CN110921711A - 一种纳米级硫化锰的制备方法及其应用 - Google Patents

一种纳米级硫化锰的制备方法及其应用 Download PDF

Info

Publication number
CN110921711A
CN110921711A CN201911053274.6A CN201911053274A CN110921711A CN 110921711 A CN110921711 A CN 110921711A CN 201911053274 A CN201911053274 A CN 201911053274A CN 110921711 A CN110921711 A CN 110921711A
Authority
CN
China
Prior art keywords
manganese
sulfide
scale
solution
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911053274.6A
Other languages
English (en)
Inventor
段良洪
刘伟
王敏杰
曹家毓
郭远贵
尹健夫
曹文法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENZHOU FENGYUE ENVIRONMENTAL PROTECTION TECHNOLOGY CO LTD
Original Assignee
CHENZHOU FENGYUE ENVIRONMENTAL PROTECTION TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENZHOU FENGYUE ENVIRONMENTAL PROTECTION TECHNOLOGY CO LTD filed Critical CHENZHOU FENGYUE ENVIRONMENTAL PROTECTION TECHNOLOGY CO LTD
Priority to CN201911053274.6A priority Critical patent/CN110921711A/zh
Publication of CN110921711A publication Critical patent/CN110921711A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/11Removing sulfur, phosphorus or arsenic other than by roasting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种纳米级硫化锰的制备方法及其应用,包括如下步骤:S1、将锰盐溶解在水溶液中,并向锰盐溶液中加入一定含量的细化剂;S2、向锰盐溶液中控制一定速率加入硫化物水溶液制备纳米级硫化锰,同时辅助微波技术;S3、将溶液进行液固分离,然后经真空烘干得到纳米级硫化锰;S4、将纳米级硫化锰加入到弱酸性的含砷硫酸锌溶液中进行预处理脱砷,脱砷效果显著,特别是针对高砷硫酸锌溶液脱砷明显由于铁盐脱砷,并且能大大降低硫酸锌溶液沉矾脱砷的成本,脱砷效果达到95%以上,为高砷含锌二次复杂锌原料生产电解锌的发展提供了必要的技术支持。

Description

一种纳米级硫化锰的制备方法及其应用
技术领域
本发明涉及湿法冶金技术领域,具体为一种纳米级硫化锰的制备方法及其应用。
背景技术
硫化锰作为一种P型半导体,具有较大的带宽,它具有三种不同的形态,分别为α-MnS,β-MnS,γ-MnS,其中α-MnS是绿色的,它是NaCl结构;β-MnS和γ-MnS都是粉红色的,它们分别为闪锌矿结构和纤锌矿结构,作为一种窗口或缓冲材料在太阳能电池的应用上有巨大的潜力,用于涂料、陶瓷工业,随首高强度粉末冶金铁基材料的发展,对材料的切削性能要求也日益提高,对于碳含量C<0.8%的铁基材料,硫化锰是一种很好的添加剂,且纳米MnS作为一种很重要的磁性半导体,在短波长光电子器件中有着潜在的应用价值,用于涂料、陶瓷工业,随首高强度粉末冶金铁基材料的发展,对材料的切削性能要求也日益提高,对于碳含量C<0.8%的铁基材料,硫化锰是一种很好的添加剂;
但是目前在铁盐沉矾脱砷锑等杂质之前没有对高砷硫酸锌溶液进行预脱砷处理,造成沉矾除铁及砷锑等杂质的处理成本过高的问题。
发明内容
本发明提供一种纳米级硫化锰的制备方法,可以有效解决上述背景技术中提出目前在铁盐沉矾脱砷锑等杂质之前没有对高砷硫酸锌溶液进行预脱砷处理,造成沉矾除铁及砷锑等杂质的处理成本过高的问题。
为实现上述目的,本发明提供如下技术方案:一种纳米级硫化锰的制备方法及其应用,包括如下步骤:
S1、将锰盐溶解在水溶液中,并向锰盐溶液中加入一定含量的细化剂;
S2、向锰盐溶液中控制一定速率加入硫化物水溶液制备纳米级硫化锰,同时辅助微波技术;
S3、将溶液进行液固分离,然后经真空烘干得到纳米级硫化锰;
S4、将纳米级硫化锰加入到弱酸性的含砷硫酸锌溶液中进行预处理脱砷。
根据上述技术方案,所述步骤S1中细化剂为表面活性剂或晶粒细化剂;
所述步骤S1中锰盐为硝酸锰、醋酸锰、氯化锰及硫酸锰中的一种或几种。
根据上述技术方案,所述表面活性剂或晶粒细化剂是聚乙二醇、木质素和十二烷基磺酸钠的一种或几种;
所述表面活性剂或晶粒细化剂添加量为0.1-0.5g/L。
根据上述技术方案,所述锰盐水溶液中锰离子浓度为80-150g/L。
根据上述技术方案,所述硫化物为硫化钠、硫化氢钠、硫脲、硫代乙酰胺中的一种或几种。
根据上述技术方案,所述硫化物加入量为生成MnS消耗硫化剂的 1.0-1.2倍,并按液固比L/S为2-3:1配置硫化物水溶液。
根据上述技术方案,所述步骤S2和步骤S4中均进行搅拌,所述搅拌的转速为300~400rpm;
所述步骤S2中微波的功率为400~600W;
所述步骤S4中含砷硫酸锌溶液酸度小于100g/L。
根据上述技术方案,其特征在于,所述步骤S4中脱砷的反应条件为:反应温度为常温-80℃;反应时间0.5-2h。
根据上述技术方案,所述步骤S4中硫化锰加入量为脱砷生成 As2S3量的1.1-1.3倍。
根据上述技术方案,所述纳米级硫化锰应用在湿法冶金。
与现有技术相比,本发明的有益效果:本发明制备的纳米级硫化锰脱砷效果显著,应用范围广,特别是针对高砷硫酸锌溶液脱砷明显由于铁盐脱砷,并且能大大降低硫酸锌溶液沉矾脱砷的成本,脱砷效果达到95%以上,为高砷含锌二次复杂锌原料生产电解锌的发展提供了必要的技术支持。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。
在附图中:
图1是本发明的流程步骤示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1:如图1所示,本发明提供技术方案,一种纳米级硫化锰的制备方法及其应用,包括如下步骤:
S1、将锰盐溶解在水溶液中,并向锰盐溶液中加入一定含量的细化剂;
S2、向锰盐溶液中控制一定速率加入硫化物水溶液制备纳米级硫化锰,同时辅助微波技术;
S3、将溶液进行液固分离,然后经真空烘干得到纳米级硫化锰;
S4、将纳米级硫化锰加入到弱酸性的含砷硫酸锌溶液中进行预处理脱砷。
根据上述技术方案,步骤S1中细化剂为表面活性剂;
步骤S1中锰盐为硝酸锰、醋酸锰、氯化锰及硫酸锰。
根据上述技术方案,表面活性剂是聚乙二醇、木质素和十二烷基磺酸钠;
表面活性剂添加量为0.3g/L。
根据上述技术方案,锰盐水溶液中锰离子浓度为95g/L。
根据上述技术方案,硫化物为硫化钠、硫化氢钠和硫脲。
根据上述技术方案,硫化物加入量为生成MnS消耗硫化剂的1.05 倍,并按液固比L/S为2.5:1配置硫化物水溶液。
根据上述技术方案,步骤S2和步骤S4中均进行搅拌,搅拌的转速为300rpm;
步骤S2中微波的功率为600W;
步骤S4中含砷硫酸锌溶液酸度为80g/L。
根据上述技术方案,其特征在于,步骤S4中脱砷的反应条件为:
温度:40℃;
反应时间:1.5h。
根据上述技术方案,步骤S4中硫化锰加入量为脱砷生成As2S3量的1.2倍。
根据上述技术方案,纳米级硫化锰应用在湿法冶金。
实施例2:如图1所示,本发明提供技术方案,一种纳米级硫化锰的制备方法及其应用,包括如下步骤:
S1、将锰盐溶解在水溶液中,并向锰盐溶液中加入一定含量的细化剂;
S2、向锰盐溶液中控制一定速率加入硫化物水溶液制备纳米级硫化锰,同时辅助微波技术;
S3、将溶液进行液固分离,然后经真空烘干得到纳米级硫化锰;
S4、将纳米级硫化锰加入到弱酸性的含砷硫酸锌溶液中进行预处理脱砷。
根据上述技术方案,步骤S1中细化剂为晶粒细化剂;
步骤S1中锰盐为硝酸锰。
根据上述技术方案,晶粒细化剂是聚乙二醇和木质素;
晶粒细化剂添加量为0.3g/L。
根据上述技术方案,锰盐水溶液中锰离子浓度为95g/L。
根据上述技术方案,硫化物为硫化钠、硫化氢钠和硫脲。
根据上述技术方案,硫化物加入量为生成MnS消耗硫化剂的1.1 倍,并按液固比L/S为2:1配置硫化物水溶液。
根据上述技术方案,步骤S2和步骤S4中均进行搅拌,搅拌的转速为350rpm;
步骤S2中微波的功率为450W;
步骤S4中含砷硫酸锌溶液酸度为90g/L。
根据上述技术方案,其特征在于,步骤S4中脱砷的反应条件为:
温度:50℃;
反应时间:1.0h。
根据上述技术方案,步骤S4中硫化锰加入量为脱砷生成As2S3量的1.1倍。
根据上述技术方案,纳米级硫化锰应用在湿法冶金。
实施例3:如图1所示,本发明提供技术方案,一种纳米级硫化锰的制备方法及其应用,包括如下步骤:
S1、将锰盐溶解在水溶液中,并向锰盐溶液中加入一定含量的细化剂;
S2、向锰盐溶液中控制一定速率加入硫化物水溶液制备纳米级硫化锰,同时辅助微波技术;
S3、将溶液进行液固分离,然后经真空烘干得到纳米级硫化锰;
S4、将纳米级硫化锰加入到弱酸性的含砷硫酸锌溶液中进行预处理脱砷。
根据上述技术方案,步骤S1中细化剂为表面活性剂和晶粒细化剂;
步骤S1中锰盐为醋酸锰、氯化锰及硫酸锰。
根据上述技术方案,表面活性剂和晶粒细化剂是聚乙二醇;
表面活性剂和晶粒细化剂添加量为0.3g/L。
根据上述技术方案,锰盐水溶液中锰离子浓度为120g/L。
根据上述技术方案,硫化物为硫化钠、硫化氢钠和硫脲。
根据上述技术方案,硫化物加入量为生成MnS消耗硫化剂的1.0 倍,并按液固比L/S为3:1配置硫化物水溶液。
根据上述技术方案,步骤S2和步骤S4中均进行搅拌,搅拌的转速为350rpm;
步骤S2中微波的功率为600W;
步骤S4中含砷硫酸锌溶液酸度为30g/L。
根据上述技术方案,其特征在于,步骤S4中脱砷的反应条件为:
温度:60℃;
反应时间:1.5h。
根据上述技术方案,步骤S4中硫化锰加入量为脱砷生成As2S3量的1.3倍。
根据上述技术方案,纳米级硫化锰应用在湿法冶金。
实施例4:如图1所示,本发明提供技术方案,一种纳米级硫化锰的制备方法及其应用,包括如下步骤:
S1、将锰盐溶解在水溶液中,并向锰盐溶液中加入一定含量的细化剂;
S2、向锰盐溶液中控制一定速率加入硫化物水溶液制备纳米级硫化锰,同时辅助微波技术;
S3、将溶液进行液固分离,然后经真空烘干得到纳米级硫化锰;
S4、将纳米级硫化锰加入到弱酸性的含砷硫酸锌溶液中进行预处理脱砷。
根据上述技术方案,步骤S1中细化剂为晶粒细化剂;
步骤S1中锰盐为硝酸锰、醋酸锰和氯化锰。
根据上述技术方案,表面活性剂木质素和十二烷基磺酸钠;
晶粒细化剂添加量为0.3g/L。
根据上述技术方案,锰盐水溶液中锰离子浓度为150g/L。
根据上述技术方案,硫化物为硫化钠、硫化氢钠、硫磺、硫化亚铁、硫脲和硫代乙酰胺。
根据上述技术方案,硫化物加入量为生成MnS消耗硫化剂的1.1 倍,并按液固比L/S为3:1配置硫化物水溶液。
根据上述技术方案,步骤S2和步骤S4中均进行搅拌,搅拌的转速为300rpm;
步骤S2中微波的功率为600W;
步骤S4中含砷硫酸锌溶液酸度小于100g/L。
根据上述技术方案,其特征在于,步骤S4中脱砷的反应条件为:
温度:70℃;
反应时间:2.0h。
根据上述技术方案,步骤S4中硫化锰加入量为脱砷生成As2S3量的1.25倍。
根据上述技术方案,纳米级硫化锰应用在湿法冶金。
通过实施例1-4制成如下对比表格:
对比项目 实施例1 实施例2 实施例3 实施例4
MnS(干基)% 99.93 99.92 99.92 99.90
H<sub>2</sub>O(%) 0.28 0.35 0.27 0.31
Ca ppm 18.2 17.1 16.3 18.2
通过实施例1-4对比,可知实施例1-4中硫化锰含量均到达99%,且含水量极低,其中实施例1适合目前生产中最适合的推广使用。
与现有技术相比,本发明的有益效果:本发明制备的纳米级硫化锰脱砷效果显著,应用范围广,特别是针对高砷硫酸锌溶液脱砷明显由于铁盐脱砷,并且能大大降低硫酸锌溶液沉矾脱砷的成本,脱砷效果达到95%以上,为高砷含锌二次复杂锌原料生产电解锌的发展提供了必要的技术支持。
最后应说明的是:以上所述仅为本发明的优选实例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种纳米级硫化锰的制备方法,其特征在于:包括如下步骤:
S1、将锰盐溶解在水溶液中,并向锰盐溶液中加入一定含量的细化剂;
S2、向锰盐溶液中控制一定速率加入硫化物水溶液制备纳米级硫化锰,同时辅助微波技术;
S3、将溶液进行液固分离,然后经真空烘干得到纳米级硫化锰;
S4、将纳米级硫化锰加入到弱酸性的含砷硫酸锌溶液中进行预处理脱砷。
2.根据权利要求1所述的一种纳米级硫化锰的制备方法,其特征在于,所述步骤S1中细化剂为表面活性剂或晶粒细化剂;所述步骤S1中锰盐为硝酸锰、醋酸锰、氯化锰及硫酸锰中的一种或几种。
3.根据权利要求1所述的一种纳米级硫化锰的制备方法,其特征在于,所述表面活性剂或晶粒细化剂是聚乙二醇、木质素和十二烷基磺酸钠的一种或几种;所述表面活性剂或晶粒细化剂添加量为0.1-0.5g/L。
4.根据权利要求1所述的一种纳米级硫化锰的制备方法,其特征在于,所述锰盐水溶液中锰离子浓度为80-150g/L。
5.根据权利要求1所述的一种纳米级硫化锰的制备方法,其特征在于,所述硫化物为硫化钠、硫化氢钠、硫脲、硫代乙酰胺中的一种或几种。
6.根据权利要求1所述的一种纳米级硫化锰的制备方法,其特征在于,所述硫化物加入量为生成MnS消耗硫化剂的1.0-1.2倍,并按液固比L/S为2-3:1配置硫化物水溶液。
7.根据权利要求1所述的一种纳米级硫化锰的制备方法及其应用,其特征在于,所述步骤S2和步骤S4中均进行搅拌,所述搅拌的转速为300~400rpm;
所述步骤S2中微波的功率为400~600W;
所述步骤S4中含砷硫酸锌溶液酸度小于100g/L。
8.根据权利要求1所述的一种纳米级硫化锰的制备方法,其特征在于,所述步骤S4中脱砷的反应条件为:温度:常温-80℃;反应时间:0.5-2h。
9.根据权利要求1所述的一种纳米级硫化锰的制备方法,其特征在于,所述步骤S4中硫化锰加入量为脱砷生成As2S3量的1.1-1.3倍。
10.根据权利要求1-9任一项所述的一种纳米级硫化锰的制备方法及其应用的应用,其特征在于,所述纳米级硫化锰应用在湿法冶金。
CN201911053274.6A 2019-10-31 2019-10-31 一种纳米级硫化锰的制备方法及其应用 Pending CN110921711A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911053274.6A CN110921711A (zh) 2019-10-31 2019-10-31 一种纳米级硫化锰的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911053274.6A CN110921711A (zh) 2019-10-31 2019-10-31 一种纳米级硫化锰的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN110921711A true CN110921711A (zh) 2020-03-27

Family

ID=69850075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911053274.6A Pending CN110921711A (zh) 2019-10-31 2019-10-31 一种纳米级硫化锰的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110921711A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792803A (zh) * 2021-01-26 2022-07-26 贝特瑞(江苏)新能源材料有限公司 复合负极材料、其制备方法、电池负极及锂离子电池
CN114792803B (zh) * 2021-01-26 2024-05-31 贝特瑞(江苏)新能源材料有限公司 复合负极材料、其制备方法、电池负极及锂离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033067A (zh) * 2007-04-20 2007-09-12 贵州宏福实业开发有限总公司 一种氟硅酸除砷的方法
CN102583558A (zh) * 2012-03-07 2012-07-18 陕西科技大学 一种球状γ-MnS微晶的制备方法
US20130032767A1 (en) * 2011-08-02 2013-02-07 Fondazione Istituto Italiano Di Tecnologia Octapod shaped nanocrystals and use thereof
CN104724759A (zh) * 2015-02-17 2015-06-24 吉林大学 一种α相硫化锰纳米立方块的制备方法
CN105174314A (zh) * 2015-09-02 2015-12-23 首都师范大学 水溶性MnS纳米颗粒的制备方法及该纳米颗粒作为磁共振成像造影剂的用途
CN107619939A (zh) * 2017-08-15 2018-01-23 昆明理工大学 一种硫酸锌结晶中砷、镉的去除方法
CN109626437A (zh) * 2019-01-31 2019-04-16 江苏理工学院 一种硫化锰的制备方法
CN109748322A (zh) * 2018-12-15 2019-05-14 河南大学 α-MnS纳米粒子和α-MnS/rGO复合材料的合成方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101033067A (zh) * 2007-04-20 2007-09-12 贵州宏福实业开发有限总公司 一种氟硅酸除砷的方法
US20130032767A1 (en) * 2011-08-02 2013-02-07 Fondazione Istituto Italiano Di Tecnologia Octapod shaped nanocrystals and use thereof
CN102583558A (zh) * 2012-03-07 2012-07-18 陕西科技大学 一种球状γ-MnS微晶的制备方法
CN104724759A (zh) * 2015-02-17 2015-06-24 吉林大学 一种α相硫化锰纳米立方块的制备方法
CN105174314A (zh) * 2015-09-02 2015-12-23 首都师范大学 水溶性MnS纳米颗粒的制备方法及该纳米颗粒作为磁共振成像造影剂的用途
CN107619939A (zh) * 2017-08-15 2018-01-23 昆明理工大学 一种硫酸锌结晶中砷、镉的去除方法
CN109748322A (zh) * 2018-12-15 2019-05-14 河南大学 α-MnS纳米粒子和α-MnS/rGO复合材料的合成方法及应用
CN109626437A (zh) * 2019-01-31 2019-04-16 江苏理工学院 一种硫化锰的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792803A (zh) * 2021-01-26 2022-07-26 贝特瑞(江苏)新能源材料有限公司 复合负极材料、其制备方法、电池负极及锂离子电池
CN114792803B (zh) * 2021-01-26 2024-05-31 贝特瑞(江苏)新能源材料有限公司 复合负极材料、其制备方法、电池负极及锂离子电池

Similar Documents

Publication Publication Date Title
AU2015234992B2 (en) Method for producing nickel powder
CN110106358B (zh) 从高钨高钼钨钼酸盐溶液中沉淀分离钨钼的方法
CN104475266A (zh) 一种硫化铜浮选捕收剂及其制备方法与应用
CN110918263B (zh) 一种非铜硫化矿抑制剂及其应用
CN110776920A (zh) 一种土壤修复剂、制备方法及应用
Khoshkhoo et al. Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate
CN106048236A (zh) 一种电解锰阳极泥综合回收处理工艺
CN105197982A (zh) 一种以高氯次氧化锌为原料生产电子级氧化锌的方法
CN107779599A (zh) 一种新型稀贵金属复合还原剂的制备及其使用方法
CN110172583A (zh) 一种减量化高效处理含砷烟灰的方法
CN114182102A (zh) 一种硫酸肼还原浸出含锗氧化锌烟尘中锗的方法
CN108587156B (zh) 一种番荔枝状钒酸铋-聚苯胺复合材料及其在环境修复中的应用
CN107986333B (zh) 一种钼酸盐溶液或含钼钨酸盐溶液与三聚硫氰酸(盐)反应合成钼硫配合物的方法
CN110921711A (zh) 一种纳米级硫化锰的制备方法及其应用
CN113800569B (zh) 一种以除钼渣制备钼酸铵及钨、铜和硫的回收方法
CN110420761B (zh) 一种酰胺类化合物作为硫化矿抑制剂的用途
CN105624420A (zh) 一种钴、氨催化硫代硫酸盐浸金的方法
CN102409161A (zh) 一种提高金银浸出率的方法
CN111675295A (zh) 用于矿山酸性废水净化的高效絮凝剂的制备方法
CN115709979A (zh) 一种以高铁锰矿为原料制备电池级磷酸锰铁的方法
CN110586331B (zh) 一种改性壳聚糖抑制剂及其浮选分离方法
CN104532014B (zh) 低品位铅渣的无害化处理
CN110540244B (zh) 一种用含铁废料制备掺杂纳米氧化铁的方法
CN105174527B (zh) 一种对选矿废水进行选择性氧化处理的方法
CN108503562A (zh) 尼泊金羟肟酸及其制备方法和在钨矿浮选中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200327

RJ01 Rejection of invention patent application after publication