CN104724759B - 一种α相硫化锰纳米立方块的制备方法 - Google Patents

一种α相硫化锰纳米立方块的制备方法 Download PDF

Info

Publication number
CN104724759B
CN104724759B CN201510086473.2A CN201510086473A CN104724759B CN 104724759 B CN104724759 B CN 104724759B CN 201510086473 A CN201510086473 A CN 201510086473A CN 104724759 B CN104724759 B CN 104724759B
Authority
CN
China
Prior art keywords
preparation
cubic block
nano cubic
powder
briquetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510086473.2A
Other languages
English (en)
Other versions
CN104724759A (zh
Inventor
崔啟良
张健
王秋实
祝洪洋
武晓鑫
江俊儒
李冬梅
古雅荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201510086473.2A priority Critical patent/CN104724759B/zh
Publication of CN104724759A publication Critical patent/CN104724759A/zh
Application granted granted Critical
Publication of CN104724759B publication Critical patent/CN104724759B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明的一种α相硫化锰纳米立方块的制备方法,属于纳米材料制备的技术领域。将锰粉、硫粉混合均匀,压成压块;将压块置于石墨锅内,石墨锅放入直流电弧放电装置的反应室内的铜锅阳极中,钨棒阴极与铜锅阳极相对放置;冷凝壁和铜锅阳极通入循环冷却水;在氩气中进行放电反应,保持放电电压为18V、电流为100A,反应2~5分钟;再在氩气环境中钝化5小时,在冷凝壁上端收集绿色的粉末。本发明所制备的样品纯度高,结晶性好,形貌尺寸均一;制备过程中无需任何基片、模板、催化剂,对环境友好;制备时间短、能耗少、成本低、可重复性高。制备的产品在短波光电器件、太阳能电池、催化材料、大容量光存储器等方面具有应用价值。

Description

一种α相硫化锰纳米立方块的制备方法
技术领域
本发明属于纳米材料制备的技术领域,特别涉及了一种简单的制备α相硫化锰纳米立方块的方法。
背景技术
随着对纳米材料研究的广泛和深入,人们发现纳米材料具有大的比表面积,表面原子数、表面能和表面张力随粒径的下降急剧增加,表现出小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等特点,从而导致纳米材料的熔点,磁学性能,电学性能,光学性能,力学性能等都不同于传统体材料。
硫化锰(MnS)是一种具有反铁磁性的稀磁半导体材料,其具有三种相态,分别为呈粉色、亚稳相、闪锌矿结构β-MnS和纤锌矿结构γ-MnS,以及呈绿色、稳定相、岩盐矿结构α-MnS。其中,稳定相α-MnS可由亚稳相β-MnS和γ-MnS在100~400℃或高压下转变制得。此外,MnS因其具有较宽的光学带隙,在短波光电器件、太阳能电池的窗口/缓冲材料、催化材料、大容量光存储器等方面具有广泛的潜在应用价值。因此,MnS的纳米材料一直都是研究的热点。
硫化锰纳米粒子可以通过多种方法制备,主要有:热液合成法制备α-MnS纳米球(MaterialsChemistryandPhysics111(2008)13–16),溶剂热法制备β-MnS纳米棒(J.Phys.Chem.C116(2012)3292-3297),微波辐射法制备γ-MnS纳米微晶(MaterialsChemistryandPhysics91(2005)298–300)等。但上述制备方法普遍存在反应耗时长,产量小,需要添加反应催化剂、表面活性剂等特点,这导致成本过高,制备过程产生对环境的二次污染。
利用电弧法制备α相硫化锰纳米立方块还未见报道。
发明内容
本发明要解决的技术问题是,弥补传统制备方法存在的诸多缺陷,提供一种工艺简单、节能环保、纯度高、产量大、生产成本较低且可控制备单一α相硫化锰(α-MnS)纳米立方块的制备方法,为稀磁半导体材料的制备指出了一个新的方向。
本发明的α-MnS纳米立方块的制备方法,是采用直流电弧等离子体放电装置。具体的技术方案如下。
一种α相硫化锰纳米立方块的制备方法,有如下步骤:将锰(Mn)粉、硫(S)粉按摩尔比1∶1比例混合均匀,压成混合粉的压块;将压块置于石墨锅内,石墨锅放入直流电弧放电装置的反应室内的铜锅阳极中,钨棒阴极与铜锅阳极相对放置,带顶盖的双层圆筒形的冷凝壁置于反应室内,并将钨棒阴极与铜锅阳极罩于其中,双层圆筒内通循环冷却水;在氩气气氛中放电反应,保持放电电压为18V、电流为100A,反应2~5分钟;再在氩气环境中钝化5小时,在冷凝壁内腔上端收集绿色的粉末为α相MnS纳米立方块。
所述的压块,密度最好为3.5~5g/cm3
所述的氩气气氛,可以将反应室抽成真空后充入氩气,至气压为10~30kPa。
所述的铜锅阳极,制成壳体,其内通入循环冷却水。循环冷却水为铜锅阳极降温,以保护其不被烧坏。
本发明利用直流电弧放电装置制备α-MnS纳米立方块具有工艺简单环保、反应快速、低成本、无污染、产量大、样品纯度高、可重复性好、无需添加催化剂、表面活性剂等优点,制备的产品在短波光电器件、太阳能电池的窗口/缓冲材料、催化材料、大容量光存储器等方面具有广泛的潜在应用价值。
附图说明
图1是本发明直流电弧放电装置结构图。
图2是实施例2制得的α-MnS纳米立方块的扫描式电子显微镜(SEM)谱图。
图3是实施例2制得的α-MnS纳米立方块的能谱分析(EDS)谱图。
图4是实施例2制得的α-MnS纳米立方块的透射电子显微镜(TEM)谱图。
图5是实施例2制得的α-MnS纳米立方块的高分辨透射电子显微镜(HRTEM)谱图及选区电子衍射(SAED)谱图。
图6是实施例2制得的α-MnS纳米立方块的X射线衍射(XRD)谱图。
图7是比较例1制得的MnS纳米球的透射电子显微镜(TEM)谱图。
图8是对比例2制得的MnS纳米长方块和立方块的透射电子显微镜(TEM)谱图。
具体实施方式
实施例1直流电弧放电装置结构
结合图1说明本发明制备SnSe纳米片的直流电弧装置结构。图1中,1为直流电弧装置的外玻璃罩,2为冷凝壁的顶盖,3为冷凝壁,4为由钨棒构成的阴极,5为反应初始原料压块(嵌于石墨锅内),6为石墨锅(置于铜锅内),7为由铜锅构成的阳极,8为阳极进水口,9为阳极出水口,10为进气口,11为出气口,12为冷凝壁进水口,13为冷凝壁出水口
在冷凝壁3中通入冷却水为制备MnS纳米立方块的关键,放电时反应腔产生高温,由于冷却水的作用使冷凝壁与电弧源之间产生温度梯度,从而制得高纯的α-MnS纳米立方块。
实施例2最佳的制备MnS纳米立方块的全过程。
将200目的Mn粉、S粉按照摩尔比为1∶1的比例放入混料机中混合均匀。取出5.5g的混合粉,使用压片机压块,压成直径为1.8cm,高为0.6cm的圆柱体。将压成的混合粉的压块放入石墨锅后,再一并放入直流电弧放电装置的反应室的阳极铜锅中。阴极为钨棒电极。将直流电弧放电装置的反应室抽成真空(最好小于1Pa),然后充15kPa氩气。冷凝壁和铜锅通入循环冷却水,开始放电。在放电过程中保持电压为18V,电流为100A,反应3分钟。再在氩气环境中钝化5小时,然后在冷凝壁上端收集到绿色的α-MnS纳米立方块。
图2给出上述条件制备的α-MnS纳米立方块的SEM图,可以看出样品为规则的纳米粒方块,边长为40~100nm。图3给出上述条件制备的α-MnS纳米立方块的EDS图,可以得出纳米立方块是由Mn和S两种元素组成,并且两种元素的原子比例为1:1。图4给出上述条件制备的α-MnS纳米立方块的TEM图,进一步确认样品为纳米立方块,平均边长约为50nm。图5、图6给出上述条件制备的α-MnS纳米立方块的SAED图、HRTEM图和XRD谱图,证明α-MnS纳米立方块为立方相单晶。
比较例1制备MnS纳米球的全过程。
将200目的Mn粉、S粉按照摩尔比为1∶1比例放入混料机中混合均匀。取出5.5g的混合粉,使用压片机压块,压成直径为1.8cm,高为0.6cm的圆柱体。将压成的混合块放入石墨锅,再一并放入直流电弧放电装置的反应室的阳极铜锅中。阴极为钨棒电极。将直流电弧放电装置的反应室抽成真空(最好小于1pa),然后充15kpa氩气。冷凝壁和铜锅通入循环冷却水,开始放电。在放电过程中,保持电压为20V,电流为80A,反应5分钟后,再在氩气环境中钝化5小时,在冷凝壁上端收集绿色的MnS样品。图7给出上述条件制备的MnS的TEM图,确认制得的产物为表面粗糙的MnS纳米球,平均直径约为50nm。
比较例2制备MnS纳米长方块体和立方块体混合物的全过程。
将200目的Mn粉、S粉按照摩尔比为1∶1放入混料机中混合均匀。取出5.5g的混合粉,使用压片机压块,压成直径为1.8cm,高为0.6cm的圆柱体。将压成的混合块放入石墨锅,再一并放入直流电弧放电装置的反应室的阳极铜锅中。阴极为钨棒电极。将直流电弧放电装置的反应室抽成真空(最好小于1pa),然后充15kPa氩气。冷凝壁和铜锅通入循环冷却水,开始放电。在放电过程中,保持电压为15V,电流为100A。反应5分钟后,再在氩气环境中钝化5小时,在冷凝壁上端收集绿色的MnS样品。图8给出上述条件制备的MnS的TEM图,确认制得的产物为MnS纳米长方块体和立方块体混合物。

Claims (4)

1.一种α相硫化锰纳米立方块的制备方法,有如下步骤:将锰粉、硫粉按摩尔比1∶1比例混合均匀,压成混合粉的压块;将压块置于石墨锅内,石墨锅放入直流电弧放电装置的反应室内的铜锅阳极中,钨棒阴极与铜锅阳极相对放置,带顶盖的双层圆筒形的冷凝壁置于反应室内,并将钨棒阴极与铜锅阳极罩于其中,双层圆筒内通循环冷却水;在氩气气氛中放电反应,保持放电电压为18V、电流为100A,反应3~5分钟;再在氩气环境中钝化5小时,在冷凝壁内腔上端收集绿色的粉末为α相MnS纳米立方块。
2.根据权利要求1所述的α相硫化锰纳米立方块的制备方法,其特征在于,所述的压块,其密度为3.5~5g/cm3
3.根据权利要求1或2所述的α相硫化锰纳米立方块的制备方法,其特征在于,所述的氩气气氛,是将反应室抽成真空后充入氩气,至气压为10~30kPa。
4.根据权利要求1或2所述的α相硫化锰纳米立方块的制备方法,其特征在于,所述的铜锅阳极,制成壳体,其内通入循环冷却水。
CN201510086473.2A 2015-02-17 2015-02-17 一种α相硫化锰纳米立方块的制备方法 Expired - Fee Related CN104724759B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510086473.2A CN104724759B (zh) 2015-02-17 2015-02-17 一种α相硫化锰纳米立方块的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510086473.2A CN104724759B (zh) 2015-02-17 2015-02-17 一种α相硫化锰纳米立方块的制备方法

Publications (2)

Publication Number Publication Date
CN104724759A CN104724759A (zh) 2015-06-24
CN104724759B true CN104724759B (zh) 2016-05-25

Family

ID=53449263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510086473.2A Expired - Fee Related CN104724759B (zh) 2015-02-17 2015-02-17 一种α相硫化锰纳米立方块的制备方法

Country Status (1)

Country Link
CN (1) CN104724759B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271140B (zh) * 2015-10-21 2017-05-17 吉林大学 一种六方相铝碳氮化物的六边形纳米片及其制备方法
CN110272071B (zh) * 2019-07-09 2022-01-28 国家纳米科学中心 一种α-MnS纳米片及其制备方法和应用
CN110921711A (zh) * 2019-10-31 2020-03-27 郴州丰越环保科技有限公司 一种纳米级硫化锰的制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102942224B (zh) * 2012-11-10 2015-01-28 吉林大学 岩盐矿MnS 纳米立方块超晶格的合成方法

Also Published As

Publication number Publication date
CN104724759A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
Peng et al. Synthesis of one-dimensional WO 3–Bi 2 WO 6 heterojunctions with enhanced photocatalytic activity
Zhang et al. Optical and electrochemical properties of nanosized CuO via thermal decomposition of copper oxalate
Zahedifar et al. Synthesis of LaVO4: Dy3+ luminescent nanostructure and optimization of its performance as down-converter in dye-sensitized solar cells
Xu et al. Facile synthesis and photocatalytic properties of ZnO core/ZnS–CdS solid solution shell nanorods grown vertically on reductive graphene oxide
Pal et al. Structural and photoluminescence studies of Eu3+ doped zinc oxide nanorods prepared by precipitation method
Chen et al. Barium zirconate: a new photocatalyst for converting CO 2 into hydrocarbons under UV irradiation
Wang et al. ZrO2/CeO2 nanocomposite: Two step synthesis, microstructure, and visible-light photocatalytic activity
Zhang et al. Zn 2 SiO 4 urchin-like microspheres: controlled synthesis and application in lithium-ion batteries
CN104724759B (zh) 一种α相硫化锰纳米立方块的制备方法
Wang et al. Hydrothermal synthesis of cobalt-doped ZnS for efficient photodegradation of methylene blue
Gao et al. Optical and electrochemical properties of perovskite type MAlO3 (M= Y, La, Ce) pigments synthesized by a gamma-ray irradiation assisted polyacrylamide gel route
Liu et al. In situ growth of sulfide/gC 3 N 4 nano-heterostructures with an adjusted band gap toward enhanced visible photocatalysis
Shen et al. Preparation and characterization of ultrafine zinc oxide powder by hydrothermal method
Li et al. One-step, solid-state reaction to ZnO nanoparticles in the presence of ionic liquid
Yang et al. Facile microwave-assisted synthesis and effective photocatalytic hydrogen generation of Zn 2 GeO 4 with different morphology
Huang et al. Co-precipitation preparation and photocatalytic performances of BiNb5O14/Nb2O5 heterojunction
Alnajar et al. Comparative investigation on the Di-/ferro-electric and optical properties of Ce/Nd dual doped ZnO nanostructures prepared in different reaction mechanisms
CN104692341B (zh) 一种硒化亚锡正方形纳米片及其制备方法
Wang et al. Selective synthesis of cubic and hexagonal phase of CuInS 2 nanocrystals by microwave irradiation
Yu et al. Oriented Bi2Se3 nanoribbons film: Structure, growth, and photoelectric properties
Pei et al. Vanadium doping of strontium germanate and their visible photocatalytic properties
Xia et al. Template-free synthesis, growth mechanism and photoluminescent properties of Ln (OH) 3 and Ln2O3 nanorods (Ln: lanthanide ion)
CN105016378A (zh) 硫化锡纳米片的制备方法
CN104692342B (zh) 一种硒化亚锡纳米球的制备方法
Wang et al. Fabrication of ZnO nanorods in ionic liquids and their photoluminescent properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160525

Termination date: 20170217