CN104393061B - 一种晶体硅太阳能电池减反射膜及其制备工艺 - Google Patents

一种晶体硅太阳能电池减反射膜及其制备工艺 Download PDF

Info

Publication number
CN104393061B
CN104393061B CN201410695684.1A CN201410695684A CN104393061B CN 104393061 B CN104393061 B CN 104393061B CN 201410695684 A CN201410695684 A CN 201410695684A CN 104393061 B CN104393061 B CN 104393061B
Authority
CN
China
Prior art keywords
refractive index
silicon
film
thickness
antireflective coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410695684.1A
Other languages
English (en)
Other versions
CN104393061A (zh
Inventor
郭强
王立建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG YUHUI SOLAR ENERGY JIANGSU CO Ltd
Original Assignee
ZHEJIANG YUHUI SOLAR ENERGY JIANGSU CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG YUHUI SOLAR ENERGY JIANGSU CO Ltd filed Critical ZHEJIANG YUHUI SOLAR ENERGY JIANGSU CO Ltd
Priority to CN201410695684.1A priority Critical patent/CN104393061B/zh
Publication of CN104393061A publication Critical patent/CN104393061A/zh
Application granted granted Critical
Publication of CN104393061B publication Critical patent/CN104393061B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明是一种晶体硅太阳能电池的减反射膜及其制备工艺,该减反射膜的总厚度为80-95nm,折射率为1.8-2.05;该减反射膜由至少五层膜构成,且总层数为奇数,奇数层均为二氧化硅膜,折射率为1.4-1.7;其中,偶数层均为氮化硅膜,位于减反射膜第二层的氮化硅膜折射率最大,其折射率为2.15-2.25,下一层氮化硅膜的折射率依次比上一层氮化硅膜的折射率低0.05-0.25;各层膜的厚度根据反射膜的总厚度及总层数进行设定,二氧化硅膜的厚度为5-50nm,氮化硅膜的厚度为5-50nm。本发明的减反射膜具有优良的致密性和抗PID衰减性能,能显著减低太阳能电池的反射率,提高电池的光电转化效率。

