) 制备热解氮化硼制品的气相沉积炉及方法
CN101759225B (zh) 一种化学气相沉积低温生长ZnS设备和工艺
CN104498901B (zh) 一种碳化硅单晶片的镀膜方法和装置
CN105483642A (zh) 一种长寿命热解氮化硼坩埚模具的制备方法
EP2825687A2 (en) Chemical vapor deposition process for depositing zinc oxide coatings, method for forming a conductive glass article and the coated glass articles produced thereby
CN204849115U (zh) 上排气热场单晶炉
CN115353414B (zh) 一种SiC与碳氮化物互穿抗烧蚀涂层及其制备方法
CN112813411B (zh) 厚尺寸红外光学材料的制备方法
CN203602702U (zh) 一种钛合金低压脉冲真空渗氮装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210712

Address after: 239000 100 Nanjing Road, Langya Economic Development Zone, Chuzhou City, Anhui Province

Applicant after: Anhui Zhongfei Technology Co.,Ltd.

Address before: 511517 area B, no.27-9 Baijia Industrial Park, Qingyuan high tech Zone, Guangdong Province

Applicant before: FIRST SEMICONDUCTOR MATERIALS Co.,Ltd.

TA01 Transfer of patent application right
RJ01 Rejection of invention patent application after publication

Application publication date: 20210528

RJ01 Rejection of invention patent application after publication