CN112850661B - 一种硒化钛纳米线的制备方法 - Google Patents

一种硒化钛纳米线的制备方法 Download PDF

Info

Publication number
CN112850661B
CN112850661B CN202110152414.6A CN202110152414A CN112850661B CN 112850661 B CN112850661 B CN 112850661B CN 202110152414 A CN202110152414 A CN 202110152414A CN 112850661 B CN112850661 B CN 112850661B
Authority
CN
China
Prior art keywords
titanium
powder
reaction
nanowire
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110152414.6A
Other languages
English (en)
Other versions
CN112850661A (zh
Inventor
高伟
刘晶函
高千粟
冯嘉诚
殷红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202110152414.6A priority Critical patent/CN112850661B/zh
Publication of CN112850661A publication Critical patent/CN112850661A/zh
Application granted granted Critical
Publication of CN112850661B publication Critical patent/CN112850661B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明为一种硒化钛纳米线的制备方法。将钛粉、硒粉以化学计量比均匀混合后压制成片,放入直流电弧等离子体放电装置内水平放置的阴阳极之间。在水冷系统和氩气氛围的保护下,将气压升至15‑25kPa、设置反应电流为90‑100A,阴阳两极起弧反应。在石墨锅下沿处收集到黑色粉末,其微观形貌为长度介于1.5‑3μm、直径为20‑100nm的硒化钛纳米线。测试硒化钛纳米线的荧光特性,荧光光谱(PL)的最大发射峰有蓝移现象。

Description

一种硒化钛纳米线的制备方法
技术领域
本发明属于无机纳米材料制备领域,具体涉及一种硒化钛纳米线的制备方法。
背景技术
硒化钛(TiSe2)是一种具有六方晶格的过渡金属双卤代烷(TMD)材料,因其具有良好的光、电和物化性质,在下一代电子、光电器件等众多领域被认为是一类颇具应用前景的功能材料。通过调节纳米材料的微观形貌,可改善纳米材料的光电特性。
目前,传统方法合成出的TiSe2通常为二维层状材料。Sun(Chem.Eur.J,2017,24,1193–1197)等人通过固相烧结法将钛粉和硒粉的混合物煅烧48小时合成块体TiSe2,进而从块体剥离出多层TiSe2;Huang(Small,2017,15,1702181)等人通过高温水热法合成了纳米片状TiSe2。传统制备方法虽已被成功应用于TiSe2的合成过程,但产物形貌单一且不易控制。这些合成方法往往面临耗时长、反应温度较高、需同时添加多种有机溶剂、产出率低或产物团聚较严重等缺点,因此,从经济成本和绿色环保角度考虑,亟需开发一种经济、快速、高效、稳定的合成途径。
发明内容
本发明所要解决的技术问题是通过直流电弧等离子体放电法可控合成不同微观形貌的TiSe2纳米晶材料,弥补现有技术的不足。
本发明的具体操作过程如下:
1.将钛粉、硒粉以1:2的摩尔比称量后放入玛瑙研钵中,加入少许无水乙醇研磨30min,使钛粉和硒粉均匀混合。将研磨后的混合粉末放入压片模具中,压成高度约为3mm的圆片。
2.将圆片放进直流电弧等离子体放电装置内水平放置的阴阳极之间,阴极为钨棒,与阳极石墨锅的水平轴线重合。调节阴阳两极间距约1cm。
3.关闭反应装置,洗气后将装置内气压抽至10Pa以下。在冷却循环水和氩气氛围的保护下,将装置内气压升至15-25kPa。打开起弧电源,设置电流为90A-100A,调整阴阳两极1cm的距离,起弧直至反应完全。
4.在水冷系统和氩气氛围中冷却钝化1-3h。在阳极石墨锅下沿处收集到的黑色粉末为TiSe2纳米线。
本发明比现有技术的优势在于制备工艺简单、稳定性高、节约成本、安全环保、可重复性高,可一步获得纯净的TiSe2纳米线。
附图说明
图1直流电弧等离子体放电装置结构示意图。
图2TiSe2纳米线的X射线衍射(XRD)图。
图3TiSe2纳米线的扫描电子显微镜(SEM)图。
图4TiSe2纳米线的选区电子能谱(EDS)图。
图5TiSe2纳米线的透射电子显微镜(TEM)图。
图6TiSe2纳米线的透射电子显微镜高分辨(HRTEM)图。
图7TiSe2纳米线荧光发射光谱(PL)图。
具体实施方式
实施例1直流电弧等离子体放电装置
图1为直流电弧装置结构示意图。水冷系统的重要性在于:开始反应前,为保证设备安全运转,提前通入循环冷却水。外层冷却水从进水口2流入,经过整个外层腔体1,并从出水口3流出;内层从进水口5流入,经过内层水冷套筒4,分别从出水口5、6流出;阳极冷却水从进水口7流入,从出水口8流出。在反应期间,循环水冷区和高温电弧之间产生的温度梯度是产生纯净的TiSe2纳米线的必备条件。反应结束后,水冷系统起到冷却钝化的作用。
实施例2TiSe2纳米线的制备
按照摩尔比1:2分别称量钛粉0.2308g和硒粉0.7584g,加入少许无水乙醇研磨,使二者均匀混合。把研磨后的混合物放入压片机模具中,压制成高度为3mm、直径尺寸为1cm的圆柱形薄片。将圆片放进水平放置的阳极石墨锅中,固定在装置内一侧。阴极钨棒固定在反应装置内另一侧,与阳极石墨锅的水平轴线重合,调节阴阳两极间距约1cm。封闭反应装置,洗气后将装置内气压抽至10Pa以下。在水冷系统和氩气氛围的保护下将装置内气压升至15kPa。打开起弧电源,设置反应电流为100A,进行起弧放电,反应持续5min后停止放电。在水冷系统和在氩气氛围中冷却钝化2h至室温,在阳极石墨锅下沿处收集的黑色粉末为TiSe2纳米线。图2给出实施例2制得的TiSe2纳米线的X射线衍射(XRD)谱图,所有衍射峰峰位均与JCPDS no.30-1383标准卡片相匹配。峰形有宽化现象。三强峰分别位于33.22°、52.10°、40.76°,对应晶面分别为(101)、(110)、(102)面。可知获得的产物为纯净无杂质的TiSe2
图3给出TiSe2纳米线的扫描电子显微镜(SEM)图。从图中可以清晰的看到,产物TiSe2为中间团聚、向四周发散的纳米线。纳米线的长度介于1.5-3.5μm,直径范围为20-100nm。纳米线断面为边缘钝化的八边形,近似圆形。图4给出TiSe2纳米线的选区电子能谱(EDS)图及其结果。表内可知Ti和Se的原子百分比约为1:2。
图5为TiSe2纳米线的透射电子显微镜(TEM)图。图中TiSe2纳米线长度约为1.5μm,直径约为20nm,与SEM结果一致。图6给出纳米线所对应的透射电子显微镜的高分辨图(HRTEM),经测算晶格条纹的间距d值为
Figure BDA0002932066240000041
TiSe2沿(003)面生长。
图7给出激发波长为532nm的荧光发射光谱(PL)图。最大发射峰位置为628nm左右。由于TiSe2微观形貌的变化,跃迁能量随晶体环境产生改变,较二维层状的TiSe2比,最大发射峰有蓝移现象。荧光峰位不同,所应用范围随之不同。
以上所述的实施例仅对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (3)

1.一种硒化钛纳米线的制备方法,其特征在于,其主要步骤如下:
(1)将钛粉、硒粉以化学计量比混合,压制成片;
(2)将压制好的片置于直流电弧等离子体放电装置内水平放置的阴阳极之间,阴极为钨棒,阳极为石墨锅;
(3)在水冷系统和惰性气体氛围的保护下,洗气后将气压升至15-25kPa,设置反应电流为90-100A,起弧至反应完全,冷却钝化至室温后,可在石墨锅下沿处收集到黑色粉末。
2.按照权利要求1所述的硒化钛纳米线的制备方法,其特征在于,所述放电过程中,向水冷系统通入循环冷却水。
3.按照权利要求1所述的硒化钛纳米线的制备方法,其特征在于,钛粉、硒粉、惰性气体的纯度都保持在99.99%以上。
CN202110152414.6A 2021-02-03 2021-02-03 一种硒化钛纳米线的制备方法 Expired - Fee Related CN112850661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110152414.6A CN112850661B (zh) 2021-02-03 2021-02-03 一种硒化钛纳米线的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110152414.6A CN112850661B (zh) 2021-02-03 2021-02-03 一种硒化钛纳米线的制备方法

Publications (2)

Publication Number Publication Date
CN112850661A CN112850661A (zh) 2021-05-28
CN112850661B true CN112850661B (zh) 2022-06-03

Family

ID=75986667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110152414.6A Expired - Fee Related CN112850661B (zh) 2021-02-03 2021-02-03 一种硒化钛纳米线的制备方法

Country Status (1)

Country Link
CN (1) CN112850661B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112897477B (zh) * 2021-02-03 2022-06-10 吉林大学 一种多面体状硒化钛纳米晶的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59226173A (ja) * 1983-06-03 1984-12-19 Hitachi Ltd 二硫化チタン薄膜の低温作成法
US5112650A (en) * 1991-04-10 1992-05-12 Wayne State University Chemical vapor deposition of metal chalcogenide films
CN101224905A (zh) * 2007-12-17 2008-07-23 金堆城钼业股份有限公司 一种球状结构的二硫化钼制备方法
JP2013028843A (ja) * 2011-07-29 2013-02-07 Kumamoto Univ 遷移金属硫化物の製造方法
US10557014B2 (en) * 2013-02-19 2020-02-11 Nanotech Industrial Solutions, Inc. Composite materials including inorganic fullerene-like particles and inorganic tubular-like particles in a polymer matrix
US20180258117A1 (en) * 2015-09-16 2018-09-13 The University Of Manchester 2d materials
US20170373342A1 (en) * 2016-06-28 2017-12-28 The Regents Of The University Of California Battery with molybdenum sulfide electrode and methods
DE102018125335B4 (de) * 2018-10-12 2021-10-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines optischen Schichtsystems mit einer 2D-Schicht und optisches Schichtsystem
CN110342576B (zh) * 2019-06-11 2021-12-14 天津大学 一种室温下电子轰击制备二硫化钼或二硫化钨纳米片的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
环境稳定型过渡金属硒化物薄膜的可控生长和物性研究;林会会;《中国优秀博硕士学位论文全文数据库(博士)工程科技I辑》;20210115(第1期);全文 *

Also Published As

Publication number Publication date
CN112850661A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Ye et al. Controllable emission bands and morphologies of high-quality CsPbX 3 perovskite nanocrystals prepared in octane
CN101531529A (zh) CuInxGa1-xSe2粉体材料的制备方法
CN112897477B (zh) 一种多面体状硒化钛纳米晶的制备方法
De la Rosa et al. Low temperature synthesis and structural characterization of nanocrystalline YAG prepared by a modified sol–gel method
Cai et al. Solvothermal synthesis and characterization of zinc indium sulfide microspheres
KR101246338B1 (ko) 셀레늄화구리인듐 나노입자 및 그의 제조 방법
CN112850661B (zh) 一种硒化钛纳米线的制备方法
Yavetskiy et al. An approach to Y2O3: Eu3+ optical nanostructured ceramics
CN104843727A (zh) 多元稀土硼化物(LaxCe1-x)B6固溶体多晶阴极材料及其制备方法
Hasan et al. Synthesis of nanostructured lanthanum hexaboride via simple borothermal routes at low temperatures
CN102627263B (zh) 一种制备镁掺杂氮化铝纳米线的方法
Jiang et al. Microwave-assisted preparation of Bi2Te3 hollow nanospheres
CN104724759B (zh) 一种α相硫化锰纳米立方块的制备方法
Fu et al. Mechanism of CuInSe 2 nanorod formation: Cu 2− x Se phase conversion induced by indium intercalated route
EP2511237B1 (en) Chalcogen compound powder, chalcogen compound paste, chalcogen compound powder manufacturing method, chalcogen compound paste manufacturing method and chalcogen compound thin film manufacturing method
JP2011042537A (ja) カルコゲン化合物粉、カルコゲン化合物ペースト及びカルコゲン化合物粉の製造方法
CN105271140B (zh) 一种六方相铝碳氮化物的六边形纳米片及其制备方法
CN104692342B (zh) 一种硒化亚锡纳米球的制备方法
CN107151000A (zh) 硒化锌空心微米球的制备方法
Xu et al. A template‐free route for controlled synthesis of dumbbell‐like Sb2S3 microcrystals
CN105712717A (zh) 一种微波水热法制备纳米Ba(Fe0.5Nb0.5)O3粉体的方法
Linsheng et al. Characterization and photoluminescence of Lu2O3-Eu3+ nano-phosphor prepared by modified solution combustion method
CN107686352B (zh) 一种高纯度Ti2SnC陶瓷材料的制备方法
Wang et al. Hydrothermal synthesis of NaEuF 4 spindle-like nanocrystals
Moloto et al. Schottky solar cells: Anisotropic versus isotropic CuSe nanocrystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220603