Description

一种晶体硅太阳能电池减反射膜及其制备工艺
技术领域
本发明涉及一种减反射膜及其制备工艺,特别是涉及一种晶体硅太阳能电池的减反射膜及其制备工艺。
背景技术
近几年的研究表明,存在于晶体硅光伏组件中的电路与其接地金属边框之间的高电压,会造成组件光伏性能的持续衰减,业内称之为电位诱导衰减(简称PID效应)。PID效应使得组件中封装的电池表面钝化效果恶化,形成较高电流的漏电回路,使得电池填充因子、开路电压、短路电流降低。PID效应可以使组件功率下降30%以上。因此如何解决PID问题已经成为太阳能电池制造工艺中的一个非常重要的环节。
传统的抗PIDPECVD镀膜工艺如下:(1)将制绒、扩散、刻蚀清洗后的硅片放置于一真空腔室中进行加热,通常预热到430度以上;(2)通入特殊气体(一般为硅烷、氨气),开启射频电源放电产生活性极强的等离子体,在硅片表面形成一层或者多层不同折射率的氮化硅硅膜(通常综合折射率控制在2.15-2.35之间);第一层(硅片衬底的扩散层表面)通常生成折射率较高的氮化硅硅膜,以实现钝化硅片悬挂键的目的;其余各层折射率依次降低,实现膜层低反射率的目的;(3)关闭微波源和特气,降温后将硅片取出。传统方法制作的抗PID硅膜,或者是单层膜或者渐变式多层氮化硅膜,表层钝化效果不理想;各层硅膜之间折射率是连续过渡,减反射效果有限。膜层综合折射率偏高,压成组件后,综合反射率升高,膜层对透射光的吸收衰减率显著增强。另外,由于膜层生长过程中,硅片及硅片载体温度持续上升,温度变化也将导致生长而成的硅膜性质存在差异。
为了改善传统镀膜方式的缺陷,近年来国内外部分公司开始尝试引入氧气或者NOx气体,或者氧气/NOx气体混合硅烷,或者氧气/NOx气体混合硅烷、氨气等方法。在硅片表面采用O3氧化或者电离O2或者电离NOx,在最内层形成SiO2层,然后采用传统方法在最内层SiO2层表面依次生长不同折射率的氮化硅膜层(折射率依次增加),改善硅片表面钝化效果。在最外层形成低折射率的SiO2膜层或者氮硅氧化膜层(折射率通常低于2.0),增强硅膜减反射能力。以上改进方法在一定程度上解决了传统镀膜方式生长的硅膜存在的弊端,但是该方法仅能改善膜层最内层或者最内层和最外层性质,中间各层膜的性质维持不变,传统方法生长硅膜的缺陷依然存在,膜层质量改善效果有限。膜层总折射率依然显著大于2.05,组件减反射效果有限。另外,镀膜过程中温度的变化对各膜层性质的影响,未见有相应的改善措施。因此,开发特殊的PECVD工艺,沉积出低折射率、抗PID衰减的特殊性能硅膜具有非常重要的意义。
发明内容
本发明所要解决的技术问题是,克服现有技术的缺点,提供一种晶体硅太阳能电池的减反射膜及其制备工艺,具有优良的致密性和抗PID衰减性能,能显著减低太阳能电池的反射率,提高电池的光电转化效率。
本发明解决以上技术问题的技术方案是:
一种晶体硅太阳能电池减反射膜,该减反射膜的总厚度为80-95nm,折射率为1.8-2.05;该减反射膜由至少五层膜构成,且总层数为奇数,其中,第一层膜沉积在硅片表面,第二层膜沉积在第一层膜表面,第三层膜沉积在第二层膜表面,第四层膜沉积在第三层膜表面,第五层膜沉积在第四层膜表面,更多层膜以此类推;其中,奇数层均为二氧化硅膜,折射率为1.4-1.7;其中,偶数层均为氮化硅膜,位于减反射膜第二层的氮化硅膜折射率最大,其折射率为2.15-2.25,下一层氮化硅膜的折射率依次比上一层氮化硅膜的折射率低0.05-0.25;其中,各层膜的厚度根据反射膜的总厚度及总层数进行设定,二氧化硅膜的厚度为5-65nm,氮化硅膜的厚度为10-80nm。
本发明的晶体硅太阳能电池减反射膜的制备工艺,将制绒、扩散及刻蚀清洗后的硅片放置于一真空腔室中进行加热,用PECVD方法将二氧化硅膜和氮化硅膜按次序依次沉积。
优选的,本发明的晶体硅太阳能电池减反射膜,由五层膜构成,其中第一层膜为二氧化硅膜,其厚度为5-20nm,折射率为1.4-1.7;第二层膜为氮化硅膜,其厚度为10-30nm,折射率为2.15-2.25;第三层膜为二氧化硅膜,其厚度为5-15nm,折射率为1.4-1.7;第四层膜为氮化硅膜,其厚度为30-50nm,折射率为2.0-2.1;第五层膜为二氧化硅膜,其厚度为10-30nm,折射率为1.4-1.7。
上述的晶体硅太阳能电池减反射膜的制备工艺,按以下步骤进行:
㈠将制绒、扩散及刻蚀清洗后的硅片放置于一真空腔室中进行加热;
㈡用PECVD方法在步骤㈠的硅片的扩散表面,沉积一层膜厚为5-20nm,折射率为1.4-1.7的二氧化硅硅膜;
㈢用PECVD方法在步骤㈡的硅膜表面,沉积一层膜厚为10-30nm,折射率为2.15-2.25的氮化硅硅硅膜;
㈣用PECVD方法在步骤㈢的硅膜表面,沉积一层膜厚为5-15nm,折射率为1.4-1.7的二氧化硅硅膜;
㈤用PECVD方法在步骤㈣的硅膜表面,沉积一层膜厚为30-50nm,折射率为2.0-2.1的氮化硅硅膜;
㈥用PECVD方法在步骤(5)的硅膜表面,沉积一层膜厚为10-30nm,折射率为1.4-1.7的二氧化硅硅膜;
㈦关闭微波源和气体,降温取片。
上述的晶体硅太阳能电池减反射膜的制备工艺,其中步骤㈠中,加热温度为430-450℃。
上述的晶体硅太阳能电池减反射膜的制备工艺,步骤㈡中PECVD工艺所用气体原料为NOx或O2,气体流量为1-2L/min,时间为50-200s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
步骤㈢中PECVD工艺所用气体原料为硅烷和氨气,气体流量分别是800-1300ml/min和3-7.5L/min,时间都是70-250s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
步骤㈣中PECVD工艺所用气体原料为NOx和硅烷,气体流量分别为2-4L/min和200-600ml/min,时间都为30-100s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
步骤㈤中PECVD工艺所用气体原料为硅烷和氨气,气体流量分别是400-700ml/min和6.5-9L/min,时间都是300-550s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
步骤㈥中PECVD工艺所用气体原料为NOx和硅烷,气体流量分别为2-4L/min和200-600ml/min,时间都为80-300s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃。
上述的晶体硅太阳能电池减反射膜的制备工艺,步骤㈦中,关闭气体和微波源后,抽真空后通入5-8L/min氮气吹扫,再次抽真空,再次通入8-10L/min氮气,降温,气压达到大气压后开启炉门,取片。
由于上述技术方案的采用,和现有技术相比,本发明的优点如下:⑴本发明得到了由二氧化硅膜和氮化硅膜组成的多层交互复合减反射膜,与现有技术相比,该技术沉积得到的硅膜性质稳定、均匀、致密,抗腐蚀等性能优良,抗PID衰减性能优良,实验证明,该技术沉积的多层膜(至少五层)能顺利通过温度为85摄氏度,湿度为85%条件下的PID测试,PID衰减值:≤2%;⑵本发明得到的硅膜,综合折射率介于1.8-2.05之间,减反射效果优良,该硅膜能显著增加太阳能电池和组件的光电转化效率,实验证明,沉积有该硅膜的电池,转化效率增加0.15%以上,层压而成的电池组件,效率增益在1-5瓦甚至更高;⑶本发明制备方法简单,能充分利用现有PECVD设备实现相关工艺过程,适合大规模化生产。
具体实施方式
实施例1
本实施例是一种晶体硅太阳能电池减反射膜,该减反射膜的总厚度为80-95nm,折射率为1.8-2.05;由五层膜构成,其中第一层膜为二氧化硅膜,其厚度为5-20nm,折射率为1.4-1.7;第二层膜为氮化硅膜,其厚度为10-30nm,折射率为2.15-2.25;第三层膜为二氧化硅膜,其厚度为5-15nm,折射率为1.4-1.7;第四层膜为氮化硅膜,其厚度为30-50nm,折射率为2.0-2.1;第五层膜为二氧化硅膜,其厚度为10-30nm,折射率为1.4-1.7。
本实施例的晶体硅太阳能电池减反射膜的制备工艺,按以下步骤进行:
㈠将制绒、扩散及刻蚀清洗后的硅片放置于一真空腔室中进行加热;加热温度为430-450℃;
㈡用PECVD方法在步骤㈠的硅片的扩散表面,沉积一层膜厚为5-20nm,折射率为1.4-1.7的二氧化硅硅膜;本步骤PECVD设备所通入的工艺气体为NOx或O2,气体流量为1-2L/min,时间为50-200s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
㈢用PECVD方法在步骤㈡的硅膜表面,沉积一层膜厚为10-30nm,折射率为2.15-2.25的氮化硅硅硅膜;本步骤所用工艺气体为硅烷和氨气,气体流量分别是800-1300ml/min和3-7.5L/min,时间都是70-250s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
㈣用PECVD方法在步骤㈢的硅膜表面,沉积一层膜厚为5-15nm,折射率为1.4-1.7的二氧化硅硅膜;本步骤所用工艺气体为NOx和硅烷,气体流量分别为2-4L/min和200-600ml/min,时间都为30-100s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
㈤用PECVD方法在步骤㈣的硅膜表面,沉积一层膜厚为30-50nm,折射率为2.0-2.1的氮化硅硅膜;本步骤中的工艺气体为硅烷和氨气,气体流量分别是400-700ml/min和6.5-9L/min,时间都是300-550s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
㈥用PECVD方法在步骤(5)的硅膜表面,沉积一层膜厚为10-30nm,折射率为1.4-1.7的二氧化硅硅膜;本步骤中的工艺气体为NOx和硅烷,气体流量分别为2-4L/min和200-600ml/min,时间都为80-300s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
㈦关闭气体和微波源后,抽真空后通入5-8L/min氮气吹扫,再次抽真空,再次通入8-10L/min氮气,降温,气压达到大气压后开启炉门,取片。
本实施例的晶体硅太阳能电池减反射膜能顺利通过温度为85摄氏度,湿度为85%条件下的PID测试,PID衰减值:≤2%;综合折射率介于1.8-2.05之间,减反射效果优良;本实施例硅膜能显著增加太阳能电池和组件的光电转化效率,沉积有该硅膜的电池,转化效率增加0.15%以上,层压而成的电池组件,效率增益在1-5瓦甚至更高。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (5)

1.一种晶体硅太阳能电池减反射膜,该减反射膜的总厚度为80-95nm,折射率为1.8-2.05;该减反射膜由至少五层膜构成,且总层数为奇数,其中,第一层膜沉积在硅片表面,第二层膜沉积在第一层膜表面,第三层膜沉积在第二层膜表面,第四层膜沉积在第三层膜表面,第五层膜沉积在第四层膜表面,更多层膜以此类推;
其中,奇数层均为二氧化硅膜,折射率为1.4-1.7;
其中,偶数层均为氮化硅膜,位于减反射膜第二层的氮化硅膜折射率最大,其折射率为2.15-2.25,下一层氮化硅膜的折射率依次比上一层氮化硅膜的折射率低0.05-0.25;
其中,各层膜的厚度根据反射膜的总厚度及总层数进行设定,二氧化硅膜的厚度为5-65nm,氮化硅膜的厚度为10-80nm;
其特征在于:该减反射膜由五层膜构成,其中第一层膜为二氧化硅膜,其厚度为5-20nm,折射率为1.4-1.7;第二层膜为氮化硅膜,其厚度为10-30nm,折射率为2.15-2.25;第三层膜为二氧化硅膜,其厚度为5-15nm,折射率为1.4-1.7;第四层膜为氮化硅膜,其厚度为30-50nm,折射率为2.0-2.1;第五层膜为二氧化硅膜,其厚度为10-30nm,折射率为1.4-1.7。
2.如权利要求1所述的晶体硅太阳能电池减反射膜的制备工艺,将制绒、扩散及刻蚀清洗后的硅片放置于一真空腔室中进行加热,用PECVD工艺将二氧化硅膜和氮化硅膜按的设定的位置依次沉积;
其特征在于:所述的晶体硅太阳能电池减反射膜的制备工艺按以下步骤进行:
㈠将制绒、扩散及刻蚀清洗后的硅片放置于一真空腔室中进行加热;
㈡用PECVD工艺在步骤㈠的硅片的扩散表面,沉积一层膜厚为5-20nm,折射率为1.4-1.7的二氧化硅硅膜;
㈢用PECVD工艺在步骤㈡的硅膜表面,沉积一层膜厚为10-30nm,折射率为2.15-2.25的氮化硅硅硅膜;
㈣用PECVD工艺在步骤㈢的硅膜表面,沉积一层膜厚为5-15nm,折射率为1.4-1.7的二氧化硅硅膜;
㈤用PECVD工艺在步骤㈣的硅膜表面,沉积一层膜厚为30-50nm,折射率为2.0-2.1的氮化硅硅膜;
㈥用PECVD工艺在步骤( 五)的硅膜表面,沉积一层膜厚为10-30nm,折射率为1.4-1.7的二氧化硅硅膜;
㈦关闭微波源和气体,降温取片。
3.如权利要求2所述的晶体硅太阳能电池减反射膜的制备工艺,其特征在于:所述步骤㈠中,加热温度为430-450℃。
4.如权利要求2所述的晶体硅太阳能电池减反射膜的制备工艺,其特征在于:
所述步骤㈡中PECVD工艺所用气体原料为NOx或O2,气体流量为1-2L/min,时间为50-200s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
所述步骤㈢中PECVD工艺所用气体原料为硅烷和氨气,气体流量分别是800-1300ml/min和3-7.5L/min,时间都是70-250s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
所述步骤㈣中的PECVD工艺所用气体原料为NOx和硅烷,气体流量分别为2-4L/min和200-600ml/min,时间都为30-100s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
所述步骤㈤中的PECVD工艺所用气体原料为硅烷和氨气,气体流量分别是400-700ml/min和6.5-9L/min,时间都是300-550s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃;
所述步骤㈥中的PECVD工艺所用气体原料为NOx和硅烷,气体流量分别为2-4L/min和200-600ml/min,时间都为80-300s;镀膜结束后关闭气体和电源,抽真空后通入5-8L/min氮气吹扫,再次抽真空,停止加热,降温至430-450℃。
5.如权利要求2所述的晶体硅太阳能电池减反射膜的制备工艺,其特征在于:所述步骤㈦中,关闭气体和微波源后,抽真空后通入5-8L/min氮气吹扫,再次抽真空,再次通入8-10L/min氮气,降温,气压达到大气压后开启炉门,取片。
CN201410695684.1A 2014-11-27 2014-11-27 一种晶体硅太阳能电池减反射膜及其制备工艺 Active CN104393061B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410695684.1A CN104393061B (zh) 2014-11-27 2014-11-27 一种晶体硅太阳能电池减反射膜及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410695684.1A CN104393061B (zh) 2014-11-27 2014-11-27 一种晶体硅太阳能电池减反射膜及其制备工艺

Publications (2)

Publication Number Publication Date
CN104393061A CN104393061A (zh) 2015-03-04
CN104393061B true CN104393061B (zh) 2016-06-22

Family

ID=52610934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410695684.1A Active CN104393061B (zh) 2014-11-27 2014-11-27 一种晶体硅太阳能电池减反射膜及其制备工艺

Country Status (1)

Country Link
CN (1) CN104393061B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735829B (zh) * 2017-10-27 2021-02-26 中国电子科技集团公司第四十八研究所 氮化硅薄膜的沉积方法、氮化硅薄膜及perc电池
CN109273559A (zh) * 2018-09-25 2019-01-25 南昌大学 抛光处理晶体硅片表面技术在太阳电池制备中的应用
CN110218988A (zh) * 2019-06-10 2019-09-10 浙江水晶光电科技股份有限公司 Ar膜制备装置、ar膜制备方法及ar膜
CN110885969A (zh) * 2019-10-30 2020-03-17 杭州美迪凯光电科技股份有限公司 一种减少摄像模组点子缺陷的cvd制备方法及其产物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989623A (zh) * 2009-08-07 2011-03-23 比亚迪股份有限公司 一种太阳能电池减反射膜及其制备方法
CN102199760A (zh) * 2011-04-28 2011-09-28 浙江鸿禧光伏科技股份有限公司 一种双层氮化硅减反膜的制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064622A (zh) * 2013-03-21 2014-09-24 晶科能源有限公司 一种抗电势诱导衰减的太阳能电池片及其制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101989623A (zh) * 2009-08-07 2011-03-23 比亚迪股份有限公司 一种太阳能电池减反射膜及其制备方法
CN102199760A (zh) * 2011-04-28 2011-09-28 浙江鸿禧光伏科技股份有限公司 一种双层氮化硅减反膜的制作方法

Also Published As

Publication number Publication date
CN104393061A (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
CN105609643B (zh) 一种钙钛矿型太阳能电池及制备方法
CN104091838B (zh) 高转化效率抗pid晶体硅太阳能电池及其制造方法
CN104393061B (zh) 一种晶体硅太阳能电池减反射膜及其制备工艺
CN102420272B (zh) 一种太阳能电池钝化层分层镀膜装置
CN110735130B (zh) 制备背面钝化膜的管式pecvd设备及方法
CN105140306B (zh) 抗pid效应的太阳能电池结构及生产方法
CN102856174B (zh) 氮化硅的膜制备方法、具有氮化硅膜的太阳能电池片及其制备方法
CN105845775A (zh) Perc晶体硅太阳能电池的背面多层镀膜方法
CN110106493B (zh) 利用管式pecvd设备制备背面钝化膜的方法
CN106486568A (zh) 一种perc电池的退火处理工艺
CN106328723B (zh) 抗pid电池片的制备方法及光伏组件
WO2023184844A1 (zh) 硅基薄膜、太阳电池及其制备方法
CN103700576A (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN107154437A (zh) 太阳能电池减反射膜的制备方法
CN109004038A (zh) 太阳能电池及其制备方法和光伏组件
CN102903785A (zh) 一种采用增氢钝化提高太阳能电池片转换效率的方法
CN102386277B (zh) 多层镀膜工艺
CN103066132B (zh) 一种用于太阳能电池的双层氮化硅减反射膜及其制备方法
CN106653872B (zh) 一种抗pid效应的太阳能电池
CN105161547A (zh) 一种用于背钝化太阳电池的叠层膜及其制备方法以及一种背钝化太阳电池
CN104037264B (zh) 一种pecvd沉积低表面复合太阳电池介电层的方法
CN103413867A (zh) 太阳能电池的扩散制结方法、太阳能电池及其制作方法
CN107731959A (zh) 一种晶硅太阳能电池处理方法
CN107863415B (zh) 一种热氧化结合pecvd提升太阳能电池片转化效率的方法
CN204155941U (zh) 高转化效率抗pid多晶硅太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant