WO2021008057A1 - 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法 - Google Patents

金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法 Download PDF

Info

Publication number
WO2021008057A1
WO2021008057A1 PCT/CN2019/120849 CN2019120849W WO2021008057A1 WO 2021008057 A1 WO2021008057 A1 WO 2021008057A1 CN 2019120849 W CN2019120849 W CN 2019120849W WO 2021008057 A1 WO2021008057 A1 WO 2021008057A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
substrate
film growth
thin film
sample
Prior art date
Application number
PCT/CN2019/120849
Other languages
English (en)
French (fr)
Inventor
刘鲁生
姜辛
黄楠
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Priority to DE112019007555.1T priority Critical patent/DE112019007555T5/de
Priority to US17/627,754 priority patent/US11939669B2/en
Publication of WO2021008057A1 publication Critical patent/WO2021008057A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Definitions

  • the invention relates to the field of diamond film growth, in particular to an HFCVD equipment for continuous preparation of diamond films and a film coating method thereof.
  • Diamond has excellent power, heat, sound, light, electricity, chemistry and other properties.
  • the performance of synthetic diamond film is basically close to natural diamond. The excellent performance makes it have a wide range of applications in the high-tech field.
  • diamond thin film technology has been applied in many occasions such as cutting tools, high-performance electronic components, aerospace materials, etc., and it has received several results. Its application in the high-tech field has attracted people's attention.
  • Chemical vapor deposition (CVD) diamond film is known as the most promising new coating material in the 21st century because of its high hardness, high thermal conductivity, low friction coefficient and low thermal expansion coefficient of natural diamond.
  • Hot-filament chemical vapor deposition (HFCVD) diamond film preparation method is currently the main preparation method of industrial CVD diamond film. This method is relatively simple to operate, low cost, easy to control the substrate temperature, and can obtain high quality and large area Diamond film.
  • the hot wire of HFCVD equipment is mostly placed horizontally.
  • the thermal expansion and degeneration caused by gravity affect the distance from the hot wire to the surface of the substrate, which in turn affects the deposition temperature of the substrate surface, resulting in uneven film, and the carbonization of the hot wire becomes brittle. Prone to breakage.
  • HFCVD equipment mostly uses a hot wire to vacuum, carbonize, coat, cool, break the vacuum, take out the substrate, and then reinstall the hot wire to vacuum, carbonize, coat, cool, break the vacuum, and take out the substrate.
  • the continuous preparation of CVD diamond film cannot be realized, and the production cost is high and the preparation efficiency is low.
  • the hot filament of HFCVD equipment is mostly monofilament single-sided coating, and the area where the coating can be coated on the other side is vacant, and the coating efficiency is low.
  • HFCVD equipment uses more than one coating room or one coating room with one sampling room, so the production cycle is slow and the coating efficiency is low.
  • the purpose of the present invention is to provide a HFCVD equipment for continuous preparation of diamond thin films and a coating method thereof, which solves the problems of uneven thin films in the prior art, easy fracture after hot wire carbonization and brittleness, and low coating efficiency.
  • a HFCVD equipment for continuous diamond film preparation mainly includes: left ventricle insert valve, left film growth chamber, left ventricular water-cooled electrode, left ventricular hot wire rack, left ventricular hot wire, left ventricular drive roller, left ventricle Support, sample entry and exit support, right ventricle support, right ventricle transmission roller, right ventricle hot wire, right ventricle hot wire rack, right ventricle water-cooled electrode, right thin film growth chamber, right ventricle flap valve, sampling chamber drive roller, entry and exit
  • the specific structure of the sample room, substrate, substrate table, and substrate trolley is as follows:
  • the equipment is centered on the sample entry and exit room.
  • the sample entry and exit room is equipped with a substrate trolley, the substrate trolley is equipped with a substrate table, and the substrate is set on the substrate table;
  • the left side of the inlet and outlet sample chamber is connected to the left thin film growth chamber through the left ventricular flapper valve.
  • the left thin film growth chamber is provided with left ventricular water-cooled electrode, left ventricular hot wire rack, left ventricular hot wire and left drive roller from top to bottom.
  • the chamber hot wire racks are arranged in parallel, the upper and lower hot wires are arranged in parallel between the two left chamber hot wire racks along the vertical direction.
  • the left chamber water-cooled electrode is connected with the left chamber hot wire rack, and the left drive roller Set at the bottom of the left film growth chamber;
  • the right side of the sample chamber is connected to the right thin film growth chamber through the right chamber flapper valve.
  • the right thin film growth chamber is provided with right chamber water-cooled electrode, right chamber hot wire rack, right chamber hot wire and right chamber drive roller from top to bottom.
  • the right thin film growth chamber is arranged in parallel, and the right ventricle hot wire is arranged in parallel between the two right ventricle hot wire racks along the vertical direction.
  • the right chamber water-cooled electrode is connected with the right ventricular hot wire rack, and the right chamber drives The roller is arranged at the bottom of the right film growth chamber.
  • a sample chamber support is provided below the bottom of the sample chamber.
  • a left ventricle observation window is arranged on the top of the left film growth chamber, and a left ventricle support is arranged under the bottom of the left film growth chamber.
  • a right chamber observation window is arranged on the top of the right thin film growth chamber, and a right chamber support is provided under the bottom of the right thin film growth chamber.
  • the HFCVD equipment used for continuous preparation of diamond film has an electric control system, a vacuum system and a gas path system on one side of the sample chamber, the left film growth chamber, and the right film growth chamber.
  • the output end of the electric control system is connected to the left chamber water-cooled electrode, the right chamber water-cooled electrode, the substrate trolley, the vacuum system, and the gas path system through a line.
  • the vacuum system is respectively connected through a pipeline Respectively for the inlet and outlet of the sample chamber, the left film growth chamber, the right film growth chamber, the left ventricular flapper valve, and the right ventricle flapper valve, the gas path system is connected to the left and right thin film growth chambers through pipelines.
  • the left chamber drive roller, the sample chamber drive roller, and the right chamber drive roller are connected in a row to form a channel matched with the substrate carriage.
  • the substrate carriage is provided with a pair of mutual Parallel substrate stages, each substrate stage is equipped with a substrate, the heat shields in the sample entry and exit chambers are vertically arranged on the opposite inner walls of the sample entry and exit chambers, and the substrate trolley is located between the two opposite heat shields between.
  • the HFCVD equipment used for the continuous preparation of diamond film after the substrate carriage enters the left film growth chamber or the right film growth chamber, two parallel substrates are evenly distributed on the two hot wires of the left chamber or the right chamber. side.
  • the HFCVD equipment used for the continuous preparation of the diamond film, the inlet and outlet sample chamber, the left film growth chamber, and the right film growth chamber are each a rectangular parallelepiped double-layer water-cooled structure, using SUS304 material.
  • the coating method of HFCVD equipment used for continuous preparation of diamond thin films includes the following steps:
  • Process (1) Close the left and right flap valves, control the vacuum system through the electronic control system to vacuum the left and right thin film growth chambers to within 20 Pa, heat the left and right chambers The filament is heated to 2000 ⁇ 3000°C, and the gas path system is turned on to fill the left and right film growth chambers with reactive gas, and carbonize the left and right hot filaments;
  • Process (2) Fix the pre-cleaned substrate on the substrate table, put it into the sample entry and exit chamber together with the substrate trolley, and evacuate the entry and exit sample chamber to within 20 Pa;
  • Process (5) Close the left ventricular flapper valve and start to grow a diamond film on the substrate;
  • Process (6) Fix the pre-cleaned substrate on the substrate stage and put it into the sample entry and exit chamber together with the substrate trolley, and vacuum the entry and exit sample chamber to within 20 Pa;
  • Process (13) Release the vacuum in and out of the sample chamber, and take out the substrate on which the diamond film has been grown;
  • Process (14) Fix the pre-cleaned new substrate on the substrate table and put it into the sample entry and exit chamber together with the substrate trolley, and evacuate the entry and exit sample chamber to within 20 Pa;
  • Process (21) the temperature of the substrate is reduced to room temperature while maintaining the vacuum state of the sample chamber 18;
  • the hot wire in the present invention adopts a vertical layout, will not bend and deform during heating and coating, and is at a stable distance from the substrate, improving the coating quality and the uniformity of the diamond film.
  • the substrate table with the substrate is alternately fed into the left and right thin film growth chambers by the traveling carriage to realize continuous preparation of diamond thin films and ensure carbonization After the filament is no longer broken, continuous use can reduce filament consumption, reduce auxiliary time such as reinstalling the filament, vacuuming, carbonizing the filament, and filling the vacuum chamber, greatly improving the preparation efficiency of the diamond film.
  • the present invention is provided with a pair of parallel substrate tables on the substrate trolley. After entering the film growth chamber, the two substrates are evenly distributed on both sides of the hot wire, which can coat a large area on both sides and improve the efficiency of coating. Cost of production.
  • the present invention controls the coating cycle process, one inlet and outlet chamber corresponds to two thin film growth chambers, so that the coated substrate enters the sample chamber directly from the thin film growth chamber in the high temperature zone, and slowly cools down under vacuum, effectively eliminating diamond
  • the stress between the film and the substrate improves the bonding force between the diamond film and the substrate, while the other film growth chamber continues to coat the film to improve production efficiency.
  • Figure 1 is a front sectional view of the device of the present invention.
  • 1 left ventricular flapper valve
  • 2 left thin film growth chamber
  • 3 left ventricular water-cooled electrode
  • 4 left ventricular hot wire rack
  • 5 left ventricular hot wire
  • 6 left ventricular drive roller
  • 7 left Chamber support
  • 8 in and out of the sample chamber support
  • 9 right chamber support
  • 10 right chamber drive roller
  • 11 right chamber hot wire
  • 12 right chamber hot wire rack
  • 13 right chamber water-cooled electrode
  • 14 right film growth Chamber
  • 15 right chamber insert valve
  • 16 injection chamber drive roller
  • 17 heat shield
  • 18 in and out of the sample chamber.
  • Figure 2 is a side sectional view of the device of the present invention.
  • Figure 3 is a top view of the device of the present invention.
  • 22 electric control system
  • 23 vacuum system
  • 24 gas system
  • 25 right ventricle observation window
  • 26 left ventricle observation window.
  • Figure 4 is a flow chart of the continuous film growth of the present invention.
  • the present invention diamond film continuous preparation HFCVD equipment mainly includes: left ventricle insert valve 1, left film growth chamber 2, left chamber water-cooled electrode 3, left ventricular hot wire rack 4.
  • the vehicle 21 the electronic control system 22, the vacuum system 23, the gas path system 24, the right ventricle observation window 25, the left ventricle observation window 26, etc. the specific structure is as follows:
  • the equipment takes the sample entry and exit chamber 18 as the center.
  • the sample entry and exit chamber 18 is provided with a heat shield 17 and a substrate carriage 21.
  • the heat shields 17 are respectively arranged vertically on the opposite inner walls of the entry and exit chamber 18, and the substrate carriage 21 Located between two opposite heat shields 17, a substrate table 20 is provided on the substrate trolley 21, the substrate 19 is installed on the substrate table 20, and a sample chamber support is provided under the bottom of the inlet and outlet chamber 18 8.
  • the left side of the sample entry and exit chamber 18 is connected to the left thin film growth chamber 2 through the left ventricle flapper valve 1.
  • the left thin film growth chamber 2 is provided with a left ventricular observation window 26, a left ventricular water-cooled electrode 3, and a left ventricular hot wire from top to bottom.
  • Frame 4, left chamber hot wire 5 and left drive roller 6, left chamber hot wire rack 4 is arranged in parallel on top and bottom
  • left chamber hot wire 5 is arranged in parallel on two left chamber hot wire racks 4 along the vertical direction
  • the left ventricle water-cooled electrode 3 is connected to the left ventricular hot wire frame 4
  • the left transmission roller 6 is set at the bottom of the left thin film growth chamber 2
  • the left ventricular observation window 26 is set at the center of the top of the left thin film growth chamber 2.
  • the left chamber observation window 26 is welded to the upper shell of the left thin film growth chamber 2 by an embedded welding structure, and a left chamber support 7 is provided under the bottom of the left thin film growth chamber 2.
  • the right side of the sample chamber 18 is connected to the right thin film growth chamber 14 through the right ventricular flapper valve 15.
  • the right thin film growth chamber 14 is provided with a right chamber observation window 25, a right chamber water-cooled electrode 13, and a right chamber hot wire from top to bottom.
  • the frame 12, the right chamber hot wire 11 and the right chamber drive roller 10, the right film growth chamber 14 are arranged in parallel, and the right chamber hot wire 11 is arranged parallel to the two right chamber hot wire racks 12 along the vertical direction.
  • the right ventricle water-cooled electrode 13 is connected to the right ventricle hot wire rack 12, the right ventricle transmission roller 10 is set at the bottom of the right film growth chamber 14, and the right chamber observation window 25 is set at the center of the top of the right film growth chamber 14.
  • the left and right chamber observation window 25 is welded to the upper shell of the right thin film growth chamber 14 with an embedded welding structure, and a right chamber bracket 9 is provided under the bottom of the right thin film growth chamber 14.
  • an electric control system 22 a vacuum system 23, and a gas circuit system 24 are arranged on one side of the sample chamber 18, the left thin film growth chamber 2, and the right thin film growth chamber 14 in order.
  • the output end of the electric control system 22 is connected to the left The chamber water-cooled electrode 3, the right chamber water-cooled electrode 13, the substrate trolley 21, the vacuum system 23, the gas path system 24, etc., control the operation process of the equipment; the vacuum system 23 is connected to the sample chamber 18 and the left film through the pipe connection.
  • Chamber 2 right film growth chamber 14, left ventricle flap valve 1, right ventricle flap valve 15, can be used to enter and exit sample chamber 18, left membrane growth chamber 2, right membrane growth chamber 14, left ventricle flap valve 1, respectively
  • the right chamber flapper valve 15 is evacuated; the gas path system 24 is connected to the left thin film growth chamber 2 and the right thin film growth chamber 14 through pipes, and can accurately input various reaction gases into the left thin film growth chamber 2 and the right thin film growth chamber 14.
  • the left chamber driving roller 6, the sampling chamber driving roller 16, and the right chamber driving roller 10 are sequentially connected in a row to form a channel matching with the substrate trolley 21.
  • the substrate trolley 21 is provided with a pair of mutually parallel substrate tables 20, Each substrate stage 20 is equipped with a substrate 19, and the heat shield 17 in the sample chamber 18 is vertically arranged between the substrate trolley 21 and the inner wall of the sample chamber 18.
  • the function of the heat shield 17 is to effectively isolate
  • the substrate carriage 21 with a higher temperature exiting from the thin film growth chamber (left thin film growth chamber 2, right thin film growth chamber 14) avoids the temperature drop caused by direct radiation of heat to the inner wall of the inlet and outlet sample chamber 18.
  • two parallel substrates 19 are evenly distributed on the hot wire (left chamber hot wire 5 or right chamber hot wire 11).
  • the inlet and outlet sample chamber 18, the left thin film growth chamber 2, and the right thin film growth chamber 14 are each a rectangular parallelepiped double-layer water-cooled structure, which is made of SUS304.
  • the double-layer water-cooled structure specifically refers to the two layers of upper and lower shells. A hollow is formed between the layer shells, and circulating cooling water is filled in the middle.
  • the coating method of the HFCVD equipment used in the continuous preparation of the diamond film in this embodiment is as follows:
  • Process (1) Close the left chamber flapper valve 1 and the right chamber flapper valve 15, control the vacuum system 23 through the electronic control system 22 to vacuum the left thin film growth chamber 2 and the right thin film growth chamber 14 to within 20 Pa, and to the left chamber
  • the hot wire 5 and the right chamber hot wire 11 are heated to 2400°C, and the gas path system 24 is opened to fill the left film growth chamber 2 and the right film growth chamber 14 with reactive gas to carbonize the left chamber hot wire 5 and the right chamber hot wire 11 deal with.
  • Process (2) Fix the pre-cleaned substrate 19 on the substrate stage 20, put it into the sample inlet and outlet chamber 18 together with the substrate carriage 21, and evacuate the sample inlet and outlet chamber 18 to within 20 Pa.
  • Process (5) Close the left ventricular flapper valve 1, and start to grow a diamond film on the substrate 19.
  • Process (6) Fix the pre-cleaned substrate 19 on the substrate stage 20 and put it into the sample entry and exit chamber 18 together with the substrate carriage 21, and evacuate the entry and exit sample chamber 18 to within 20 Pa.
  • Process (8) start the sample chamber drive roller 16 and the right chamber drive roller 10 to move the substrate carriage 21 to the right film growth chamber 14.
  • Process (13) Release the vacuum in and out of the sample chamber 18, and take out the substrate 19 on which the diamond film has been grown.
  • Process (14) Fix the pre-cleaned new substrate 19 on the substrate stage 20 and put it into the sample inlet and outlet chamber 18 together with the substrate carriage 21, and evacuate the sample inlet and outlet chamber 18 to within 20 Pa.
  • Process (21) The temperature of the substrate 19 is lowered to room temperature while maintaining the vacuum state of the sample discharge chamber 18.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一种金刚石薄膜连续制备使用的热丝化学气相沉积设备及其镀膜方法。该设备主要包括:左室插板阀(1)、左薄膜生长室(2)、左室水冷电极(3)、左室热丝架(4)、左室热丝(5)、左室传动辊(6)、左室支架(7)、进出样室支架(8)、右室支架(9)、右室传动辊(10)、右室热丝(11)、右室热丝架(12)、右室水冷电极(13)、右薄膜生长室(14)、右室插板阀(15)、进样室传动辊(16)、隔热屏(17)、进出样室(18)、基片(19)、基片台(20)、基片行走车(21)。热丝采用垂直布局,在加热和镀膜过程中不会弯曲变形,与基体距离稳定,提高镀膜质量和金刚石膜的均匀性,实现连续制备金刚石薄膜,保证碳化后的灯丝不再断裂,减少重新安装灯丝、抽真空、碳化灯丝、真空室充气等辅助时间,大大提高金刚石膜的制备效率。

Description

金刚石薄膜连续制备使用的HFCVD设备及其镀膜方法 技术领域
本发明涉及金刚石膜生长领域,尤其涉及一种金刚石薄膜连续制备使用的HFCVD设备及其镀膜方法。
背景技术
金刚石具有优异的力、热、声、光、电、化学等各项性能,人造金刚石薄膜的性能已经基本接近天然金刚石,优异的性能使其在高科技领域具有广泛的应用前景。目前金刚石薄膜技术在刀具、高性能电子元件、航天材料等众多场合得到应用,收到几号的效果,其应用在高科技领域被人们倍加关注。化学气相沉淀(CVD)金刚石薄膜因具有天然金刚石的高硬度、高热导率、低摩擦系数和低热膨胀系数等诸多优异的性能,而被誉为21世纪最具有发展前途的新型涂层材料。热丝化学气相沉积(HFCVD)金刚石薄膜制备方法是目前工业化CVD金刚石薄膜中主要的制备方法,该方法操作相对简单,成本较低,容易控制衬底温度,可获得质量较高、面积较大的金刚石薄膜。
目前,这种制备方法的设备中主要存在以下问题:
1、目前HFCVD设备的热丝多为水平放置,其热膨胀及重力引起的变性影响热丝到基体表面的距离,进而影响基体表面的沉积温度,从而导致薄膜的不均匀,热丝碳化变脆后易发生断裂。
2、目前HFCVD设备多采用热丝一次安装后抽真空、碳化、镀膜、降温、破真空、取出基片,然后重新安装热丝再抽真空、碳化、镀膜、降温、破真空、取出基片。不能实现CVD金刚石薄膜的连续制备,生产成本高、制备效率低。
3、目前HFCVD设备的热丝多为单丝单面镀膜,另外一面能镀膜的区域空置,镀膜效率较低。
4、目前HFCVD设备多采一个镀膜室或一个镀膜室配合一个进样室,生产节拍慢,镀膜效率低。
发明内容
本发明的目的在于提供一种金刚石薄膜连续制备使用的HFCVD设备及其镀膜方法,解决现有技术中存在的薄膜的不均匀、热丝碳化变脆后易发生断裂、镀膜效率低等问题。
本发明的技术方案是:
一种金刚石薄膜连续制备使用的HFCVD设备,该设备主要包括:左室插板阀、左薄膜生长室、左室水冷电极、左室热丝架、左室热丝、左室传动辊、左室支架、进出样室支架、右室支架、右室传动辊、右室热丝、右室热丝架、右室水冷电极、右薄膜生长室、右室插板阀、进样室传动辊、进出样室、基片、基片台、基片行走车,具体结构如下:
设备以进出样室为中心,进出样室内设有基片行走车,基片行走车上设有基片台,基片设置于基片台上;
进出样室左侧通过左室插板阀与左薄膜生长室相连,左薄膜生长室内由上至下依次设有 左室水冷电极、左室热丝架、左室热丝和左传动辊,左室热丝架为上下两个相对平行设置,左室热丝沿竖直面方向平行排布于两个左室热丝架之间,左室水冷电极与左室热丝架相连,左传动辊设置于左薄膜生长室内的底部;
进出样室右侧通过右室插板阀与右薄膜生长室相连,右薄膜生长室内由上至下依次设有右室水冷电极、右室热丝架、右室热丝和右室传动辊,右薄膜生长室为上下两个相对平行设置,右室热丝沿竖直面方向平行排布于两个右室热丝架之间,右室水冷电极与右室热丝架相连,右室传动辊设置于右薄膜生长室内的底部。
所述的金刚石薄膜连续制备使用的HFCVD设备,进出样室的底部下方设有进出样室支架。
所述的金刚石薄膜连续制备使用的HFCVD设备,左薄膜生长室内的顶部设置左室观察窗,左薄膜生长室的底部下方设有左室支架。
所述的金刚石薄膜连续制备使用的HFCVD设备,右薄膜生长室内的顶部设置右室观察窗,右薄膜生长室的底部下方设有右室支架。
所述的金刚石薄膜连续制备使用的HFCVD设备,进出样室、左薄膜生长室、右薄膜生长室的一侧依次设有电控系统、真空系统和气路系统。
所述的金刚石薄膜连续制备使用的HFCVD设备,电控系统的输出端通过线路连接左室水冷电极、右室水冷电极、基片行走车、真空系统、气路系统,真空系统分别通过管路连接分别对进出样室、左薄膜生长室、右薄膜生长室、左室插板阀、右室插板阀,气路系统分别通过管路连接左薄膜生长室、右薄膜生长室。
所述的金刚石薄膜连续制备使用的HFCVD设备,左室传动辊、进样室传动辊、右室传动辊依次连成一排形成与基片行走车配合的通道,基片行走车上设有一对相互平行的基片台,每个基片台上装有基片,进出样室内的隔热屏分别竖直设置于进出样室的相对内壁上,基片行走车位于相对设置的两个隔热屏之间。
所述的金刚石薄膜连续制备使用的HFCVD设备,在基片行走车进入左薄膜生长室或右薄膜生长室后,两个平行的基片均匀地分布于左室热丝或右室热丝的两侧。
所述的金刚石薄膜连续制备使用的HFCVD设备,进出样室、左薄膜生长室、右薄膜生长室分别为长方体双层水冷结构,采用SUS304材质。
所述的金刚石薄膜连续制备使用的HFCVD设备的镀膜方法,包括如下步骤:
流程(1):关闭左室插板阀和右室插板阀,通过电控系统控制真空系统对左薄膜生长室和右薄膜生长室抽真空至20Pa以内,对左室热丝和右室热丝加热至2000~3000℃,开启气路系统向左薄膜生长室和右薄膜生长室充入反应气体,对左室热丝和右室热丝进行碳化处理;
流程(2):将预先清洗干净处理的基片固定在基片台上,连同基片行走车一起放入进出样室,对进出样室抽真空至20Pa以内;
流程(3):打开左室插板阀;
流程(4):启动进样室传动辊和左室传动辊将基片行走车移动至左薄膜生长室;
流程(5):关闭左室插板阀,开始在基片上生长金刚石薄膜;
流程(6):将预先清洗干净处理的基片固定在基片台上连同基片行走车一起放入进出样室,对进出样室抽真空至20Pa以内;
流程(7):打开右室插板阀;
流程(8):启动进样室传动辊和右室传动辊将基片行走车移动至右薄膜生长室;
流程(9):关闭右室插板阀,开始在基片上生长金刚石薄膜;
流程(10):左薄膜生长室内的基片金刚石薄膜生长完成后,打开左室插板阀,启动左室传动辊和进样室传动辊,将基片行走车移动至进出样室;
流程(11):关闭左室插板阀;
流程(12):保持出样室的真空状态下基片温度降至室温;
流程(13):解除进出样室的真空,取出生长完金刚石薄膜的基片;
流程(14):将预先清洗干净处理的新基片固定在基片台上连同基片行走车一起放入进出样室,对进出样室抽真空至20Pa以内;
流程(15):打开左室插板阀;
流程(16):启动进样室传动辊和左室传动辊,将基片行走车移动至左薄膜生长室;
流程(17):关闭左室插板阀;
流程(18):右薄膜生长室内的基片金刚石薄膜生长完成后,打开右室插板阀;
流程(19):启动右室传动辊和进样室传动辊,将基片行走车移动至进出样室;
流程(20):关闭右室插板阀;
流程(21):保持出样室18的真空状态下基片温度降至室温;
之后,进入流程(6)开始重新循环。
本发明具有以下优点及有益效果:
1、本发明中的热丝采用垂直布局,在加热和镀膜过程中不会弯曲变形,与基体距离稳定,提高镀膜质量和金刚石膜的均匀性。
2、本发明中在左、右薄膜生长室工作条件不变的前提下通过行走车把带有基片的基片台交替地送进左、右薄膜生长室,实现连续制备金刚石薄膜,保证碳化后的灯丝不再断裂,连续使用,降低灯丝消耗,减少重新安装灯丝、抽真空、碳化灯丝、真空室充气等辅助时间,大大提高金刚石膜的制备效率。
3、本发明在基片行走车上设有一对相互平行的基片台,在进入薄膜生长室后两基片均匀地分布于热丝的两侧,可以双面大面积镀膜,提高镀膜效率降低生产成本。
4、本发明通过控制镀膜节拍流程,一个进出样室对应两个薄膜生长室,使镀膜后的基片从高温区的薄膜生长室直接进入进样室,在真空状态下缓慢降温,有效消除金刚石薄膜与基体间的应力,提高金刚石薄膜与基体的结合力,同时另一个薄膜生长室继续镀膜,提高生产效率。
附图说明
图1为本发明的装置主视剖面图。
图中:1—左室插板阀;2—左薄膜生长室;3—左室水冷电极;4—左室热丝架;5—左室热丝;6—左室传动辊;7—左室支架;8—进出样室支架;9—右室支架;10—右室传动辊;11—右室热丝;12—右室热丝架;13—右室水冷电极;14—右薄膜生长室;15—右室插板阀;16—进样室传动辊;17—隔热屏;18—进出样室。
图2为本发明的装置侧视剖面图。
图中:19—基片;20—基片台;21—基片行走车。
图3为本发明的装置俯视图。
图中:22—电控系统;23—真空系统;24—气路系统;25—右室观察窗;26—左室观察窗。
图4为本发明的连续薄膜生长流程图。
具体实施方式
下面,结合附图和实施例对本发明的具体实施方式作进一步详细的说明。对于这些实施例的详细描述,应该理解为本领域的技术人员可以通过本发明来实践,并可以通过使用其它实施例,在不脱离所附权利要求书的精神和本发明范畴的情况下,对所示实例进行更改和/或改变。此外,虽然在实施例中公布本发明的特定特征,但是这种特定特征可以适当进行更改,实现本发明的功能。
如图1、图2、图3所示,本发明金刚石薄膜连续制备HFCVD设备,该设备主要包括:左室插板阀1、左薄膜生长室2、左室水冷电极3、左室热丝架4、左室热丝5、左室传动辊6、左室支架7、进出样室支架8、右室支架9、右室传动辊10、右室热丝11、右室热丝架12、右室水冷电极13、右薄膜生长室14、右室插板阀15、进样室传动辊16、隔热屏17、进出样室18、基片19(样品)、基片台20、基片行走车21、电控系统22、真空系统23、气路系统24、右室观察窗25、左室观察窗26等,具体结构如下:
设备以进出样室18为中心,进出样室18内设有隔热屏17和基片行走车21,隔热屏17分别竖直设置于进出样室18的相对内壁上,基片行走车21位于相对设置的两个隔热屏17之间,基片行走车21上设有基片台20,基片19设置于基片台20上,进出样室18的底部下方设有进出样室支架8。
进出样室18左侧通过左室插板阀1与左薄膜生长室2相连,左薄膜生长室2内由上至下依次设有左室观察窗26、左室水冷电极3、左室热丝架4、左室热丝5和左传动辊6,左室热丝架4为上下两个相对平行设置,左室热丝5沿竖直面方向平行排布于两个左室热丝架4之间,左室水冷电极3与左室热丝架4相连,左传动辊6设置于左薄膜生长室2内的底部,左室观察窗26设置于左薄膜生长室2内顶部的中心位置,采用嵌入式焊接结构把左室观察窗26焊接在左薄膜生长室2的上壳体上,左薄膜生长室2的底部下方设有左室支架7。
进出样室18右侧通过右室插板阀15与右薄膜生长室14相连,右薄膜生长室14内由上至下依次设有右室观察窗25、右室水冷电极13、右室热丝架12、右室热丝11和右室传动辊 10,右薄膜生长室14为上下两个相对平行设置,右室热丝11沿竖直面方向平行排布于两个右室热丝架12之间,右室水冷电极13与右室热丝架12相连,右室传动辊10设置于右薄膜生长室14内的底部,右室观察窗25设置于右薄膜生长室14内顶部的中心位置,采用嵌入式焊接结构把左室右室观察窗25焊接在右薄膜生长室14的上壳体上,右薄膜生长室14的底部下方设有右室支架9。
另外,进出样室18、左薄膜生长室2、右薄膜生长室14的一侧依次设有电控系统22、真空系统23和气路系统24,其中:电控系统22的输出端通过线路连接左室水冷电极3、右室水冷电极13、基片行走车21、真空系统23、气路系统24等,控制设备操作流程;真空系统23分别通过管路连接分别对进出样室18、左薄膜生长室2、右薄膜生长室14、左室插板阀1、右室插板阀15,可以分别对进出样室18、左薄膜生长室2、右薄膜生长室14、左室插板阀1、右室插板阀15抽真空;气路系统24分别通过管路连接左薄膜生长室2、右薄膜生长室14,可以精确对左薄膜生长室2、右薄膜生长室14输入各种反应气体。
左室传动辊6、进样室传动辊16、右室传动辊10依次连成一排形成与基片行走车21配合的通道,基片行走车21上设有一对相互平行的基片台20,每个基片台20上装有基片19,进出样室18内的隔热屏17竖直设置在基片行走车21与进出样室18内壁之间,隔热屏17的作用是:有效隔绝从薄膜生长室(左薄膜生长室2、右薄膜生长室14)出来的温度较高的基片行走车21,避免把热量直接辐射到进出样室18内壁而导致的温度降低。在基片行走车21进入薄膜生长室(左薄膜生长室2或右薄膜生长室14)后,两个平行的基片19均匀地分布于热丝(左室热丝5或右室热丝11)的两侧,可以双面大面积镀膜,提高镀膜效率降低生产成本。
进出样室18、左薄膜生长室2、右薄膜生长室14分别为长方体双层水冷结构,采用SUS304材质,双层水冷结构具体是指:壳体为上壳体和下壳体两层,两层壳体之间形成中空,中间充入循环的冷却水。
下面,通过实施例对本发明进一步详细阐述。
实施例
如图4所示,本实施例金刚石薄膜连续制备使用的HFCVD设备镀膜方法如下:
流程(1):关闭左室插板阀1和右室插板阀15,通过电控系统22控制真空系统23对左薄膜生长室2和右薄膜生长室14抽真空至20Pa以内,对左室热丝5和右室热丝11加热至2400℃,开启气路系统24向左薄膜生长室2和右薄膜生长室14充入反应气体,对左室热丝5和右室热丝11进行碳化处理。
流程(2):将预先清洗干净处理的基片19固定在基片台20上,连同基片行走车21一起放入进出样室18,对进出样室18抽真空至20Pa以内。
流程(3):打开左室插板阀1。
流程(4):启动进样室传动辊16和左室传动辊6将基片行走车21移动至左薄膜生长室2。
流程(5):关闭左室插板阀1,开始在基片19上生长金刚石薄膜。
流程(6):将预先清洗干净处理的基片19固定在基片台20上连同基片行走车21一起放入进出样室18,对进出样室18抽真空至20Pa以内。
流程(7):打开右室插板阀15。
流程(8):启动进样室传动辊16和右室传动辊10将基片行走车21移动至右薄膜生长室14。
流程(9):关闭右室插板阀15,开始在基片19上生长金刚石薄膜。
流程(10):左薄膜生长室2内的基片19金刚石薄膜生长完成后,打开左室插板阀1,启动左室传动辊6和进样室传动辊16,将基片行走车21移动至进出样室18。
流程(11):关闭左室插板阀1。
流程(12):保持出样室18的真空状态下基片19温度降至室温。
流程(13):解除进出样室18的真空,取出生长完金刚石薄膜的基片19。
流程(14):将预先清洗干净处理的新基片19固定在基片台20上连同基片行走车21一起放入进出样室18,对进出样室18抽真空至20Pa以内。
流程(15):打开左室插板阀1。
流程(16):启动进样室传动辊16和左室传动辊6,将基片行走车21移动至左薄膜生长室2。
流程(17):关闭左室插板阀1。
流程(18):右薄膜生长室14内的基片19金刚石薄膜生长完成后,打开右室插板阀15。
流程(19):启动右室传动辊10和进样室传动辊16,将基片行走车21移动至进出样室18。
流程(20):关闭右室插板阀15。
流程(21):保持出样室18的真空状态下基片19温度降至室温。
之后,进入流程(6)开始重新循环。
实施例结果表明,本发明可应用于大规模的工业化生产,就有很高的实用价值。
以上所述的仅是本发明所列举的最优实施方式。需要指出,对于本技术领域的所有技术人员,在不脱离所附权利要求书的精神和本发明所示原理的范畴情况下,还可以对所示实例进行更改和/或改变,这些改变也应被视为本发明的权利保护范围。

Claims (10)

  1. 一种金刚石薄膜连续制备使用的HFCVD设备,其特征在于,该设备主要包括:左室插板阀、左薄膜生长室、左室水冷电极、左室热丝架、左室热丝、左室传动辊、左室支架、进出样室支架、右室支架、右室传动辊、右室热丝、右室热丝架、右室水冷电极、右薄膜生长室、右室插板阀、进样室传动辊、进出样室、基片、基片台、基片行走车,具体结构如下:
    设备以进出样室为中心,进出样室内设有基片行走车,基片行走车上设有基片台,基片设置于基片台上;
    进出样室左侧通过左室插板阀与左薄膜生长室相连,左薄膜生长室内由上至下依次设有左室水冷电极、左室热丝架、左室热丝和左传动辊,左室热丝架为上下两个相对平行设置,左室热丝沿竖直面方向平行排布于两个左室热丝架之间,左室水冷电极与左室热丝架相连,左传动辊设置于左薄膜生长室内的底部;
    进出样室右侧通过右室插板阀与右薄膜生长室相连,右薄膜生长室内由上至下依次设有右室水冷电极、右室热丝架、右室热丝和右室传动辊,右薄膜生长室为上下两个相对平行设置,右室热丝沿竖直面方向平行排布于两个右室热丝架之间,右室水冷电极与右室热丝架相连,右室传动辊设置于右薄膜生长室内的底部。
  2. 按照权利要求1所述的金刚石薄膜连续制备使用的HFCVD设备,其特征在于,进出样室的底部下方设有进出样室支架。
  3. 按照权利要求1所述的金刚石薄膜连续制备使用的HFCVD设备,其特征在于,左薄膜生长室内的顶部设置左室观察窗,左薄膜生长室的底部下方设有左室支架。
  4. 按照权利要求1所述的金刚石薄膜连续制备使用的HFCVD设备,其特征在于,右薄膜生长室内的顶部设置右室观察窗,右薄膜生长室的底部下方设有右室支架。
  5. 按照权利要求1所述的金刚石薄膜连续制备使用的HFCVD设备,其特征在于,进出样室、左薄膜生长室、右薄膜生长室的一侧依次设有电控系统、真空系统和气路系统。
  6. 按照权利要求5所述的金刚石薄膜连续制备使用的HFCVD设备,其特征在于,电控系统的输出端通过线路连接左室水冷电极、右室水冷电极、基片行走车、真空系统、气路系统,真空系统分别通过管路连接分别对进出样室、左薄膜生长室、右薄膜生长室、左室插板阀、右室插板阀,气路系统分别通过管路连接左薄膜生长室、右薄膜生长室。
  7. 按照权利要求1所述的金刚石薄膜连续制备使用的HFCVD设备,其特征在于,左室传动辊、进样室传动辊、右室传动辊依次连成一排形成与基片行走车配合的通道,基片行走车上设有一对相互平行的基片台,每个基片台上装有基片,进出样室内的隔热屏分别竖直设置于进出样室的相对内壁上,基片行走车位于相对设置的两个隔热屏之间。
  8. 按照权利要求1所述的金刚石薄膜连续制备使用的HFCVD设备,其特征在于,在基片行走车进入左薄膜生长室或右薄膜生长室后,两个平行的基片均匀地分布于左室热丝或右室热丝的两侧。
  9. 按照权利要求1所述的金刚石薄膜连续制备使用的HFCVD设备,其特征在于,进出 样室、左薄膜生长室、右薄膜生长室分别为长方体双层水冷结构,采用SUS304材质。
  10. 一种权利要求1至9之一所述的金刚石薄膜连续制备使用的HFCVD设备的镀膜方法,其特征在于,包括如下步骤:
    流程(1):关闭左室插板阀和右室插板阀,通过电控系统控制真空系统对左薄膜生长室和右薄膜生长室抽真空至20Pa以内,对左室热丝和右室热丝加热至2000~3000℃,开启气路系统向左薄膜生长室和右薄膜生长室充入反应气体,对左室热丝和右室热丝进行碳化处理;
    流程(2):将预先清洗干净处理的基片固定在基片台上,连同基片行走车一起放入进出样室,对进出样室抽真空至20Pa以内;
    流程(3):打开左室插板阀;
    流程(4):启动进样室传动辊和左室传动辊将基片行走车移动至左薄膜生长室;
    流程(5):关闭左室插板阀,开始在基片上生长金刚石薄膜;
    流程(6):将预先清洗干净处理的基片固定在基片台上连同基片行走车一起放入进出样室,对进出样室抽真空至20Pa以内;
    流程(7):打开右室插板阀;
    流程(8):启动进样室传动辊和右室传动辊将基片行走车移动至右薄膜生长室;
    流程(9):关闭右室插板阀,开始在基片上生长金刚石薄膜;
    流程(10):左薄膜生长室内的基片金刚石薄膜生长完成后,打开左室插板阀,启动左室传动辊和进样室传动辊,将基片行走车移动至进出样室;
    流程(11):关闭左室插板阀;
    流程(12):保持出样室的真空状态下基片温度降至室温;
    流程(13):解除进出样室的真空,取出生长完金刚石薄膜的基片;
    流程(14):将预先清洗干净处理的新基片固定在基片台上连同基片行走车一起放入进出样室,对进出样室抽真空至20Pa以内;
    流程(15):打开左室插板阀;
    流程(16):启动进样室传动辊和左室传动辊,将基片行走车移动至左薄膜生长室;
    流程(17):关闭左室插板阀;
    流程(18):右薄膜生长室内的基片金刚石薄膜生长完成后,打开右室插板阀;
    流程(19):启动右室传动辊和进样室传动辊,将基片行走车移动至进出样室;
    流程(20):关闭右室插板阀;
    流程(21):保持出样室18的真空状态下基片温度降至室温;
    之后,进入流程(6)开始重新循环。
PCT/CN2019/120849 2019-07-18 2019-11-26 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法 WO2021008057A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112019007555.1T DE112019007555T5 (de) 2019-07-18 2019-11-26 HFCVD-Vorrichtung für die kontinuierliche Herstellung von Diamantfolien und deren Beschichtungsverfahren
US17/627,754 US11939669B2 (en) 2019-07-18 2019-11-26 Coating method for continuous preparation of diamond thin film with HFCVD device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910652012.5 2019-07-18
CN201910652012.5A CN110331378B (zh) 2019-07-18 2019-07-18 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法

Publications (1)

Publication Number Publication Date
WO2021008057A1 true WO2021008057A1 (zh) 2021-01-21

Family

ID=68145692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120849 WO2021008057A1 (zh) 2019-07-18 2019-11-26 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法

Country Status (4)

Country Link
US (1) US11939669B2 (zh)
CN (1) CN110331378B (zh)
DE (1) DE112019007555T5 (zh)
WO (1) WO2021008057A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061049B2 (ja) * 2018-09-10 2022-04-27 株式会社神戸製鋼所 熱フィラメントcvd装置
CN110331378B (zh) * 2019-07-18 2024-01-19 中国科学院金属研究所 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法
CN111549330A (zh) * 2020-05-08 2020-08-18 北京中材人工晶体研究院有限公司 一种连续沉积金刚石薄膜的方法及其设备
CN111501022A (zh) * 2020-06-20 2020-08-07 西南石油大学 一种多组热丝反应设备
CN115367740A (zh) * 2022-08-18 2022-11-22 安徽贝意克智能科技有限公司 一种垂直石墨烯的连续制备装备及使用方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2067711U (zh) * 1989-05-06 1990-12-19 中科院上海硅酸盐研究所 多室连续处理设备的空间气体隔离装置
CN1444605A (zh) * 2001-05-30 2003-09-24 Lg电子株式会社 具有直立室的等离子体聚合连续处理设备
JP2004091821A (ja) * 2002-08-29 2004-03-25 Kyocera Corp 薄膜デバイス用製造装置および薄膜デバイスの製造方法
CN101008082A (zh) * 2007-02-01 2007-08-01 南京航空航天大学 Cvd金刚石膜连续制备系统
JP2008156669A (ja) * 2006-12-20 2008-07-10 Ulvac Japan Ltd 成膜装置
CN202643836U (zh) * 2012-05-06 2013-01-02 北京科技大学 一种大面积沉积金刚石膜的热丝架
US20160097118A1 (en) * 2014-10-01 2016-04-07 Seagate Technology Llc Inductively Coupled Plasma Enhanced Chemical Vapor Deposition
CN105970183A (zh) * 2016-06-27 2016-09-28 重庆墨希科技有限公司 一种流水式石墨烯薄膜制备装置
CN206591178U (zh) * 2017-03-27 2017-10-27 重庆墨希科技有限公司 卷式石墨烯连续生长设备
CN208328100U (zh) * 2018-03-16 2019-01-04 深圳先进技术研究院 热丝固定装置及金刚石薄膜生长设备
CN110331378A (zh) * 2019-07-18 2019-10-15 中国科学院金属研究所 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160544A (en) * 1990-03-20 1992-11-03 Diamonex Incorporated Hot filament chemical vapor deposition reactor
JP2888026B2 (ja) * 1992-04-30 1999-05-10 松下電器産業株式会社 プラズマcvd装置
EP0589641A3 (en) * 1992-09-24 1995-09-27 Gen Electric Method of producing wear resistant articles
US5445106A (en) * 1994-10-03 1995-08-29 General Electric Company Method for making high thermal conducting diamond
US6054183A (en) * 1997-07-10 2000-04-25 Zimmer; Jerry W. Method for making CVD diamond coated substrate for polishing pad conditioning head
WO2000047795A1 (en) * 1999-02-10 2000-08-17 Auburn University Industrial Programs & Tech Transfer Method of hot-filament chemical vapor deposition of diamond
US7211461B2 (en) * 2003-02-14 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
GB0700984D0 (en) * 2007-01-18 2007-02-28 Element Six Ltd Polycrystalline diamond elements having convex surfaces
US20090017258A1 (en) * 2007-07-10 2009-01-15 Carlisle John A Diamond film deposition
US20090078199A1 (en) * 2007-09-21 2009-03-26 Innovation Vacuum Technology Co., Ltd. Plasma enhanced chemical vapor deposition apparatus
US8603195B2 (en) * 2009-08-24 2013-12-10 Applied Materials, Inc. 3D approach on battery and supercapitor fabrication by initiation chemical vapor deposition techniques
KR101099371B1 (ko) * 2009-10-14 2011-12-29 엘아이지에이디피 주식회사 버퍼 챔버를 구비하는 금속 유기물 화학기상증착장치
CN102859655A (zh) * 2010-04-30 2013-01-02 应用材料公司 垂直直列cvd系统
CN102634776B (zh) * 2012-05-03 2014-03-12 徐明生 一种连续制备二维纳米薄膜的化学气相沉积设备
JP6488775B2 (ja) * 2015-03-09 2019-03-27 東洋製罐グループホールディングス株式会社 ダイヤモンド表面の研磨方法およびそれを実施する装置
CN208917302U (zh) * 2018-08-17 2019-05-31 黄海宾 太阳电池制造用立式hwcvd-pvd一体化设备
US10847365B2 (en) * 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
CN210529053U (zh) * 2019-07-18 2020-05-15 中国科学院金属研究所 金刚石薄膜连续制备使用的hfcvd设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2067711U (zh) * 1989-05-06 1990-12-19 中科院上海硅酸盐研究所 多室连续处理设备的空间气体隔离装置
CN1444605A (zh) * 2001-05-30 2003-09-24 Lg电子株式会社 具有直立室的等离子体聚合连续处理设备
JP2004091821A (ja) * 2002-08-29 2004-03-25 Kyocera Corp 薄膜デバイス用製造装置および薄膜デバイスの製造方法
JP2008156669A (ja) * 2006-12-20 2008-07-10 Ulvac Japan Ltd 成膜装置
CN101008082A (zh) * 2007-02-01 2007-08-01 南京航空航天大学 Cvd金刚石膜连续制备系统
CN202643836U (zh) * 2012-05-06 2013-01-02 北京科技大学 一种大面积沉积金刚石膜的热丝架
US20160097118A1 (en) * 2014-10-01 2016-04-07 Seagate Technology Llc Inductively Coupled Plasma Enhanced Chemical Vapor Deposition
CN105970183A (zh) * 2016-06-27 2016-09-28 重庆墨希科技有限公司 一种流水式石墨烯薄膜制备装置
CN206591178U (zh) * 2017-03-27 2017-10-27 重庆墨希科技有限公司 卷式石墨烯连续生长设备
CN208328100U (zh) * 2018-03-16 2019-01-04 深圳先进技术研究院 热丝固定装置及金刚石薄膜生长设备
CN110331378A (zh) * 2019-07-18 2019-10-15 中国科学院金属研究所 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法

Also Published As

Publication number Publication date
US20220316053A1 (en) 2022-10-06
CN110331378A (zh) 2019-10-15
US11939669B2 (en) 2024-03-26
DE112019007555T5 (de) 2022-05-12
CN110331378B (zh) 2024-01-19

Similar Documents

Publication Publication Date Title
WO2021008057A1 (zh) 金刚石薄膜连续制备使用的hfcvd设备及其镀膜方法
CN102849733B (zh) 双温区控制低温直接制备石墨烯的方法及双温区管式炉
CN103121670A (zh) 远程等离子体增强原子层沉积低温生长石墨烯的方法
CN106548831B (zh) 一种石墨烯铜复合线材的制备方法
CN108342716A (zh) 等离子体增强化学气相沉积制备二维材料的系统及方法
CN204490989U (zh) 一种基于等离子体辅助生长石墨烯的化学气相沉积设备
CN210529053U (zh) 金刚石薄膜连续制备使用的hfcvd设备
CN108103447A (zh) 一种自封防漏低沸点材料热蒸发镀膜装置
CN104393061B (zh) 一种晶体硅太阳能电池减反射膜及其制备工艺
CN209522918U (zh) 一种多功能金刚石薄膜的热丝化学气相沉积装置
CN112376035A (zh) 一种适用于制备高In组分InGaN材料的反应装置
CN106517163A (zh) 一种用于cvd法制备石墨烯的冷壁炉及连续生产方法
CN108179468A (zh) 一种用于硅基多晶硅薄膜淀积的装置和方法
CN207958482U (zh) 一种连续低沸点材料热蒸发镀膜装置
CN105603385A (zh) 一种制备金刚石晶体薄膜材料的装置和方法
TW201015738A (en) Atomic layer deposition apparatus
CN115896740A (zh) 一种金刚石膜片制作装置及其制作方法
CN212609576U (zh) 一种基板式碳纳米管制备设备
CN105483645A (zh) 一种制备竹节状SiC纳米线的方法
CN107541714B (zh) 一种大尺寸石墨烯玻璃的快速生长方法
CN101260520A (zh) 平板氮化硅薄膜pecvd沉积系统
CN113213774B (zh) 石墨烯玻璃及其制备方法
CN103011133B (zh) 一种低成本的碳纳米管阵列的制备方法
CN209974884U (zh) 石墨烯金属复合粉体连续生长设备
CN102719804B (zh) 气体内循环型热丝cvd金刚石膜生长装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937415

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19937415

Country of ref document: EP

Kind code of ref document: A1