CN112834757A - 基于复合固态纳米孔单分子技术的c反应蛋白检测方法 - Google Patents

基于复合固态纳米孔单分子技术的c反应蛋白检测方法 Download PDF

Info

Publication number
CN112834757A
CN112834757A CN202011638022.2A CN202011638022A CN112834757A CN 112834757 A CN112834757 A CN 112834757A CN 202011638022 A CN202011638022 A CN 202011638022A CN 112834757 A CN112834757 A CN 112834757A
Authority
CN
China
Prior art keywords
nanopore
solid
reactive protein
state
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011638022.2A
Other languages
English (en)
Other versions
CN112834757B (zh
Inventor
梁丽媛
吴吉
王德强
朱锐
王�忠
谢婉谊
殷博华
唐鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Institute of Green and Intelligent Technology of CAS
Original Assignee
Chongqing Institute of Green and Intelligent Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Institute of Green and Intelligent Technology of CAS filed Critical Chongqing Institute of Green and Intelligent Technology of CAS
Priority to CN202011638022.2A priority Critical patent/CN112834757B/zh
Publication of CN112834757A publication Critical patent/CN112834757A/zh
Application granted granted Critical
Publication of CN112834757B publication Critical patent/CN112834757B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明涉及C反应蛋白检测技术领域,具体涉及一种基于复合固态纳米孔单分子技术的C反应蛋白检测方法;首先制备固态纳米孔并活化,将带有羧基末端的硅烷固定在所述固态纳米孔表面,再与末端带氨基的适配体DNA反应,制得复合固态纳米孔,使用所述复合纳米孔检测C反应蛋白的过孔信号,测得其含量;用硅基氮化硅膜作为基底材料,通过分析偏压下C反应蛋白进入纳米孔所产生的阻塞电流与阻塞时间的长短,可以得到蛋白质的体积、表面电荷、构象、浓度等信息;相比于传统的C反应蛋白的检测方法,检测更为快速、灵敏,改善纳米孔不规整的内表面形貌和不均匀的电荷分布带来的测试低频噪音干扰,减小C反应蛋白在纳米孔表面的吸附情况。

Description

基于复合固态纳米孔单分子技术的C反应蛋白检测方法
技术领域
本发明涉及C反应蛋白检测技术领域,具体涉及一种基于复合固态纳米孔单分子技术的C反应蛋白检测方法。
背景技术
C反应蛋白是一种由五个相同的同源亚基非共价结合而成的五聚体结构,呈对称的环状五球体。CRP中每个亚基含有206个氨基酸残基,分子量约为120 KDa,亚基与亚基之间通过静电盐桥与两个钙离子相连,从而形成五聚体结构。在机体受到感染或组织损伤时血浆中一些急剧上升的蛋白质(急性蛋白)。CRP 可以激活补体和加强吞噬细胞的吞噬而起调理作用,从而清除入侵机体的病原微生物和损伤、坏死、凋亡的组织细胞,在机体的天然免疫过程中发挥重要的保护作用。
CRP不仅是一种非特异的炎症标志物,其本身直接参与了炎症与动脉粥样硬化等心血管疾病,并且是心血管疾病最强有力的预示因子与危险因子。CRP 与补体C1q及FcTR的相互作用使其表现出很多生物活性,包括宿主对感染的防御反应、对炎症反应的吞噬作用和调节作用等。与受损细胞、凋亡细胞及核抗原的结合,使其在自身免疫病方面也起着重要作用。在人体出现炎症、组织损伤、感染等症状时会急剧上升,而恢复健康后其浓度又会下降。因此,检测和监控CRP水平,并对其进行定量分析,对于疾病和炎症阶段的分类以及治疗是至关重要的。
传统的用于C反应蛋白的检测方法包括:酶联免疫吸附测定(ELISA)、免疫比浊法、免疫扩散法、表面等离子体共振(SPR),乳胶凝集法、化学发光法等方法。这些技术已被证明可以成功地检测CRP,但存在不同的缺点,它们通常需要较长的反应时间,较为复杂的反应步骤,对操作人员有较高的要求和试剂昂贵等问题。而纳米孔技术得益于免标记、速度快、低成本、单分子检测等优势,为CRP的表征提供了新方向,可以达到传统方法达不到的精度与灵敏度。但是,由于固态纳米孔的表面性质非常复杂,并且CRP表面电荷分布不均匀,与氮化硅纳米孔之间非常容易产生吸附,因此可以通过对纳米孔表面进行改性,降低二者之间的相互作用,减小吸附。
发明内容
有鉴于此,本发明实际要解决的问题是提供一种使用带有羧基末端硅烷和末端带氨基的适配体DNA序列的复合固态纳米孔灵敏检测CRP的方法。
为了解决上述技术问题,本发明采用以下技术方案:
本发明拟对纳米孔与C反应蛋白进行修饰改性,其一,通过将C反应蛋白与适配体DNA进行结合从而形成复合物,通过直接检测该复合物的浓度即可得到CRP的含量,该法能够有效减弱C反应蛋白减弱与孔壁的相互作用;其二,通过硅烷试剂与适配体DNA的结合从而形成复合孔,可以改善纳米孔表面的化学性质,消除过孔分子与孔壁间的非特异性结合(即吸附),从而得到一种超灵敏的CRP检测方法。
基于复合固态纳米孔单分子技术的C反应蛋白检测方法,制备固态纳米孔膜并活化,将带有羧基末端的硅烷固定在所述固态纳米孔表面,再与末端带氨基的适配体DNA反应,制得复合固态纳米孔,使用所述复合纳米孔膜检测C反应蛋白的过孔信号,测得其含量。
具体的,所述方法包括如下步骤:
1)固态纳米孔膜的活化
去除固态纳米孔表面的杂质后用食人鱼洗液进行浸泡,再清洗制得活化后的固态纳米孔;
2)末端带羧基的硅烷分子的固定
氮气条件下,将步骤1)制得的所述活化后的固态纳米孔与酸性带有羧基末端的硅烷试剂水溶液进行反应制得固定有羧基硅烷分子的固态纳米孔;
3)CRP的适配体DNA的固定
将步骤2)制得的所述固定有羧基硅烷分子的固态纳米孔经EDC/NHS活化后浸泡在含0.1~1μM末端带氨基的适配体DNA、pH5.5的0.1M MES溶液中反应,制得所述复合固态纳米孔;
4)使用步骤3)在所述复合固态纳米孔的膜片钳上外加偏压,在电解质溶液中检测C反应蛋白的含量。
进一步,在步骤1)前进行固态纳米孔的制备:在硅基氮化硅膜上制出直径为15~28nm的孔道。
具体的,所述固态纳米孔的制备采用介电质击穿的方式,使用的电导液为 1MKCl、10mM Tris、1mM EDTA、pH 8。
进一步,步骤1)中去除固态纳米孔表面的杂质步骤为:用加热的去离子水浸泡5~10分钟,去除无机杂质;用体积比丙酮:异丙醇:去离子水=1:1:1 的混合溶剂浸泡去除有机杂质。
进一步,步骤1)中所述浸泡的温度为60±5℃;时间为0.5~1小时。
进一步,步骤2)中所述酸性带有羧基末端的硅烷试剂水溶液由等体积的带有羧基末端的硅烷试剂、有机酸和水介质反应制得。
进一步,步骤4)所述电解质溶液为1M KCl、2mM CaCl2、10mM Tris、pH 7.4。
进一步,步骤4)所述偏压强度为200~400mV。
本发明目的之二在于提供一种带有羧基末端硅烷和末端带氨基的适配体 DNA序列的复合固态纳米孔。
为了实现上述目的,本发明的技术方案为:
复合固态纳米孔,由如下方法制备而得:
1)固态纳米孔的活化
去除固态纳米孔表面的杂质后用食人鱼洗液进行浸泡,再清洗制得活化后的固态纳米孔;
2)末端带羧基的硅烷分子的固定
氮气条件下,将步骤1)制得的所述活化后的固态纳米孔与酸性带有羧基末端的硅烷试剂水溶液进行反应清洗制得固定有羧基硅烷分子的固态纳米孔;
3)CRP的适配体DNA的固定
将步骤2)制得的所述固定有羧基硅烷分子的固态纳米孔经EDC/NHS活化后浸泡在含0.1~1μM末端带氨基的适配体DNA、pH5.5的0.1M MES溶液中反应,制得所述复合固态纳米孔。
本发明的有益效果在于:
1.本发明是基于单分子固态纳米孔检测技术,用硅基氮化硅膜作为基底材料,通过分析偏压下C反应蛋白进入纳米孔所产生的阻塞电流与阻塞时间的长短,可以得到蛋白质的体积、表面电荷、构象、浓度等信息。
2.本方法相比于传统的C反应蛋白的检测方法,检测更为快速、灵敏。通过硅烷试剂作为链接剂,将适配体结合在纳米孔的孔内,能够很好的改善纳米孔不规整的内表面形貌和不均匀的电荷分布带来的测试低频噪音干扰,减小C 反应蛋白在纳米孔表面的吸附情况。
3.由于纳米孔内引入了适配体,适配体会与C反应蛋白产生相互作用,从而延长C-反应蛋白的过孔时间,能够显著提高纳米孔对C反应蛋白的捕获率。从而能够实现在较低浓度下,检测到C反应蛋白的过孔信号,为C反应蛋白检测提供了超灵敏的核心检测部件。
附图说明
所举实施例是为了更好地对本发明进行说明,但并不是本发明的内容仅局限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
图1:复合固态纳米孔原理示意图;
图2:C反应蛋白与适配体DNA的复合物的阻塞时间与阻塞电流幅值图;
图3:C反应蛋白通过适配体DNA的复合纳米孔的阻塞时间与阻塞电流幅值图。
具体实施方式
所举实施例是为了更好地对本发明进行说明,但并不是本发明的内容仅局限于所举实施例。所以熟悉本领域的技术人员根据上述发明内容对实施方案进行非本质的改进和调整,仍属于本发明的保护范围。
实施例1:
第一步:固态纳米孔的制备
首先在15nm厚的的硅基氮化硅薄膜(窗口大小:10μm2)上,采用介电质击穿的方式制备直径为(15-27nm)的孔道,电导液1M KCl、10mM Tris、 1mM EDTA(pH 8),通过膜片钳测定IV曲线得到纳米孔的电导G,并由模型公式计算纳米孔的直径。
第二步:纳米孔的活化
首先用加热的去离子水(45℃)浸泡5-10min,去除表面的无机杂质;然后用体积比丙酮:异丙醇:去离子水=1:1:1的混合溶剂浸泡去除纳米孔表面的有机杂质。再将清洗后的纳米孔用食人鱼洗液(VH2SO4:VH2O2=3:1)在60℃条件下浸泡0.5-1h,然后将硅片置于去离子水溶液中,反复水洗数次去除氮化硅薄膜上的酸液,使硅片表面充分羟基化,活化后的纳米孔放入80-120℃鼓风干燥箱中风干。
第三步:硅烷链接分子的固定
首先在通氮气条件下,取等体积的带末端羧基的硅烷试剂(Triethoxysilylpropylmaleamic acid)与乙酸试剂加入到5mL去离子水中,并通过磁力搅拌台反应0.5-1h,得到酸性硅烷试剂水溶液。将上述活化后的纳米孔放入此硅烷试剂中室温反应1-2h。反应后将基片用乙酸:去离子水=1: 100的溶液充分清洗3-5次,并将其烘干备用。
第四步:纳米孔内适配体DNA的固定
将上述固定有羧基硅烷分子的纳米孔薄膜经过EDC/NHS活化处理后,浸泡在含有0.1-1μM适配体、pH 5.5的0.1M MES溶液中,在室温条件下反应一整夜,使适配体以单分子层的形式通过链接分子固定在纳米孔壁上。反应后,将硅片取出,并用上述MES缓冲液充分清洗数次。
第五步:C反应蛋白通过适配体修饰的固态纳米孔通道的性能测试
将修饰有适配体DNA序列的氮化硅纳米孔装配在测试池flowcell中,通过在膜片钳上外加偏压下检测受适配体修饰后,复合纳米孔的噪音与漏电流情况,评价复合孔的稳定性。再在1M KCl、2mM CaCl2、10mM Tris(pH 7.4)电解液溶液中测试C反应蛋白的信号情况,对其进行定量检测。
实施例2
检测2.7nM(0.3mg/L)C反应蛋白与适配体DNA的复合物在1M KCl、2mM CaCl2、10mMTris(pH 7.4)电解液溶液中,阻塞时间与阻塞电流幅值(附图2)。
由检测结果可以看出CRP复合物在不同偏压下的纳米孔易位信号具有明显特征,符合过孔时间随着电压的增大而减小且阻塞电流幅值随着电压增大而增大的基本规律。
实施例3
检测在0.2M KCl、2mM CaCl2、10mM Tris(pH 7.4)电解质溶液中,5.4nM (0.6mg/L)C-反应蛋白通过带适配体DNA的复合纳米孔的结果(附图3)。
通过分析测试信号的阻塞时间与阻塞电流幅值得到的上述统计柱状图,可以看出C反应蛋白在修饰孔中捕获率较好,阻塞电流幅值随着电压增大而增大;然后过孔时间随电压的增加而延长。我们推断在施加小的偏压情况下,C反应蛋白比较难过孔,主要与孔壁间发生碰撞作用,且随偏压增大与孔作用增强,过孔时间延长;而在大电压下,随电压上升,C反应蛋白受到的电泳力起主要作用,因而可以较快过孔,且过孔速率随电压增大而提高。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.基于复合固态纳米孔单分子技术的C反应蛋白检测方法,其特征在于,制备固态纳米孔并活化,将带有羧基末端的硅烷固定在所述固态纳米孔表面,再与末端带氨基的适配体DNA反应,制得复合固态纳米孔,使用所述复合纳米孔检测C反应蛋白的过孔信号,测得其含量。
2.根据权利要求1所述的方法,其特征在于,所述方法包括如下步骤:
1)固态纳米孔的活化
去除固态纳米孔表面的杂质后用食人鱼洗液进行浸泡,再清洗制得活化后的固态纳米孔;
2)末端带羧基的硅烷分子的固定
氮气条件下,将步骤1)制得的所述活化后的固态纳米孔与酸性末端带羧基的硅烷试剂水溶液进行反应制得固定有羧基硅烷分子的固态纳米孔;
3)CRP的适配体DNA的固定
将步骤2)制得的所述固定有羧基硅烷分子的固态纳米孔经EDC/NHS活化后浸泡在含0.1~1μM末端带氨基的适配体DNA、pH5.5的0.1M MES溶液中反应,制得所述复合固态纳米孔;
4)在步骤3)所得所述复合固态纳米孔的膜片钳上外加偏压,在电解质溶液中检测C反应蛋白的含量。
3.根据权利要求2所述的方法,其特征在于,在步骤1)前进行固态纳米孔的制备:在硅基氮化硅膜上制出直径为15~28nm的孔道。
4.根据权利要求3所述的方法,其特征在于,所述固态纳米孔的制备采用介电质击穿的方式,使用的电导液为1M KCl、10mM Tris、1mM EDTA、pH8。
5.根据权利要求2所述的方法,其特征在于,步骤1)中去除固态纳米孔表面的杂质步骤为:用加热的去离子水浸泡5~10分钟,去除无机杂质;用体积比丙酮:异丙醇:去离子水=1:1:1的混合溶剂浸泡去除有机杂质。
6.根据权利要求2所述的方法,其特征在于,步骤1)中所述浸泡的温度为60±5℃;浸泡的时间为0.5~1小时。
7.根据权利要求2所述的方法,其特征在于,步骤2)中所述酸性末端带羧基的硅烷试剂水溶液由等体积的末端带羧基的硅烷试剂、有机酸和水介质反应制得。
8.根据权利要求2所述的方法,其特征在于,步骤4)所述电解质溶液为1M KCl、2mMCaCl2、10mM Tris、pH 7.4。
9.根据权利要求2所述的方法,其特征在于,步骤4)所述偏压强度为200~400mV。
10.权利要求2所述方法中制备得到的复合固态纳米孔。
CN202011638022.2A 2020-12-31 2020-12-31 基于复合固态纳米孔单分子技术的c反应蛋白检测方法 Active CN112834757B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011638022.2A CN112834757B (zh) 2020-12-31 2020-12-31 基于复合固态纳米孔单分子技术的c反应蛋白检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011638022.2A CN112834757B (zh) 2020-12-31 2020-12-31 基于复合固态纳米孔单分子技术的c反应蛋白检测方法

Publications (2)

Publication Number Publication Date
CN112834757A true CN112834757A (zh) 2021-05-25
CN112834757B CN112834757B (zh) 2023-02-28

Family

ID=75926791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011638022.2A Active CN112834757B (zh) 2020-12-31 2020-12-31 基于复合固态纳米孔单分子技术的c反应蛋白检测方法

Country Status (1)

Country Link
CN (1) CN112834757B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686235A (zh) * 2021-08-16 2021-11-23 中国科学院力学研究所 一种基于纳米孔过孔电流估计蛋白质构象形貌特征的方法
CN114113017A (zh) * 2021-11-29 2022-03-01 中国科学院重庆绿色智能技术研究院 一种基于固态纳米孔的功能蛋白光电联合检测方法
CN114113222A (zh) * 2021-11-25 2022-03-01 中国科学院重庆绿色智能技术研究院 基于固态纳米孔技术对脂多糖定性或菌种来源鉴定的方法
CN114113280A (zh) * 2021-11-24 2022-03-01 中国科学院重庆绿色智能技术研究院 用于高分子聚合物自组装结构检测的检测体系及检测方法
CN114199971A (zh) * 2021-12-16 2022-03-18 中国科学院重庆绿色智能技术研究院 基于化学修饰的纳米孔对整合素构象检测的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102423636A (zh) * 2011-10-15 2012-04-25 东南大学 一种用化学修饰固态纳米孔阵列分离溶液中杂质的方法
WO2012142174A1 (en) * 2011-04-12 2012-10-18 Electronic Biosciences Inc. Site specific chemically modified nanopore devices
CN104614358A (zh) * 2014-12-09 2015-05-13 临沂大学 一种基于纳米粒子信号探针的拉曼放大检测凝血酶的方法
CN105854962A (zh) * 2016-03-28 2016-08-17 北京瑞联安科技有限公司 一种生物识别分子固定到生物芯片的方法
CN106370868A (zh) * 2016-09-23 2017-02-01 中国科学院重庆绿色智能技术研究院 基于核酸适配体信号放大策略的检测微囊藻毒素的spr传感器及其制备方法和应用
CN107064509A (zh) * 2017-04-21 2017-08-18 济南大学 检测癌胚抗原的光电化学免疫传感器的制备及应用
CN108645905A (zh) * 2018-05-24 2018-10-12 南通大学 一种基于固态纳米孔检测过氧化氢的方法
CN109044993A (zh) * 2018-09-18 2018-12-21 华南理工大学 一种以核酸适配体靶向聚乙二醇修饰的介孔二氧化硅纳米粒及其制备方法
CN109358106A (zh) * 2018-11-05 2019-02-19 中国科学院重庆绿色智能技术研究院 一种基于固态纳米孔技术的多糖单分子结构解析方法
CN110132947A (zh) * 2019-06-14 2019-08-16 福州大学 一种锥形微米孔表面电荷密度调控电致化学发光信号的方法
WO2019158548A1 (en) * 2018-02-15 2019-08-22 F. Hoffmann-La Roche Ag Nanopore protein conjugates for detection and analysis of analytes
CN110554079A (zh) * 2019-09-26 2019-12-10 中国科学院重庆绿色智能技术研究院 一种基于纳米通道的抗体单分子检测系统及方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012142174A1 (en) * 2011-04-12 2012-10-18 Electronic Biosciences Inc. Site specific chemically modified nanopore devices
CN102423636A (zh) * 2011-10-15 2012-04-25 东南大学 一种用化学修饰固态纳米孔阵列分离溶液中杂质的方法
CN104614358A (zh) * 2014-12-09 2015-05-13 临沂大学 一种基于纳米粒子信号探针的拉曼放大检测凝血酶的方法
CN105854962A (zh) * 2016-03-28 2016-08-17 北京瑞联安科技有限公司 一种生物识别分子固定到生物芯片的方法
CN106370868A (zh) * 2016-09-23 2017-02-01 中国科学院重庆绿色智能技术研究院 基于核酸适配体信号放大策略的检测微囊藻毒素的spr传感器及其制备方法和应用
CN107064509A (zh) * 2017-04-21 2017-08-18 济南大学 检测癌胚抗原的光电化学免疫传感器的制备及应用
WO2019158548A1 (en) * 2018-02-15 2019-08-22 F. Hoffmann-La Roche Ag Nanopore protein conjugates for detection and analysis of analytes
CN108645905A (zh) * 2018-05-24 2018-10-12 南通大学 一种基于固态纳米孔检测过氧化氢的方法
CN109044993A (zh) * 2018-09-18 2018-12-21 华南理工大学 一种以核酸适配体靶向聚乙二醇修饰的介孔二氧化硅纳米粒及其制备方法
CN109358106A (zh) * 2018-11-05 2019-02-19 中国科学院重庆绿色智能技术研究院 一种基于固态纳米孔技术的多糖单分子结构解析方法
CN110132947A (zh) * 2019-06-14 2019-08-16 福州大学 一种锥形微米孔表面电荷密度调控电致化学发光信号的方法
CN110554079A (zh) * 2019-09-26 2019-12-10 中国科学院重庆绿色智能技术研究院 一种基于纳米通道的抗体单分子检测系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAI SL 等: "Surface charge modulated aptasensor in a single glass conical nanopore", 《BIOSENS BIOELECTRON》 *
周硕 等: "纳米孔分析方法在有毒物质检测中的应用", 《分析化学》 *
翟庆峰等: "基于高分子聚合物及毛细玻璃管的固态单纳米孔通道在分析化学中的应用", 《分析化学》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686235A (zh) * 2021-08-16 2021-11-23 中国科学院力学研究所 一种基于纳米孔过孔电流估计蛋白质构象形貌特征的方法
CN114113280A (zh) * 2021-11-24 2022-03-01 中国科学院重庆绿色智能技术研究院 用于高分子聚合物自组装结构检测的检测体系及检测方法
CN114113222A (zh) * 2021-11-25 2022-03-01 中国科学院重庆绿色智能技术研究院 基于固态纳米孔技术对脂多糖定性或菌种来源鉴定的方法
CN114113017A (zh) * 2021-11-29 2022-03-01 中国科学院重庆绿色智能技术研究院 一种基于固态纳米孔的功能蛋白光电联合检测方法
CN114113017B (zh) * 2021-11-29 2024-02-23 中国科学院重庆绿色智能技术研究院 一种基于固态纳米孔的功能蛋白光电联合检测方法
CN114199971A (zh) * 2021-12-16 2022-03-18 中国科学院重庆绿色智能技术研究院 基于化学修饰的纳米孔对整合素构象检测的方法
CN114199971B (zh) * 2021-12-16 2024-03-22 中国科学院重庆绿色智能技术研究院 基于化学修饰的纳米孔对整合素构象检测的方法

Also Published As

Publication number Publication date
CN112834757B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
CN112834757B (zh) 基于复合固态纳米孔单分子技术的c反应蛋白检测方法
Arya et al. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance
Xu et al. A sensitive label-free immunosensor for detection α-Fetoprotein in whole blood based on anticoagulating magnetic nanoparticles
Xu et al. Novel electrochemical immune sensor based on Hep-PGA-PPy nanoparticles for detection of α-Fetoprotein in whole blood
Zhang et al. A magnetic molecularly imprinted optical chemical sensor for specific recognition of trace quantities of virus
Tan et al. Hybrid peptide-molecularly imprinted polymer interface for electrochemical detection of vancomycin in complex matrices
Wang et al. Microswimmer-based electrochemical platform with active capturer/signal amplifier/funnel-type device for whole blood detection
CN107219173B (zh) 一种嗜酸乳杆菌s-层蛋白分子印迹传感器及其制备方法和应用
Wang et al. A novel bacterial imprinted polymers-electrochemiluminescent sensor for Lactobacillus salivarius detection
CN114166917A (zh) 一种电化学分离、检测及释放外泌体的方法
CN111487222A (zh) 一种使用高特异性和高灵敏性spr芯片检测bnp的方法
CN110927234A (zh) 纳米材料复合物、其加工方法及在肿瘤细胞检测中的应用
Wang et al. Magnetic bio-nanobeads and nanoelectrode based impedance biosensor for detection of avian influenza virus
BRPI0707899A2 (pt) mÉtodos para a detecÇço de proteÍnas prion patogÊnicas associadas com doenÇas priânicas, utilizando polieletràlitos conjugados
Zhang et al. Carbon dots-functionalized extended gate organic field effect transistor-based biosensors for low abundance proteins
CN114113017B (zh) 一种基于固态纳米孔的功能蛋白光电联合检测方法
Jiang et al. Detection of E. coli O157: H7 via GO-modified fiber optic SPR sensor with Au nanoparticle signal amplification
CN219573914U (zh) 一种用于spr检测的生物传感芯片
CN115015352B (zh) 一种检测β-淀粉样蛋白的抗污染生物传感器及其制备方法
US20220326210A1 (en) Enhanced chemical and biological detections with size-shrinkable hydrogels
Cai et al. Single-molecular Detection of Polysaccharides with Chemically-Modified Nanopores
CN114113222A (zh) 基于固态纳米孔技术对脂多糖定性或菌种来源鉴定的方法
CN116953052A (zh) 一种壳聚糖修饰的石墨烯效应晶体管生物传感器及其应用
Syaifudin et al. Analyses of performance of novel sensors with different coatings for detection of lipopolysaccharide
Jin et al. Heparin-Encapsulated Liquid Metal Based Zwitterionic Hydrogel Enabling Sensitive Electrochemical Sensing in Whole Blood

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant