CN112830776A - 一种u型六角铁氧体材料及其制备方法 - Google Patents
一种u型六角铁氧体材料及其制备方法 Download PDFInfo
- Publication number
- CN112830776A CN112830776A CN202110319541.0A CN202110319541A CN112830776A CN 112830776 A CN112830776 A CN 112830776A CN 202110319541 A CN202110319541 A CN 202110319541A CN 112830776 A CN112830776 A CN 112830776A
- Authority
- CN
- China
- Prior art keywords
- sintering
- preparation
- ferrite
- baco
- nio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2641—Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3239—Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3272—Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3279—Nickel oxides, nickalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3298—Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Magnetic Ceramics (AREA)
- Hard Magnetic Materials (AREA)
Abstract
一种U型六角铁氧体材料及其制备方法,属于铁氧体材料制备技术领域。包括主料和掺杂剂,主料:20.23~20.32wt%BaCO3、0.27~1.08wt%Al2O3、0.43wt%La2O3、74.23~75.15wt%Fe2O3、3.92~3.94wt%NiO;掺杂剂:2~3wt%Bi2O3、1.5~3wt%CuO、0.2~0.8wt%V2O5。本发明U型六角铁氧体材料,兼具高而可调的磁晶各向异性场、高剩磁比、高矫顽力以及较低的铁磁共振线宽,有望满足Ku波段铁氧体自偏置环行器的应用需求,对于实现铁氧体环形器的小型轻量化、片式化和集成化具有重要意义。
Description
技术领域
本发明属于铁氧体材料制备技术领域,具体涉及一种U型六角铁氧体材料及其制备方法。
背景技术
随着微波技术的快速发展,环行器正朝着小型轻量化、集成化和低损耗的方向发展。传统的铁氧体环行器需装配磁钢来提供偏置磁场,这不利于环行器的小型化和轻量化,尤其对于Ku及以上应用频段而言。具有c轴取向的六角铁氧体因具有高磁晶各向异性场(Ha)而保持高剩磁(Mr),以使其内部形成“自建内磁场”。这有利于减小磁钢尺寸,甚至无需外加磁钢,就能够很好地顺应铁氧体环行器的发展趋势。目前,自偏置环行器的铁氧体材料大多为具有c轴取向的M型钡或锶六角铁氧体,M型铁氧体的晶体结构相对简单,易获得纯相,矫顽力也相对较高,能保持高剩磁,但其磁晶各向异性较强,不利于获得低损耗。具有c轴取向的U型六角铁氧体具有较低的磁晶各向异性常数(K1)和磁晶各向异性场(Ha),有利于获得较低的铁磁共振线宽,但难获得高矫顽力(Hc),较适合应用于Ku波段自偏置铁氧体环行器,且U型铁氧体具有复杂的晶体结构,难以获得纯相。虽然U型六角铁氧体发现已有数十年,但相关研究却远远少于M型六角铁氧体,目前多集中在制备纯相以及不同二价金属离子取代对性能的影响研究。
已有研究表明,目前U型铁氧体块材的矫顽力相对较低,约低于1000Oe,这使得材料很难保持稳定的高剩磁。对于自偏置环行器用铁氧体基板来说,其面内的横向尺寸远大于面外的法向尺寸,为保持自身低能量状态,材料的磁矩倾向于沿基板面内取向,以减小退磁场,若无高矫顽力相匹配,则更难获得法线方向的高剩磁。Benton K.O’Neil等详细分析过基板形状对剩磁的影响,结果表明基板的横向/纵向尺寸比越大,基板的剩磁越低。可见,提高U型铁氧体的矫顽力具有明确的应用价值。Lisjak等采用高能球磨工艺在1200~1300℃制备了单相的铁氧体Ba4A2Fe36O60(A=Co,Ni,Zn)粉体,粉体的饱和磁化强度Ms约46~55emu/g,矫顽力约180~1600Gs。Su等通过固相反应法制得Ba4Ni1.4Co0.6Fe36O60靶材,再利用脉冲激光沉积(PLD)在(0001)的蓝宝石衬底上沉积了Ni1.4Co0.6U钡铁氧体薄膜,沉积温度为900℃,沉积后的薄膜样品经1100℃退火处理后,面内的矫顽力约800Oe,面外法线方向的矫顽力约1600Oe。对于U型晶体结构的六角铁氧体材料,国内外文献报道中,铁氧体基片的矫顽力最高约950Oe。
发明内容
本发明的目的在于,针对背景技术存在的现有U型六角铁氧体材料矫顽力较低的问题,提出了一种新型的U型六角铁氧体材料及其制备方法。本发明提供的U型六角铁氧体材料兼具高而可调的磁晶各向异性场、高剩磁比、高矫顽力以及较低的铁磁共振线宽,对于实现铁氧体环形器的小型轻量化、片式化和集成化具有重要意义。
为实现上述目的,本发明采用的技术方案如下:
一种U型六角铁氧体材料,其特征在于,包括主料和掺杂剂,所述主料包括:20.23~20.32wt%BaCO3、0.27~1.08wt%Al2O3、0.43wt%La2O3、74.23~75.15wt%Fe2O3、3.92~3.94wt%NiO;
所述掺杂剂以主料的质量为参照基准,按重量百分比,以氧化物计算,掺杂剂包括:2~3wt%Bi2O3、1.5~3wt%CuO、0.2~0.8wt%V2O5。
一种U型六角铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、预烧料制备:
1.1以BaCO3、Al2O3、La2O3、Fe2O3、NiO作为原料,按照主料:20.23~20.32wt%BaCO3、0.27~1.08wt%Al2O3、0.43wt%La2O3、74.23~75.15wt%Fe2O3、3.92~3.94wt%NiO的比例称取原料,然后进行一次球磨3~6h;
1.2将步骤1.1得到的一次球磨料烘干、过筛后,在1220~1270℃温度下预烧0.5~3h,随炉冷却至室温后,取出,得到预烧料;
步骤2、掺杂:
以步骤1得到的预烧料为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:2~3wt%Bi2O3、1.5~3wt%CuO、0.2~0.8wt%V2O5,然后进行二次球磨6~12h,粉体粒度控制在0.7~1μm之间;
步骤3、成型和烧结:
3.1将步骤2得到的二次球磨料脱水,控制浆料的含水量在35wt%~50wt%之间,然后采用湿法磁场成型设备压制成型,成型压力为6~7MPa,成型磁场强度为12~18kOe,保压时间为30~50s;
3.2将步骤3.1得到的样品放入烧结炉内,在1080℃~1140℃下烧结2~4h,烧结完成后,随炉自然冷却至室温,得到所述U型六角铁氧体材料。
本发明提供的一种U型六角铁氧体材料,通过在主配方中添加Al2O3,Al3+离子可使自旋向上的Fe3+量减少,使得整体自旋向上的玻尔磁子减少,进而降低饱和磁化强度;同时,添加Al2O3后,使得材料的晶格对称性下降,磁各向异性常数K1上升,而Hc正比于K1/4πMs,因而可有效提高矫顽力。本发明提供的U型六角铁氧体的制备方法,采用高能球磨工艺,控制粉体粒度在0.7~1μm之间,提高了粉料在成型时的取向分布;在烧结过程中,借助掺杂剂的助烧结作用,在较低烧结温度下实现了固相反应,有效控制了晶粒和晶界特性,使晶粒接近于单畴颗粒尺寸,以实现高矫顽力性能。
与现有技术相比,本发明的有益效果为:
本发明提供的U型六角铁氧体材料,兼具高而可调的磁晶各向异性场(Ha>17KOe)、高剩磁比(Mr/Ms>0.85)、高矫顽力(Hc>1200Oe)以及较低的铁磁共振线宽(ΔH<600Oe),有望满足Ku波段铁氧体自偏置环行器的应用需求,对于实现铁氧体环形器的小型轻量化、片式化和集成化具有重要意义。
附图说明
图1为实施例1的U型六角铁氧体材料的扫描电镜照片;
图2为实施例2的U型六角铁氧体材料的扫描电镜照片;
图3为实施例3的U型六角铁氧体材料的扫描电镜照片;
图4为实施例4的U型六角铁氧体材料的扫描电镜照片。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
一种U型六角铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、预烧料制备:
1.1以BaCO3、Al2O3、La2O3、Fe2O3、NiO作为原料,按照主料:20.23~20.32wt%BaCO3、0.27~1.08wt%Al2O3、0.43wt%La2O3、74.23~75.15wt%Fe2O3、3.92~3.94wt%NiO的比例称取原料,然后进行一次球磨3~6h;
1.2将步骤1.1得到的一次球磨料烘干、过筛后,在1220~1270℃温度下预烧0.5~3h,随炉冷却至室温后,取出,得到预烧料;
步骤2、掺杂:
以步骤1得到的预烧料为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:2~3wt%Bi2O3、1.5~3wt%CuO、0.2~0.8wt%V2O5,然后进行二次球磨6~12h,粉体粒度控制在0.7~1μm之间;
步骤3、成型和烧结:
3.1将步骤2得到的二次球磨料脱水,控制浆料的含水量在35wt%~50wt%之间,然后采用湿法磁场成型设备压制成型,成型压力为6~7MPa,成型磁场强度为12~18kOe,保压时间为30~50s;
3.2将步骤3.1得到的样品放入烧结炉内,在1080℃~1140℃下烧结2~4h,烧结完成后,随炉自然冷却至室温,得到所述U型六角铁氧体材料。
步骤4、测试:
步骤3得到的样品进行密度测试,并制样,用于静磁性能及磁损耗测试。采用美国LakeShore 8604型振动样品磁强计(VSM)测试样品的矫顽力(Hc)、饱和磁化强度(4πMs)、剩余磁化强度(4πMr)以及剩磁比(Mr/Ms);采用美国Agilent N5227A矢量网络分析仪测试样品的铁磁共振线宽(ΔH),其磁晶各向异性场(Ha)由Kittle公式推导得到。
实施例1
步骤1、预烧料制备:
1.1以BaCO3、Al2O3、La2O3、Fe2O3、NiO作为原料,按照主料:20.23wt%BaCO3、0.27wt%Al2O3、0.43wt%La2O3、75.15wt%Fe2O3、3.92wt%NiO的比例称取原料,按照球:粉料:水的质量比为3:1:1.5的比例,在球磨机中混合球磨6h;
1.2将步骤1.1得到的一次球磨料烘干、过筛后,在1250℃温度下预烧2h,随炉冷却至室温后,取出,得到预烧料;
步骤2、掺杂:
以步骤1得到的预烧料为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:2.5wt%Bi2O3、2wt%CuO、0.2wt%V2O5,按照球:粉料:水的质量比为12:1:1.5的比例,在球磨机中混合12h,粉体粒度控制在0.7~1μm之间;
步骤3、成型、烧结:
3.1将步骤2得到的二次球磨料脱水,控制浆料的含水量在40wt%~50wt%之间,然后采用湿法磁场成型设备压制成型,成型压力为6.5MPa,成型磁场强度为12kOe,保压时间为30s;
3.2将步骤3.1得到的样品放入烧结炉内,在1120℃下烧结2h,烧结完成后,随炉自然冷却至室温,得到所述U型六角铁氧体材料。
实施例2
本实施例与实施例1相比,区别在于:步骤1中,主料的配比为20.26wt%BaCO3、0.54wt%Al2O3、0.43wt%La2O3、74.84wt%Fe2O3、3.93wt%NiO;步骤2中,掺杂剂为:2.5wt%Bi2O3、2wt%CuO、0.4wt%V2O5。其余步骤与实施例1完全相同。
实施例3
本实施例与实施例1相比,区别在于:步骤1中,主料的配比为20.29wt%BaCO3、0.81wt%Al2O3、0.43wt%La2O3、74.54wt%Fe2O3、3.93wt%NiO;步骤2中,掺杂剂为:2.5wt%Bi2O3、2wt%CuO、0.6wt%V2O5。其余步骤与实施例1完全相同。
实施例4
本实施例与实施例1相比,区别在于:步骤1中,主料的配比为20.32wt%BaCO3、1.08wt%Al2O3、0.43wt%La2O3、74.23wt%Fe2O3、3.94wt%NiO;步骤2中,掺杂剂为:2.5wt%Bi2O3、2wt%CuO、0.8wt%V2O5。其余步骤与实施例1完全相同。
实施例1~4制得的U型六角铁氧体材料的性能测试结果如下:
图1~4分别为实施例1~4的U型六角铁氧体材料的扫描电镜照片;由图1~4可知,随着Al3+取代量的增多,平均晶粒尺寸下降,气孔率升高,微观结构变差;这是因为Al3+取代Fe3+会导致烧结完全时所需烧结活化能增多,所以相同温度下,取代量越多的,烧结越不完全,晶粒生长速度减慢,导致晶粒平均尺寸降低。
Claims (2)
1.一种U型六角铁氧体材料,其特征在于,包括主料和掺杂剂,所述主料包括:20.23~20.32wt%BaCO3、0.27~1.08wt%Al2O3、0.43wt%La2O3、74.23~75.15wt%Fe2O3、3.92~3.94wt%NiO;
所述掺杂剂以主料的质量为参照基准,按重量百分比,以氧化物计算,掺杂剂包括:2~3wt%Bi2O3、1.5~3wt%CuO、0.2~0.8wt%V2O5。
2.一种U型六角铁氧体材料的制备方法,其特征在于,包括以下步骤:
步骤1、预烧料制备:
1.1以BaCO3、Al2O3、La2O3、Fe2O3、NiO作为原料,按照主料:20.23~20.32wt%BaCO3、0.27~1.08wt%Al2O3、0.43wt%La2O3、74.23~75.15wt%Fe2O3、3.92~3.94wt%NiO的比例称取原料,然后进行一次球磨3~6h;
1.2将步骤1.1得到的一次球磨料烘干、过筛后,在1220~1270℃温度下预烧0.5~3h,随炉冷却至室温后,取出,得到预烧料;
步骤2、掺杂:
以步骤1得到的预烧料为参照基准,以氧化物计算,按重量百分比加入以下掺杂剂:2~3wt%Bi2O3、1.5~3wt%CuO、0.2~0.8wt%V2O5,然后进行二次球磨6~12h,粉体粒度控制在0.7~1μm之间;
步骤3、成型和烧结:
3.1将步骤2得到的二次球磨料脱水,控制浆料的含水量在35wt%~50wt%之间,然后采用湿法磁场成型设备压制成型,成型压力为6~7MPa,成型磁场强度为12~18kOe,保压时间为30~50s;
3.2将步骤3.1得到的样品放入烧结炉内,在1080℃~1140℃下烧结2~4h,烧结完成后,随炉自然冷却至室温,得到所述U型六角铁氧体材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110319541.0A CN112830776B (zh) | 2021-03-25 | 2021-03-25 | 一种u型六角铁氧体材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110319541.0A CN112830776B (zh) | 2021-03-25 | 2021-03-25 | 一种u型六角铁氧体材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112830776A true CN112830776A (zh) | 2021-05-25 |
CN112830776B CN112830776B (zh) | 2022-05-03 |
Family
ID=75930546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110319541.0A Active CN112830776B (zh) | 2021-03-25 | 2021-03-25 | 一种u型六角铁氧体材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112830776B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114560690A (zh) * | 2022-03-28 | 2022-05-31 | 电子科技大学 | 自偏置环行器用高矫顽力m型钡铁氧体致密化技术 |
CN114591074A (zh) * | 2022-03-28 | 2022-06-07 | 电子科技大学 | 自偏置环行器用高剩磁m型钡铁氧体制备技术 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60161341A (ja) * | 1984-01-27 | 1985-08-23 | Ube Ind Ltd | 六方晶系フエライトの製造法 |
JPH07135105A (ja) * | 1993-11-11 | 1995-05-23 | Mitsubishi Materials Corp | 高い飽和磁化を有する低キュリー点磁気記録粉末 |
CN101367645A (zh) * | 2008-08-06 | 2009-02-18 | 中国地质大学(北京) | 一种制备铁氧体陶瓷软磁材料新方法 |
CN103360042A (zh) * | 2012-04-01 | 2013-10-23 | 比亚迪股份有限公司 | 一种镍锌软磁铁氧体及其制备方法 |
CN103771845A (zh) * | 2012-10-18 | 2014-05-07 | Tdk株式会社 | 铁氧体烧结体 |
CN106495677A (zh) * | 2016-10-10 | 2017-03-15 | 电子科技大学 | 一种高强度耐热冲击功率镍锌铁氧体及其制备方法 |
CN109851349A (zh) * | 2019-03-18 | 2019-06-07 | 电子科技大学 | 一种高性能环保型六角永磁铁氧体材料及其制备方法 |
CN112047731A (zh) * | 2020-08-27 | 2020-12-08 | 南京国睿微波器件有限公司 | 一种准平面化微带环行器用六角铁氧体材料及其制备方法 |
-
2021
- 2021-03-25 CN CN202110319541.0A patent/CN112830776B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60161341A (ja) * | 1984-01-27 | 1985-08-23 | Ube Ind Ltd | 六方晶系フエライトの製造法 |
JPH07135105A (ja) * | 1993-11-11 | 1995-05-23 | Mitsubishi Materials Corp | 高い飽和磁化を有する低キュリー点磁気記録粉末 |
CN101367645A (zh) * | 2008-08-06 | 2009-02-18 | 中国地质大学(北京) | 一种制备铁氧体陶瓷软磁材料新方法 |
CN103360042A (zh) * | 2012-04-01 | 2013-10-23 | 比亚迪股份有限公司 | 一种镍锌软磁铁氧体及其制备方法 |
CN103771845A (zh) * | 2012-10-18 | 2014-05-07 | Tdk株式会社 | 铁氧体烧结体 |
CN106495677A (zh) * | 2016-10-10 | 2017-03-15 | 电子科技大学 | 一种高强度耐热冲击功率镍锌铁氧体及其制备方法 |
CN109851349A (zh) * | 2019-03-18 | 2019-06-07 | 电子科技大学 | 一种高性能环保型六角永磁铁氧体材料及其制备方法 |
CN112047731A (zh) * | 2020-08-27 | 2020-12-08 | 南京国睿微波器件有限公司 | 一种准平面化微带环行器用六角铁氧体材料及其制备方法 |
Non-Patent Citations (3)
Title |
---|
冯全源: "高取向度的毫米波锶钙六角多晶铁氧体", 《物理学报》 * |
冯全源等: "毫米波用六角铁氧体多晶材料", 《功能材料》 * |
周永川等: "Ba-M型六角铁氧体的性能及自偏置环行器仿真设计", 《磁性材料及器件》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114560690A (zh) * | 2022-03-28 | 2022-05-31 | 电子科技大学 | 自偏置环行器用高矫顽力m型钡铁氧体致密化技术 |
CN114591074A (zh) * | 2022-03-28 | 2022-06-07 | 电子科技大学 | 自偏置环行器用高剩磁m型钡铁氧体制备技术 |
Also Published As
Publication number | Publication date |
---|---|
CN112830776B (zh) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3364426B1 (en) | Ferrite magnetic material and ferrite sintered magnet | |
CN108424137B (zh) | 高各向异性低铁磁共振线宽六角铁氧体材料及制备方法 | |
CN112830776B (zh) | 一种u型六角铁氧体材料及其制备方法 | |
EP3473606B1 (en) | Ferrite sintered magnet | |
CN111925201B (zh) | Sc掺杂六角晶系Zn2W铁氧体材料及制备方法 | |
CN113072369B (zh) | 高剩磁比的u型六角铁氧体材料及制备方法 | |
CN116496096B (zh) | 一种增强软磁/硬磁复合铁氧体吸波性能的方法 | |
CN117326860A (zh) | 一种单轴型小线宽六角铁氧体材料及其制备方法 | |
CN115477534B (zh) | Ku波段自偏置器件用双相复合铁氧体材料及其制备方法 | |
CN114409393B (zh) | 一种高矫顽力低损耗复合六角铁氧体材料及其制备方法 | |
CN114409392B (zh) | 一种高剩磁比低损耗复合六角铁氧体材料及其制备方法 | |
CN114956800B (zh) | 一种高性能微波多晶铁氧体材料 | |
CN112939590B (zh) | 一种x波段准平面化器件用六角铁氧体材料及其制备方法 | |
CN115057697A (zh) | 一种低线宽的w型六角晶系微波铁氧体材料的制备方法 | |
CN114591074A (zh) | 自偏置环行器用高剩磁m型钡铁氧体制备技术 | |
CN110395976B (zh) | 一种锂铝共掺杂的镍锌铁氧体陶瓷材料的制备方法 | |
CN113845359A (zh) | 一种低损耗LiZnTiMn旋磁铁氧体材料及制备方法 | |
CN112341179A (zh) | 一种高频锰锌铁氧体材料、其制备方法和应用 | |
Huang et al. | Low temperature sintering behavior of La-Co substituted M-type strontium hexaferrites for use in microwave LTCC technology | |
CN112194481A (zh) | 一种镍锌铁氧体材料及其制备方法 | |
CN116120049B (zh) | 钙镧钴铁氧体磁体的制备方法、钙镧钴铁氧体磁体和应用 | |
CN115579203B (zh) | X波段自偏置器件用双相复合铁氧体材料及其制备方法 | |
CN115784733B (zh) | 一种高性能钙镧钴铁氧体材料及其制备方法 | |
CN116947475B (zh) | 一种自偏置环行器用高性能复合铁氧体的制备方法 | |
KR102406630B1 (ko) | 페라이트 소결 자석의 제조 방법 및 페라이트 소결 자석 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |