CN112795589A - 一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用 - Google Patents

一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用 Download PDF

Info

Publication number
CN112795589A
CN112795589A CN202011616703.9A CN202011616703A CN112795589A CN 112795589 A CN112795589 A CN 112795589A CN 202011616703 A CN202011616703 A CN 202011616703A CN 112795589 A CN112795589 A CN 112795589A
Authority
CN
China
Prior art keywords
vigs
ptrv2
ntppo7
ntppo2
ntpo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011616703.9A
Other languages
English (en)
Other versions
CN112795589B (zh
Inventor
武兆云
徐世晓
孙聚涛
张小全
张智强
薛刚
杨铁钊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Agricultural University
Original Assignee
Henan Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Agricultural University filed Critical Henan Agricultural University
Priority to CN202011616703.9A priority Critical patent/CN112795589B/zh
Publication of CN112795589A publication Critical patent/CN112795589A/zh
Application granted granted Critical
Publication of CN112795589B publication Critical patent/CN112795589B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0055Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • C12N9/0057Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3)
    • C12N9/0059Catechol oxidase (1.10.3.1), i.e. tyrosinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y110/00Oxidoreductases acting on diphenols and related substances as donors (1.10)
    • C12Y110/03Oxidoreductases acting on diphenols and related substances as donors (1.10) with an oxygen as acceptor (1.10.3)
    • C12Y110/03001Catechol oxidase (1.10.3.1), i.e. tyrosinase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Nutrition Science (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于生物技术领域,涉及烟叶改良的非转基因方法,特别是指一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用。根据NtPPO2、NtPPO7基因全长序列设计VIGS引物对;以K326烟草cDNA为模板,以引物对为引物,PCR扩增目标片段NtPPO2基因片段和NtPPO7基因片段;将目标片段NtPPO2基因片段和NtPPO7基因片段分别与pTRV2‑VIGS载体相连,构建pTRV2‑NtPPO2‑VIGS载体和pTRV2‑NtPPO7‑VIGS载体;最后将两个VIGS载体混合侵染烟叶。本发明根据VIGS原理,并没有将外源DNA整合到植物基因组中,抑制烟叶烘烤变黑的情况发生,提高烟叶烘烤的质量。

Description

一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用
技术领域
本发明属于生物技术领域,涉及烟叶改良的非转基因方法,特别是指一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用。
背景技术
烟叶中含有大量的酚类物质,在烘烤过程中烟叶中的多酚氧化酶(Polyphenoloxidase,PPO)将酚类物质氧化成醌类物质,随后与细胞内氨基酸、蛋白质等大分子发生反应生成红褐色物质(黑色素),进而使烟叶褐变成黑糟烟。
目前主要有3种方法抑制PPO引起的烟叶褐变,这些办法主要依靠烘烤调节、化学抑制剂抑制、转基因抑制3种途径。
有学者在定色期合理控制烤房温湿度,可以较好地抑制PPO的活性。还有学者在烘烤过程中,将一定酸碱度的K、Ca、Mg盐溶液放入烤房,即可调节烟叶pH值进而抑制褐变。烘烤调节技术要求对烟叶烘烤有着熟练的技巧、丰富的经验和深厚烘烤功底。一般的烘烤技术人员难以达到这样的要求。此方法在实际中烘烤难度很大。
常见的能够降低PPO活性的抑制剂有硫脲、L-半胱氨酸、EDTA、巯基乙醇、亚硫酸氢钠、柠檬酸、NaDiCa(二乙基二硫代氨基甲酸钠)、果仁糖、三萜系配糖、环庚三烯酚酮等。其抑制机理大致有:①与PPO中的金属离子(如Cu2+)结合形成螯合物,如EDTA;②将PPO中的Cu2 +还原为Cu+,或将PPO反应中生成的醌还原为酚,阻止醌的进一步氧化,从而达到抑制作用,如NaHSO3、抗坏血酸等;③与PPO中的二硫键结合,致使PPO的构象改变,如硫脲、巯基乙醇等;④改变PPO作用环境的pH值,如硼酸、柠檬酸等。化学抑制剂抑制同样存在一些问题:不同人员施用化学抑制剂存在不同效果,可能因为抑制剂配制和施用存在偏差;同种抑制剂不同品牌、批次抑制剂施用后效果不一致;很多化学抑制剂由于改变了原有的烟叶化学成分从而改变了烟叶的香味和吃味;有些化学抑制剂是有毒性,施用抑制剂后造成化学残留可能会影响人体健康。PPO担负着重要的生理功能,因此如何在维持PPO较低水平表达的同时,又不影响其对烟草整个生理活动的保护,是一个需要重视的问题。
目前在烟叶生产和加工过程中不得转基因烟草,因此需要探索一种非转基因抑制烟叶烘烤变黑的方法。
发明内容
为解决上述技术问题,本发明提出一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用。
本发明的技术方案是这样实现的:
一种抑制烟叶烘烤变黑的非转基因混合侵染方法,步骤如下:
(1)根据NtPPO2、NtPPO7基因全长序列设计VIGS引物VIPPO2-XbaI-F、VIPPO2-BamHI-R、VIPPO7-XbaI-F和VIPPO7-BamHI-R;
(2)以K326烟草cDNA为模板,以步骤(1)的引物为引物,PCR 扩增目标片段NtPPO2基因片段和NtPPO7基因片段;
(3)将步骤(2)的目标片段NtPPO2基因片段和NtPPO7基因片段分别与pTRV2-VIGS载体相连,构建pTRV2-NtPPO2-VIGS载体和pTRV2-NtPPO7-VIGS载体;
(4)将pTRV2-NtPPO2-VIGS载体和pTRV2-NtPPO7-VIGS载体混合侵染烟叶。
所述步骤(1)中NtPPO2基因序列如SEQ ID No.1所示、NtPPO7基因序列如SEQ IDNo.2所示。
所述步骤(1)中VIPPO2-XbaI-F序列如SEQ ID No.3所示、VIPPO2-BamHI-R序列如SEQ ID No.4所示、VIPPO7-XbaI-F序列如SEQ ID No.5所示、VIPPO7-BamHI-R序列如SEQ IDNo.6所示。
利用上述的非转基因混合侵染方法在降低多酚氧化酶活性中的应用。
本发明具有以下有益效果:
本发明的方法由图4和5可知,pTRV2-NtPPO2-VIGS和pTRV2-NtPPO7-VIGS单独侵染后其基因表达量得到极大抑制;如图6和7所示,pTRV2-NtPPO2-VIGS和pTRV2-NtPPO7-VIGS混合侵染比单独侵染更能抑制其基因表达量。如图8和9所示,本发明的方法在一次侵染后至少17天后PPO活性还是会降低的。图9表明,pTRV2-NtPPO2-VIGS和pTRV2-NtPPO7-VIGS混合侵染比单独侵染更能抑制PPO2、PPO7的酶活。由上可知,在其基因表达量和酶活上,混合侵染比单独侵染起到了更为显著的抑制效果;本技术方法从结果上来看能够显著抑制NtPPO2和NtPPO7表达量和酶活;根据了VIGS原理,并不会将外源DNA整合到植物基因组中,不属于转基因方法,因此这种方法不会改变了原有的烟叶化学成分,更不改变了烟叶的香味和气味;本技术与传统的烘烤调节、化学抑制剂抑制、转基因抑制相比,具有操作简单、抑制效果更明显、广为烟叶生产厂家接受等特点;本技术实现抑制烟叶烘烤变黑的情况发生,提高烟叶烘烤的质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为NtPPO2NtPPO7基因的PCR扩增结果
图2为pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS的菌落PCR,其中A)为pTRV2-NtPPO2-VIGS菌落PCR结果,使用TRV-CeXu-F和TRV-CeXu-R引物对扩增,其大小为800bp;B)为pTRV2-NtPPO7-VIGS菌落PCR结果,使用PPO7-XbaI-F和PPO7-BamHI-R引物对扩增,其大小为412bp。
图3为pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS载体测序比对结果,其中A)第一行为TRV2-PPO2载体8号克隆测序,第二行为参考序列;B)第一行为TRV2-PPO7载体6号克隆测序结果,第二行为参考序列。
图4为pTRV2-NtPPO2-VIGS侵染株系15、16、17 d烟叶后NtPPO2相对表达量变化图。
图5为pTRV2-NtPPO7-VIGS侵染株系15、16、17 d烟叶后NtPPO7相对表达量变化图。
图6为pTRV2-NtPPO2-VIGS+pTRV2-NtPPO7-VIGS混合侵染株系15、16、17 d烟叶后NtPPO2相对表达量变化图。
图7为pTRV2-NtPPO2-VIGS+pTRV2-NtPPO7-VIGS混合侵染株系15、16、17 d烟叶后NtPPO7相对表达量变化图。
图8为pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS分别侵染株系烟叶中PPO酶活。
图9为pTRV2-NtPPO2-VIGS+pTRV2-NtPPO7-VIGS混合侵染株系烟叶中PPO酶活。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种抑制烟叶烘烤变黑的非转基因混合侵染方法,步骤如下:
(1)根据NtPPO2、NtPPO7基因全长序列设计VIGS引物VIPPO2-XbaI-F、VIPPO2-BamHI-R、VIPPO7-XbaI-F和VIPPO7-BamHI-R;
(2)以K326烟草cDNA为模板,以步骤(1)的引物为引物,PCR 扩增目标片段NtPPO2基因片段和NtPPO7基因片段;
(3)将步骤(2)的目标片段NtPPO2基因片段和NtPPO7基因片段分别与pTRV2-VIGS载体相连,构建pTRV2-NtPPO2-VIGS载体和pTRV2-NtPPO7-VIGS载体;
(4)将pTRV2-NtPPO2-VIGS载体和pTRV2-NtPPO7-VIGS载体混合侵染烟叶。
所述步骤(1)中NtPPO2基因序列如SEQ ID No.1所示、NtPPO7基因序列如SEQ IDNo.2所示。
所述步骤(1)中VIPPO2-XbaI-F序列如SEQ ID No.3所示、VIPPO2-BamHI-R序列如SEQ ID No.4所示、VIPPO7-XbaI-F序列如SEQ ID No.5所示、VIPPO7-BamHI-R序列如SEQ IDNo.6所示。
利用上述的非转基因混合侵染方法在降低多酚氧化酶活性中的应用。
具体步骤如下:
实施例1:VIGS瞬时沉默载体的构建
1、试验材料:本氏烟草(Nicotiana benthamiana)来源于河南农业大学烟草学院育种实验室、大肠杆菌DH5α感受态细胞、农杆菌GV3101、烟草脆裂病毒载体pTRV1、pTRV2为我实验室保存。TRNzol Reagent、TIANScript M-MLV反转录酶、高保真DNA聚合酶以及普通琼脂糖凝胶DNA回收试剂盒、限制性内切酶、质粒提取试剂盒、连接试剂盒均购自天根生化科技有限公司。荧光定量试剂盒购自Thermo Fisher(中国)公司。其他试剂均为国产分析纯。构建载体所用的引物见表1。离心机使用Eppendorf (German) 5810R/5415D型号。荧光定量PCR仪使用Thermo Fisher 7500型号。
表1构建载体所用引物
Figure 590603DEST_PATH_IMAGE002
下划线字体为酶切位点,黑色加粗为保护碱基
2、实验方法
以保存的K326烟草cDNA为模板为模板,采用上述引物,高保真DNA聚合酶PCR扩增基因干扰片段,干扰片段用绿色字体标出。电泳检测条带单一,切胶回收目的基因片段。
PPO2基因如SEQ ID No.1所示,NtPPO7基因序列如SEQ ID No.2所示。
PCR程序:94℃预变性5 min;94℃变性30 s,55℃退火30 s,72℃延伸60 s,30个循环;72℃延伸10 min;4℃保温。XbaI/BamHI双酶切NtPPO2NtPPO7基因片段和pTRV2-VIGS载体,纯化回收基因片段和载体骨架,酶连后转化大肠杆菌,涂布Kana抗性平板,对长出的抗性菌落进行PCR检测目的基因片段,并从中挑取PCR阳性的菌样提取质粒,采用载体上通用引物:TRV-CeXu-F: 5’-CATTAGCGACATCTAAATAGG-3’,TRV-CeXu-R:5’-AACCTAAAACTTCAGACACG-3’进行测序。
pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS的构建
根据NtPPO2NtPPO7基因全长序列设计VIGS引物,并进行PCR扩增。NtPPO2NtPPO7扩增条带长度分别为396 bp、412 bp(图1)。将PCR产物连接到pTRV2-VIGS载体上,对其构建的载体进行菌落PCR已验证干扰片段连入载体(图2)。对pTRV2-重组载体进行测序,发现插入片段的序列与其基因的序列一致(图3)。
实施例2:VIGS载体转化农杆菌及侵染烟叶
1、在含有庆大霉素和利福平的50 mL LB培养基中接入0.5 mL已活化的菌液,至OD600=0.6~0.8。预冷后离心去上清,加入5 mL 60 mmol/L的CaCl2溶液,混匀后离心去上清,再加入500 μL 60 mmol/L CaCl2溶液,混匀,取100 μL悬浮液,加入2 μL质粒(pTRV2-PDS-VIGS、pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS、pTRV1)后吸打混匀,用液氮将质粒冷冻5 min,置于37℃培养箱中5 min。加入1 mL LB液体培养基,摇床培养2 h。培养结束后除去大量上清,混匀溶液,涂布于LB/Kan平板上,置于28℃培养箱中培养12~24 h。将已转入目的基因的GV3101菌落(包括:pTRV2-PDS-VIGS、pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS、pTRV1)扩大培养至OD600=1.0。取等体积的农杆菌培养物pTRV1与pTRV2-NtPPO2-VIGS 、pTRV2-NtPPO7-VIGS的农杆菌培养物。将它们混合在一起,并在室温下以3,000×g离心5min以沉淀。倒出上清液,将农杆菌沉淀重悬于与农杆菌培养物相同体积的侵染缓冲液中(以使OD600保持在1.0左右)。将重悬培养物在室温下放置2~4 h。选择6叶阶段的植物,并用1 ml注射器(无针)将重悬的农杆菌培养物接种到扩张叶片的背面。每棵植物需要注入2或3片叶子。植物在具有16 h/8 h光周期的生长室中以10,000 lux的光强度在24℃下生长。
2、qRT-PCR分析侵染后烟叶中NtPPO2、NtPPO7基因的转录水平
侵染后第15、16、17 d取样。采用CTAB法提取总RNA。使用Thermo Fisher试剂盒进行反转录和PCR。PCR反应体系如下:
Figure DEST_PATH_IMAGE004
使用引物如下:PPO2-F2(bp666):5'-CCATGGCGCAATTTTAAGC-3',PPO2-R2(bp775C):5'-ATGGCTCTGTCCAGCTTTGA-3';PPO7-F2(bp878):5'-GGCAGGACTCAGCAGGAGAA-3',PPO7-R2(bp1003C):5'-ATGCCAGTTGGAGTTTGCATC-3';ND-26SrRNA–F5'-GAAGAAGGTCCCAAGGGTTC-3',ND-26SrRNA-R5'-TCTCCCTTTAACACCAACGG-3。2-△△CT法计算该基因相对于对照的表达量。
3、PPO2和PPO7瞬时沉默对烟叶中多酚氧化酶活性的影响
侵染后第15、16、17取样,多酚氧化酶活性使用北京索莱宝科技有限公司多酚氧化酶(PPO)活性检测试剂盒(BC0190)测定,使用方法见厂家使用说明书。
4、pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS分别和混合侵染烟叶后表型及其基因表达量、酶活变化
分别将含有pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS、pTRV2-PDS载体的农杆菌侵染烟叶,14 d后观察叶片表型变化。pTRV2-PDS处理叶片后,影响类胡萝卜素的合成,从而使叶片出现白化现象。pTRV2-NtPPO2-VIGS和pTRV2-NtPPO7-VIGS侵染后的烟叶无明显变化。
pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS分别和混合侵染15、16、17d烟叶后NtPPO2、NtPPO7相对表达量变化分别如图4、5、6和7所示。pTRV2-NtPPO2-VIGS侵染株系中NtPPO2表达量仅为CK(空载)的0.001~0.007。NtPPO2在pTRV2-NtPPO7-VIGS侵染株系中也发现了其表达量的下调,相对于CK(空载)其表达量为0.028~0.258。
pTRV2-NtPPO7-VIGS侵染株系中NtPPO7表达量仅为CK(空载)的0.001~0.899,其平均值为0.203。侵染17 d后NtPPO7表达量为CK(空载)的0.001~0.507,其平均值为0.092。NtPPO7在pTRV2-NtPPO2-VIGS侵染株系中也发现了其表达量的下调,相对于CK(空载)其表达量为0.001~0.017。
在混合侵染株系中NtPPO2表达量仅为CK(空载)的0.001~0.005,其平均下降到CK(空载)的0.002(图6),与pTRV2-NtPPO2-VIGS单独侵染株系没有明显差别,这可能与pTRV2-NtPPO2-VIGS显著的沉默效果有关。在混合侵染株系中NtPPO7表达量仅为CK(空载)的0.003~0.098,其平均下降到CK(空载)的0.030(图7),与pTRV2-NtPPO7-VIGS单独侵染株系有着明显差别,尤其是侵染17 d后NtPPO7表达量仅为CK(空载)的0.001~0.018,其平均值为0.007。可见,混合侵染比单独侵染更能降低NtPPO2NtPPO7的表达量。
pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS分别和混合侵染株系烟叶后酶活变化如图8和9所示。在单独侵染后第16 d多数株系的酶活都明显下降(图8),除了NtPPO2-1株系。在侵染后第17 d所有株系的酶活大幅度降低,与CK(空载)第17 d相比其降幅为68.00%、76.27%、63.66%、74.31%、85.27%、80.92%、70.86%,其平均值为18.58 U/g,说明其活性受到很大的抑制。
在混合侵染后第15d所有株系的酶活都明显下降(图9),这与单独侵染不同。在侵染后第17d所有株系的酶活大幅度降低,与CK(空载)第17 d相比其降幅为88.67%、81.87%、90.12%、85.29%,其平均值为7.15 U/g。与单独侵染相比,混合侵染表现出更强大沉默效果。
实施效果分析
病毒诱导的基因沉默(virusinducedgenesilencing,VIGS)是指携带目标基因片段的病毒侵染植物后,可诱导植物内源基因沉默、引起表型变化,进而根据表型变异研究目标基因的功能。VIGS是根据植物对RNA病毒防御机制发展起来的一种技术,其内在的分子基础是RNAi。RNAi由具有可变来源的dsRNA触发。dsRNA一旦存在于植物细胞中,就会被DICER-LIKE(DCL)核酸内切酶加工成21-24nt的短干扰RNA(sRNA)。21个nt的sRNA加载到AGO1上,并在细胞质中扫描互补转录本,以进行切割和降解,这一过程称为“转录后基因沉默(PTGS)”。
本研究将NtPPO2NtPPO7分别构建了pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS载体。pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS单独和混合侵染株系后NtPPO2NtPPO7表达量大幅度降低。其中pTRV2-NtPPO2-VIGS能够极大程度上抑制NtPPO2NtPPO7表达的,见图4和5。pTRV2-NtPPO7-VIGS侵染株系中NtPPO2表达量显著降低,而对NtPPO7抑制效果略差于NtPPO2,见图4和图5。这种现象的发生很可能因为NtPPO2NtPPO7在基因序列上有着高度的相似性。与单独侵染相比,混合侵染更能降低NtPPO2NtPPO7的表达量,见图6和图7。
本研究发现pTRV2-NtPPO2-VIGS、pTRV2-NtPPO7-VIGS单独侵染株系烟叶第16 d多数株系的酶活都明显下降。在侵染后第17 d所有株系的酶活大幅度降低,说明其活性受到很大的抑制,见图8。与单独侵染相比,混合侵染后第15 d所有株系的酶活都明显下降(图9),第17 d其酶活平均值为7.15 U/g,表现出更强大沉默效果。
从基因表达量和酶活性方面来看,本研究利用VIGS技术能够显著抑制NtPPO2NtPPO7。从而利用该技术降低烟叶中PPO酶活来提高烟叶的耐烤性。本研究为利用该技术打下了坚实的基础。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
<110> 河南农业大学
<120> 一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用
<141> 2020-12-31
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1767
<212> DNA
<213> Nicotiana tabacum
<400> 1
atggcttctt cttcttcttc tactctacct ttatgcgcca ataaaactcc ctcttcttcc 60
ttcaccaaca ccaactcatc tttctttgca aaaccctctc agcttttcct tcatggaaaa 120
cgtaaccaaa atttcaagtt ctcatgcaat gccaacagtg acaaaaacaa ccttgaagct 180
gttgacagga ggaatgtact cttgggttta ggagggctgt atggcgcagc taatcttgcg 240
ccattagcta ctgctgctcc tataccacct cctgatctca aatcttgtag caaagcccat 300
ataaatgaca aaacggaggt ttcatacagt tgttgtcccc ctatcccaag tgatatggac 360
agcgttccat attacaagtt tccttctatg cccaaactcc gtattcggcc cgctgctcat 420
gctgctgatg aggagtacat tgctaaatac cagttagcca ctagtcgaat gagggaactt 480
gacaaagacc catttgaccc tcttggcttc aagcaacaag ccaatatcca ttgtgcttat 540
tgcaacggtg cttacaaaat tggtggcaaa gagttacaag tccatttctc gtggcttttt 600
ttcccttttc atagatggta cttgtacttc tatgaaagaa tcttgggctc tttaattaat 660
gatcctactt ttggtttgcc atattggaac tgggaccatc caaagggcat gcgtatacct 720
cccatgttcg atcgtgaagg gtcttccctt tacgacgaaa aacgtaacca aagtcaccgt 780
aatggaacca taattgatct tggtcatttc ggtcaagaag tccaaacaac tcaactgcag 840
cagatgacta ataacttaac tataatgtat cgtcaaatga taactaatgc tccttgcccc 900
ttgctcttct ttggtcagcc ttaccctcta ggaactgatc ccagtccagg gatgggcact 960
attgaaaaca tccctcatac tcctgtccac atttgggttg gtagtaggct tgatgagaat 1020
aatacgaaac acggtgagga tatgggtaat ttttactcgg ccggtttaga cccgcttttc 1080
tattcccatc acgccaatgt ggaccggatg tggtccgagt ggaaagcctt aggagggaaa 1140
agaagggatc tcacgcacaa agattggttg aactccgagt tctttttcta cgatgaaaac 1200
cgcaacccgt tccgtgtgaa agtccgtgac tgtttggaca gtaagaaaat gggctttgat 1260
tacgcaccga tgccaacccc atggcgcaat tttaagccaa taagaaagag caatgcaggg 1320
aaggtgaatc taagttcagt tccgccagca agcagggtgt tcccactctc aaagctggac 1380
agagccattt cattttccat cgataggccg tcttcgtcaa ggactcaaca ggagaaaaat 1440
gaacaagagg agatgctaac gttcaacaac attaagtatg acgatagtaa gtatataagg 1500
ttcgatgtgt tccttaacgt ggacaagaca gtgaatgcgg acgagcttga caaggcagaa 1560
tatgcgggga gttacaccag cttgccacat gttcatggag ataatgtgtc tcatgttacg 1620
tctgttactt tccagttggc catcactgaa ctgttggagg atattgggtt ggaagatgaa 1680
gacactattg cggtaactgt ggttccaaag aaaggtggcg aagagatctc cattgaagct 1740
gttgagatta agcttgtcaa ttgttaa 1767
<210> 2
<211> 2044
<212> DNA
<213> Nicotiana tabacum
<400> 2
atggcatcaa gtgttatttc accagtgtgc aatagcacac cactcaaaac accctttaca 60
tcaaccacca agtcttcttc tttagcatcc actccaaaac cctctcaact tttcctccgc 120
ggaaaacgta accatagctt caaagtctca tgcaaggtct ccaatggtga tgaaaacaaa 180
actgttgaag caaattctgt tgataggaga aatgttcttc taggtttagg aggtctctat 240
ggtgcttcta atgttgtacc attggcttca gccactccca ttccagcccc tactacttca 300
tgtagcaaga ctggcgccac aattaaaccc ggtgtaccag taccttattc ttgttgcccc 360
cctccgctaa aaattgatcc taaggatatt ccttattaca agtttccaac agggtccaag 420
ctccgtattc ggccagcttc tcatgccgtg gatgaagagt acatggctaa gtacaactta 480
gccattacta aaatgaagga gctcgacgtc accgatccag atgatccacg tggattcacg 540
gcgcaagcca aaatccactg tgcttattgc aatggtgcat acaccgtcgc tggcaaagag 600
ctacaaattc acttctcatg gctttttttc ccattccata gatggtattt gtacttctat 660
gaaagaatct tgggctcttt aatcaatgat cctacttttg gtttgccata ttggaactgg 720
gatcatccaa agggcatgcg tttgccacac atgtttgatc aaccaaacgt gtaccctgat 780
ctttacgatc caagacgtaa ccaagagcac cgtggttctg taatcatgga ccttggtcat 840
tttggtcaag acgtgaaagg aactgacttg caaatgatga gcaataacct tactctaatg 900
tatcgtcaaa tgattaccaa ttcaccatgt ccacaactct ttttcggtaa gccatattgt 960
acggaagttg gacccaaacc agggcaggga gctattgaaa acatccctca tactcctgtc 1020
cacatttggg ttggtagtaa gcctaatgag aataactgta aaaacggtga agatatggga 1080
aatttctatt cagctggtaa ggatcctgct ttctatagtc accatgcaaa tgtagatcgc 1140
atgtggacaa tatggaaaac attaggagga aaacgcaagg acatcaacaa gccagattat 1200
ttgaacactg agttcttttt ctacgacgag aagaaaaacc cttatctcgt caaagtccgt 1260
gactgtttgg acaataagaa aatgggatat gatttccaag caatgccaac cccatggcgt 1320
aattttaagc cattgaagaa gagcaagagc aaggtcaatg cacgttcggt tcagtcagct 1380
acccaaacat tccctattgc aaagattgac aaacccataa cattttctat caaaagggaa 1440
acttcaggta ctttcaactg ttatttaaaa gtttaaacgg ttagaaataa cacattttta 1500
attactaaac ttaattagat ctatcaggta gttggataaa aataaagttt ttgtttttcg 1560
tgtgacggtg aaatttaaaa acatgacctc atttcaatcg ctcatgccat gttaacttgc 1620
tagagagagc atatttttaa tttgttagag tacactttca attatttaat tatattacgt 1680
cttaacaggc aggactcagc aggagaaaga cgcaaaagag gagatgttaa ctttcttgga 1740
actcaacatt gatcagcgaa agcacataag gtttgatgtc ttcattaacg cagatgcaaa 1800
ctccaactgg catgagctag acagggcaga gtttgcagga agttacactg ccttgcctca 1860
tgttcattca gatcccagta aaccacatgt cgcccctgtt gcaaaattcc agctggccat 1920
taccgagttg ctcgaggaaa ttggccttga agatgaagat gatatagtgg tgactctggt 1980
cccgaaaact gggggcgaat ttgtcgccat taaatctgtg gttattacac ttgaagcttg 2040
ttga 2044
<210> 3
<211> 28
<212> DNA
<213> Unknown
<400> 3
gctctagaag ccacgagaaa tggacttg 28
<210> 4
<211> 27
<212> DNA
<213> Unknown
<400> 4
cgggatccct tgggtttagg agggctg 27
<210> 5
<211> 28
<212> DNA
<213> Unknown
<400> 5
gctctagatg ctcttggtta cgtcttgg 28
<210> 6
<211> 28
<212> DNA
<213> Unknown
<400> 6
cgggatccac aagtttccaa cagggtcc 28

Claims (4)

1.一种抑制烟叶烘烤变黑的非转基因混合侵染方法,其特征在于,步骤如下:
(1)根据NtPPO2、NtPPO7基因全长序列设计VIGS引物VIPPO2-XbaI-F、VIPPO2-BamHI-R、VIPPO7-XbaI-F和VIPPO7-BamHI-R;
(2)以K326烟草cDNA为模板,以步骤(1)的引物为引物,PCR 扩增目标片段NtPPO2基因片段和NtPPO7基因片段;
(3)将步骤(2)的目标片段NtPPO2基因片段和NtPPO7基因片段分别与pTRV2-VIGS载体相连,构建pTRV2-NtPPO2-VIGS载体和pTRV2-NtPPO7-VIGS载体;
(4)将pTRV2-NtPPO2-VIGS载体和pTRV2-NtPPO7-VIGS载体混合侵染烟叶。
2.根据权利要求1所述抑制烟叶烘烤变黑的非转基因混合侵染方法,其特征在于:所述步骤(1)中NtPPO2基因序列如SEQ ID No.1所示、NtPPO7基因序列如SEQ ID No.2所示。
3.根据权利要求1所述抑制烟叶烘烤变黑的非转基因混合侵染方法,其特征在于:所述步骤(1)中VIPPO2-XbaI-F序列如SEQ ID No.3所示、VIPPO2-BamHI-R序列如SEQ ID No.4所示、VIPPO7-XbaI-F序列如SEQ ID No.5所示、VIPPO7-BamHI-R序列如SEQ ID No.6所示。
4.利用权利要求1-3任一项的非转基因混合侵染方法在降低多酚氧化酶活性中的应用。
CN202011616703.9A 2020-12-31 2020-12-31 一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用 Active CN112795589B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011616703.9A CN112795589B (zh) 2020-12-31 2020-12-31 一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011616703.9A CN112795589B (zh) 2020-12-31 2020-12-31 一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用

Publications (2)

Publication Number Publication Date
CN112795589A true CN112795589A (zh) 2021-05-14
CN112795589B CN112795589B (zh) 2023-10-24

Family

ID=75804740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011616703.9A Active CN112795589B (zh) 2020-12-31 2020-12-31 一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用

Country Status (1)

Country Link
CN (1) CN112795589B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113449418A (zh) * 2021-06-18 2021-09-28 河南中烟工业有限责任公司 陈化烟叶褐变程度判别方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010144058A1 (en) * 2009-06-10 2010-12-16 Temasek Life Sciences Laboratory Limited Virus induced gene silencing (vigs) for functional analysis of genes in cotton.
CN107058379A (zh) * 2017-04-13 2017-08-18 扬州大学 一种同时沉默烟草植物中2个目的基因的方法
CN110923251A (zh) * 2019-12-19 2020-03-27 中国烟草总公司郑州烟草研究院 烟草多酚氧化酶NtPPO4及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010144058A1 (en) * 2009-06-10 2010-12-16 Temasek Life Sciences Laboratory Limited Virus induced gene silencing (vigs) for functional analysis of genes in cotton.
CN107058379A (zh) * 2017-04-13 2017-08-18 扬州大学 一种同时沉默烟草植物中2个目的基因的方法
CN110923251A (zh) * 2019-12-19 2020-03-27 中国烟草总公司郑州烟草研究院 烟草多酚氧化酶NtPPO4及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GENBANK: "PREDICTED: Nicotiana tabacum polyphenol oxidase E, chloroplastic (LOC107780127), mRNA,NCBI Reference Sequence: XM_016600648.1", 《GENBANK》, pages 1 - 2 *
GENBANK: "PREDICTED: Nicotiana tabacum polyphenol oxidase E, chloroplastic-like (LOC107811292), transcript variant X1, mRNA,NCBI Reference Sequence: XM_016636193.1", 《GENBANK》, pages 1 - 2 *
李琼等: "普通烟草PPO基因家族的鉴定与表达分析", 《烟草科技》, vol. 51, no. 8, pages 9 - 13 *
段杜薇等: "多酚氧化酶基因NtPPOE 差异表达的效应分析", 《分子植物育种》, pages 1 - 8 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113449418A (zh) * 2021-06-18 2021-09-28 河南中烟工业有限责任公司 陈化烟叶褐变程度判别方法

Also Published As

Publication number Publication date
CN112795589B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
CN107936104B (zh) 牡丹PsMYB12转录因子及其编码基因与应用
CN109810988B (zh) 一种茄子果实基因沉默体系及其构建方法
CN110734482B (zh) 一种岷江百合WRKY转录因子基因LrWRKY4及应用
CN110331145B (zh) miR156及其相关生物材料在调控植物抗病性中的应用
CN112662701A (zh) miRNA 408在调控作物镉积累中的应用
CN114317570A (zh) 一种编码月季丙二烯氧化物合酶的基因RcAOS及其在抗月季灰霉病中的应用
CN112795589B (zh) 一种抑制烟叶烘烤变黑的非转基因混合侵染方法及其应用
CN117802148A (zh) 调控水稻株型的方法
CN110106171B (zh) 长链非编码rna及其在调控植物耐低温中的应用
CN113444738B (zh) 棉花GhGOLS2基因在控制棉花种子萌发中的应用
CN111218462B (zh) 编码鸡血藤查尔酮合成酶的基因及其应用
CN110106172B (zh) 一种长链非编码rna及其在调控植物耐低温中的应用
CN108998454B (zh) 一种与菊花脑抗蚜性相关的miRNA160a及其应用
CN104988176B (zh) 一种提高杜仲含胶量的方法
KR101677483B1 (ko) 벼 유래의 종자무기성분함량을 증진시키는 OsNAS3 유전자가 과발현된 항생제 마커프리 형질전환 벼
CN118360322B (zh) Hox32基因在提高植物高光耐受性中的应用
US20240132900A1 (en) T-DNA Free Gene Editing through Transient Suppressing POLQ in Plants
CN111235167B (zh) 编码鸡血藤花青素还原酶的基因及其应用
CN116396969B (zh) 一种狼尾草耐热相关rwp基因及其应用
CN118166022B (zh) Hps1基因或hps1基因编码的蛋白在调控植物抗病虫害能力中的应用
CN116622655A (zh) 枳抗寒基因PtrP5CS1及其在植物抗寒遗传改良中的应用
CN118480576A (zh) 芝麻ap3基因在调控雄蕊数量中的应用及芝麻vigs体系的建立方法
CN116515826A (zh) 一种烟草疫霉诱导的miR6155及其用途
CN116987698A (zh) 一种花生黄曲霉诱导表达启动子pAhOMT1及其应用
CN116426528A (zh) 一种响应蚜虫刺吸的诱导型启动子及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant