CN112791741A - 一种加氢裂化催化剂的制备方法 - Google Patents

一种加氢裂化催化剂的制备方法 Download PDF

Info

Publication number
CN112791741A
CN112791741A CN201911111696.4A CN201911111696A CN112791741A CN 112791741 A CN112791741 A CN 112791741A CN 201911111696 A CN201911111696 A CN 201911111696A CN 112791741 A CN112791741 A CN 112791741A
Authority
CN
China
Prior art keywords
solution
hydrocracking catalyst
metal
catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911111696.4A
Other languages
English (en)
Other versions
CN112791741B (zh
Inventor
袁晓亮
余颖龙
付凯妹
王燕
张占全
王晶晶
张雅琳
王嘉祎
谢彬
王延飞
庄梦琪
赵梓贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Original Assignee
Petrochina Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petrochina Co Ltd filed Critical Petrochina Co Ltd
Priority to CN201911111696.4A priority Critical patent/CN112791741B/zh
Publication of CN112791741A publication Critical patent/CN112791741A/zh
Application granted granted Critical
Publication of CN112791741B publication Critical patent/CN112791741B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/16Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J29/166Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种加氢裂化催化剂制备方法,将含活性金属组分的化合物部分配置成溶液,与硅源、铝源、有机模板剂混合打浆后,经老化、晶化制得原位型金属‑分子筛。分子筛经改性后与无定型硅铝、大孔氧化铝、小孔氧化铝混合碾压、挤条成型,最后再浸渍剩余金属。该方法使金属分散均匀,并可控制酸性中心与加氢中心位距,形成梯度分布的加氢中心。提高加氢裂化活性及产品选择性,同时保证芳烃低温饱和,提高航煤烟点。

Description

一种加氢裂化催化剂的制备方法
技术领域
本发明属于一种加氢裂化催化剂制备方法,具体而言,是一种将活性组分原位阶梯负载在酸性组分上的加氢裂化催化剂制备方法。
背景技术
加氢裂化技术作为重油轻质化、劣质油品改质和炼化一体化的重要加工手段,具有生产方案灵活、原料适应性强、目的产品选择性高、质量好和尾油附加值高等优点。加氢裂化催化剂是加氢裂化技术的核心,因此加氢裂化催化剂的研制、开发和应用也是加氢裂化技术进步的主要内容。加氢裂化催化剂是典型的双功能催化剂,重油分子在酸性位上主要进行开环、裂化、脱烷基、异构化等反应,而在活性金属实现加氢反应。因此,催化剂的裂化功能和加氢功能的匹配是决定产品分布的重要因素。目前炼化形势正发生结构性调整,随着柴汽比持续下降和航空煤油的增长需求,加氢裂化技术也由多产中间馏分油转向多产航煤和石脑油。这就要求加氢裂化催化剂有较高的裂化活性及对石脑油和航煤的选择性。传统加氢裂化催化剂的制备方式是将活性组分与载体成型后进行活性金属浸渍,这就存在金属浸渍不均匀和活性位与酸性位距过大,反应产物来不及加氢又在酸性位上进行二次裂化,从而导致裂化程度过高。如何将活性金属均匀有效负载并一定程度上控制酸性位与活性位中心距是催化剂制备的关键问题。
CN201010535641.9公开了一种加氢裂化催化剂的制备方法,该方法先将金属浸渍到氧化铝或无定型规律的粉体粉末上,然后再与分子筛混合成型。CN201210442999.6公开了一种加氢裂化催化剂的制备方法。氧化铝与酸性裂化材料粉末混合均匀,然后浸渍金属盐溶液后再进行成型。相比常规制备方法,这两种方法所制备的催化剂具有较高的催化活性。但金属浸渍和浸渍到氧化铝或无定型硅铝载体粉末上,仍无法解决负载均匀以及活性金属和酸性位距的问题。
CN201611011276.5公开了一种将Si、Al载体前驱物和分子筛混合打浆后成型,最后负载活性金属的加氢裂化催化剂制备方法。CN201610735854.3公开了一种将Si、Al载体前驱物与活性金属溶液打浆后再加入分子筛物料,最后成型的加氢裂化催化剂的制备方法。该两种方法制备的催化剂比表面和孔容都有较大的提高,加氢与裂化活性中心可以均匀协同发生作用。但这两种方法中,分子筛均与活性金属位距较大,无法解决产品裂化程度较高的问题。
发明内容
本发明提供了一种加氢裂化催化剂的制备方法。该制备方法能够有效调整活性金属和分子筛酸性组分中心距,提高加氢功能与裂化功能协同作用,在具有较高的裂化活性同时有效提高目标产品选择性。
本发明提供了一种加氢裂化催化剂的制备方法,包括以下步骤:
(1)将一部分含活性金属的化合物配置成溶液,与硅源、铝源以及有机模板剂混合打浆,然后老化、晶化,制得原位型金属-分子筛,其中按氧化物计,硅源、铝源、水以及模板剂的质量比为1~500:1~850:10~800:1~1000;
(2)将步骤(1)中制得的原位型金属-分子筛经铵交换后再经水热处理-酸处理组合工艺改性,然后干燥、焙烧,制得改性分子筛;
(3)将大孔氧化铝、小孔氧化铝及步骤(2)中制得的改性分子筛混合后碾压、挤条成型,然后干燥、焙烧,制得催化剂中间体;
(4)将另一部分含活性金属的化合物配置成溶液,等体积浸渍于步骤(3)所制得的催化剂中间体上,干燥、焙烧,即得到所述加氢裂化催化剂。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,步骤(1)中所述打浆的搅拌转速为300~1500r/min,打浆时间0.5~2h,浆液固含量为10~20wt%,温度为常温~80℃。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,步骤(1)中老化的条件为室温下老化1~5h,晶化的条件为在80-150℃下晶化1-3d。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,步骤(2)、步骤(3)和步骤(4)中干燥的条件均为在80~130℃空气气氛下干燥3~5h,焙烧条件均为在400~600℃下焙烧3~10h。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,步骤(1)和步骤(4)中所述活性金属为第VIB族和第VIII的金属,以氧化物质量计,活性金属总量占催化剂总量的10~35wt%。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,所述第VIB族金属为钼和/或钨,以氧化物质,其用量计占催化剂总量的0~12wt%;所述第VIII族金属为钴和/或镍,以氧化物质量计,其用量占催化剂总量的10~25wt%。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,步骤(1)和步骤(4)中活性金属以氧化物质量计,二者的用量比为1:9~9:1,且其中第VIB族金属和第VIII族金属以氧化物摩尔比计为1:5~5:1。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,所述硅源为正硅酸乙脂,硅酸钠,白碳黑和水玻璃中的一种或多种。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,所述铝源为偏铝酸钠、氧化铝和硫酸铝中的一种或多种。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,所述有机模板剂为四甲基氢氧化铵、四乙基氢氧化铵、十六烷基三甲基溴化铵、咪唑类离子液体和醋酸酯中的一种或多种。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,步骤(2)中所述铵交换采用0.5~2mol/L的氯化铵或硝酸铵溶液,在30~90℃搅拌交换0.5~2h。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,所述水热处理为水蒸气气氛下,在0.01~0.05MPa、400~700℃下处理0.5~6h。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,所述酸处理为浓度0.01~1mol/L的醋酸-醋酸铵或草酸-草酸铵络合溶液,在30~90℃下,处理0.5~2h。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,在步骤(1)中,加入助剂磷,以氧化物质量计,助剂磷占催化剂总量的10wt%以下。
本发明提供的加氢裂化催化剂的制备方法,其中,优选的是,在步骤(2)中加入扩孔剂,所述扩孔剂是有机扩孔剂聚乙二醇或物理扩孔剂炭黑。
本发明还提供一种加氢裂化催化剂,其是采用上述制备方法所制得,其比表面积300~500m2/g,孔容为0.4~0.6cm3/g,红外酸度0.3~1.0mmol/g,其中强酸比例占30~60%,B酸和L酸比值为0.01~0.5。
根据一些实施例,本发明还可以陈述如下:
本发明的加氢裂化催化剂由活性金属和载体组成。催化剂制备方法如下:(1)将含活性金属组分的化合物配置成溶液,与硅源、铝源以及有机模板剂混合打浆,在室温下老化1~5h,80~150℃晶化1~3天,制得原位型金属-分子筛;(2)所制备的金属-分子筛经铵交换后再经水热处理-酸处理等组合改性,80~130℃气氛下干燥3~5h、400~600℃焙烧3~10h,制得改性分子筛;(3)将大孔氧化铝、小孔氧化铝及改性分子筛混合后碾压、挤条成型,于80~130℃气氛下干燥3~5h、400~600℃焙烧3~10h;(4)将另一部分含活性金属组分的化合物配置成溶液,等体积浸渍于步骤(3)所制得的催化剂载体上,80~130℃气氛下干燥3~5h、400~600℃焙烧3~10h。
其中,步骤(1)和步骤(4)中活性金属为第VIB族和第VIII的金属,以氧化物量总计占催化剂总量的10~35wt%。其中第VIB族金属为钼和/或钨,以氧化物量计占催化剂总量的0~12wt%,第VIII族金属为钴和/或镍,以氧化物量计占催化剂总量的10~25wt%。
步骤(1)和步骤(4)中活性金属以氧化物计质量比为1:9~9:1,且其中第VIB族金属和第VIII族金属以摩尔比计为1:5~5:1。步骤(3)中大孔氧化铝和小孔氧化铝总量占催化剂总量质量百分比20~80%,二者比例1:1~10:1。步骤(1)合成分子筛的硅源包括:正硅酸乙脂,硅酸钠,白碳黑,水玻璃,可以是其中一种或多种;铝源包括偏铝酸钠、氧化铝、硫酸铝,可以是其中一种或多种。
步骤(1)中有机模板剂可以是四甲基氢氧化铵、四乙基氢氧化铵、十六烷基三甲基溴化铵、咪唑类离子液体、醋酸酯等一种或多种。
步骤(1)中碱、铝源、硅源、水以及模板剂按氧化物质量比为(1~500)Na2O:Al2O3:(1~850)SiO2:(10~800)H2O:(10~1000)助模板剂。
步骤(2)中铵交换采用0.5~2mol/L的氯化铵或硝酸铵溶液,在30~90℃搅拌交换0.5~2h。水热处理在水蒸气气氛下,0.01~0.05MPa、400~700℃处理0.5~3h。酸处理采用醋酸-醋酸铵或草酸-草酸铵等络合溶液,溶液浓度0.01~1mol/L,处理温度30~90℃,处理时间0.5~2h。
可以在步骤(1)中,加入助剂磷,以氧化物计占催化剂总量的10wt%以下。
步骤(1)中高速搅拌打浆,搅拌转速为300~1500r/min,打浆时间0.5~2h,浆液固含量为10~20wt%;
可在步骤(2)中加入扩孔剂,扩孔剂可以是有机扩孔剂聚乙二醇,也可以是物理扩孔剂炭黑等,扩孔剂的量不限。
所制备的加氢裂化催化剂比表面积300~500m2/g,孔容为0.4~0.6cm3/g,红外酸度0.3~1.0mmol/g,其中强酸比例占30~60%,B酸和L酸比值为0.01~0.5。
具体实施方式
实施例1
(1)称取7.8g硝酸镍,溶解于200mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵9.2g,继续搅拌,直至完全溶解,制得溶液A1。将6.5g偏铝酸钠、16g氢氧化钠、150mL四乙基氢氧化铵、100mL蒸馏水混合搅拌至透明溶液,再加入48g白炭黑。将A1溶液加入其中,打浆,常温下老化2h后,100℃晶化3天。(2)所得产物经水洗、干燥后,采用1.0mol/L的氯化铵溶液80℃交换三次,每次2h,再经500℃水热处理4h后采用0.2mol/L草酸-草酸铵溶液常温下进行酸处理1h,制得分子筛B1;(3)称取36.0g干基为70.5%的大孔氧化铝、20.3g干基为65.7%的小孔氧化铝以及4.6gHNO3溶液,加入分子筛B1混合后碾压、挤条成型。成型后催化剂于100℃下干燥4h,550℃焙烧4h得催化剂载体C1。(4)再称取18.3g硝酸镍,溶解于30mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵21.4g,继续搅拌,直至完全溶解。将溶液定容至56.2mL。称取100g步骤(3)所制得的催化剂载体C1,将溶液等体积浸渍于载体上,100℃下干燥5h后550℃焙烧5h,制得催化剂Cat-1。
实施例2
(1)称取8.1g硝酸镍,溶解于200mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵10.4g,继续搅拌,直至完全溶解,制得溶液A2。将6g偏铝酸钠、16g氢氧化钠、150mL四甲基氢氧化铵、100mL蒸馏水混合搅拌至透明溶液,再加入280g水玻璃。将A2溶液加入其中,打浆,常温下老化5后,120℃晶化2天。(2)所得产物经水洗、干燥后,采用1.0mol/L的硝酸铵溶液80℃交换三次,每次2h,再经500℃水热处理3h后采用0.2mol/L草酸-草酸铵溶液常温下进行酸处理2h,制得分子筛B2;(3)称取45.6g干基为70.5%的大孔氧化铝、20.3g干基为65.7%的小孔氧化铝以及5.2gHNO3溶液,加入分子筛B2混合后碾压、挤条成型后于120℃下干燥4h,550℃焙烧4h后制得催化剂载体C2;(4)再称取12.2g硝酸镍,溶解于30mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵15.5g,继续搅拌,直至完全溶解。将溶液定容至53.1mL。称取100g步骤(3)所制得的催化剂载体C2,将溶液等体积浸渍于载体上,100℃下干燥5h后550℃焙烧5h,制得催化剂Cat-2。
实施例3
(1)称取18.1g碱式碳酸镍,溶解于200mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵14.7g,继续搅拌,直至完全溶解,制得溶液A3。将6g偏铝酸钠、16g氢氧化钠、150mL四甲基氢氧化铵、100mL蒸馏水混合搅拌至透明溶液,再加入200g水玻璃。将A3溶液加入其中,打浆,常温下老化2后,120℃晶化3天。(2)所得产物经水洗、干燥后,采用1.0mol/L的硝酸铵溶液80℃交换三次,每次2h,再经500℃水热处理3h后采用0.2mol/L草酸-草酸铵溶液常温下进行酸处理2h,制得分子筛B3;(3)称取36.8g干基为69.4%的大孔氧化铝、30.1g干基为69.7%的小孔氧化铝以及4gHNO3溶液,加入分子筛B3混合后碾压、挤条成型后于120℃下干燥4h,550℃焙烧4h后制得催化剂载体C3;(4)再称取18.1g碱式碳酸镍,溶解于溶解于30mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵14.7g,继续搅拌,直至完全溶解。将溶液定容至55.6mL。称取100g步骤(3)所制得的催化剂载体C3,将溶液等体积浸渍于载体上,120℃下干燥5h后600℃焙烧5h,制得催化剂Cat-3。
实施例4
(1)称取18.4g碱式碳酸镍,溶解于200mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵19.5g,继续搅拌,直至完全溶解,制得溶液A4。将6.5g偏铝酸钠、16g氢氧化钠、150mL四乙基氢氧化铵、100mL蒸馏水混合搅拌至透明溶液,再加入45g白炭黑。将A4溶液加入其中,打浆,常温下老化2h后,100℃晶化3天。(2)所得产物经水洗、干燥后,采用1.0mol/L的氯化铵溶液80℃交换三次,每次2h,再经500℃水热处理4h后采用0.2mol/L草酸-草酸铵溶液常温下进行酸处理1h,制得分子筛B4;(3)称取39.6g干基为69.4%的大孔氧化铝、26.3g干基为69.7%的小孔氧化铝、6.2g炭黑、5.0gHNO3溶液,加入分子筛B4混合后碾压、挤条成型后催化剂于100℃下干燥4h,550℃焙烧4h后制得催化剂载体C4;(4)再称取12.2g碱式碳酸镍,溶解于30mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵13g,继续搅拌,直至完全溶解。将溶液定容至62.2mL。称取100g步骤(3)所制得的催化剂载体C4,将溶液等体积浸渍于载体上,120℃下干燥5h后550℃焙烧4h,制得催化剂Cat-4。
实施例5
(1)称取18.2g硝酸镍,溶解于200mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵21.1g,继续搅拌,直至完全溶解,制得溶液A5。将6.0g偏铝酸钠、16g氢氧化钠、120mL四乙基氢氧化铵、90mL蒸馏水混合搅拌至透明溶液,再加入50g白炭黑。将A5溶液加入其中,打浆,常温下老化2h后,100℃晶化3天。(2)所得产物经水洗、干燥后,采用1.0mol/L的硝酸铵溶液80℃交换三次,每次2h,再经550℃水热处理4h后采用0.2mol/L草酸-草酸铵溶液常温下进行酸处理1h,制得分子筛B5。(3)称取45.6g干基为70.5%的大孔氧化铝、20.3g干基为65.7%的小孔氧化铝、4.0g硝酸溶液,加入分子筛B5混合后碾压、挤条成型。成型后催化剂于120℃下干燥4h,550℃焙烧4h后制得催化剂载体C5;(4)再称取7.8g硝酸镍,溶解于于30mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵9.1g,继续搅拌,直至完全溶解。将溶液定容至57.7mL。称取100g步骤(3)所制得的催化剂载体C5,将溶液等体积浸渍于载体上,100℃下干燥5h后550℃焙烧5h,制得催化剂Cat-5。
实施例6
(1)称取20.8g硝酸镍,溶解于200mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵24.2g,继续搅拌,直至完全溶解,制得溶液A6。将6g偏铝酸钠、16g氢氧化钠、150mL四甲基氢氧化铵、100mL蒸馏水混合搅拌至透明溶液,再加入200g水玻璃。将A6溶液加入其中,打浆,常温下老化2后,120℃晶化3天。(2)所得产物经水洗、干燥后,采用1.0mol/L的硝酸铵溶液80℃交换三次,每次2h,再经550℃水热处理4h后采用0.2mol/L草酸-草酸铵溶液常温下进行酸处理2h,制得分子筛B6;(3)称取37.9g干基为70.5%的大孔氧化铝、30.3g干基为65.7%的小孔氧化铝、10g聚乙二醇以及4.0g硝酸溶液,加入分子筛B6混合后碾压、挤条成型后于120℃下干燥4h,550℃焙烧4h后制得催化剂载体C6;(4)再称取5.2g硝酸镍,溶解于于30mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵6.0g,继续搅拌,直至完全溶解,将溶液定容至59.2mL。称取100g步骤(3)所制得的催化剂载体C6,将溶液等体积浸渍于载体上,120℃下干燥4h后550℃焙烧5h,制得催化剂Cat-6。
对比例1
称取硅铝比为13.6、结晶度为97%的Y分子筛41.2g、SiO2含量为30%、干基为69.2%的无定型硅铝50.6g、干基为70.5%的大孔氧化铝36.0g、干基为65.7%的小孔氧化铝20.3g混合均匀,加入50mL水后进行碾压、挤条成型,在100℃下干燥4h后550℃焙烧4h,制得催化剂载体S-1;(2)测得催化剂载体S-1吸水率为57.3%,测量方法如下:称取10.53g载体S-1于烧杯中,加入一定量水,水没过载体最上部1cm左右,放置1h。后将多余水倒除后用滤纸擦干载体表面残余水。再称取吸水后载体为16.03g。(3)称取26.1g硝酸镍,溶解于30mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵30.6g,继续搅拌,直至完全溶解。将溶液定容至57.3mL。(4)称取100g催化剂载体S-1,将金属溶液等体积浸渍,负载镍、钨金属。然后在100℃下干燥4h后550℃焙烧4h,制得对比催化剂Cat-1-0。
对比例2
称取硅铝比为9.3、结晶度为101%的Y分子筛30.6g、SiO2含量为30%、干基为69.2%的无定型硅铝50.6g、干基为70.5%的大孔氧化铝45.6g、干基为65.7%的小孔氧化铝20.3g混合均匀,加入45mL水后进行碾压、挤条成型,在100℃下干燥5h后550℃焙烧5h,制得催化剂载体S-2;(2)测得催化剂载体S-2吸水率为60.6%,测量方法如下:称取10.06g载体S-2于烧杯中,加入一定量水,水没过载体最上部1cm左右,放置1h。后将多余水倒除后用滤纸擦干载体表面残余水。再称取吸水后载体为16.15g。(3)称取20.3g硝酸镍,溶解于40mL水中,60℃下搅拌至溶解,然后加入偏钨酸铵25.9g,继续搅拌,直至完全溶解。将溶液定容至60.6mL。(4)称取100g催化剂载体S-2,将金属溶液等体积浸渍,负载镍、钨金属。然后在100℃下干燥5h后550℃焙烧5h,制得对比催化剂Cat-2-0。
对比例3
称取硅铝比为46.7、结晶度为98%的Beta分子筛39.6g、SiO2含量为30%、干基为69.2%的无定型硅铝50.6g、干基为69.4%的大孔氧化铝36.8g、干基为69.7%的小孔氧化铝30.1g混合均匀,加入45mL水后进行碾压、挤条成型,在120℃下干燥5h后600℃焙烧5h,制得催化剂载体S-3;(2)测得催化剂载体S-3吸水率为65.2%,测量方法如下:称取9.97g载体S-3于烧杯中,加入一定量水,水没过载体最上部1cm左右,放置1h。后将多余水倒除后用滤纸擦干载体表面残余水。再称取吸水后载体为16.50g。(3)称取36.2g碱式碳酸镍,溶解于40mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵29.4g,继续搅拌,直至完全溶解。将溶液定容至65.2mL。(4)称取100g催化剂载体S-3,将金属溶液等体积浸渍,负载镍、钨金属。然后在120℃下干燥5h后600℃焙烧5h,制得对比催化剂Cat-3-0。
对比例4
称取硅铝比为44.6、结晶度为97%的Beta分子筛45.9g、SiO2含量为30%、干基为69.2%的无定型硅铝50.6g、干基为69.4%的大孔氧化铝39.6g、干基为69.7%的小孔氧化铝26.3g以及6.2g炭黑混合均匀,加入45mL水后进行碾压、挤条成型,在120℃下干燥5h后500℃焙烧4h,制得催化剂载体S-4;(2)测得催化剂载体S-4吸水率为62.3%,测量方法如下:称取10.05g载体S-4于烧杯中,加入一定量水,水没过载体最上部1cm左右,放置1h。后将多余水倒除后用滤纸擦干载体表面残余水。再称取吸水后载体为16.31g。(3)称取30.6g碱式碳酸镍,溶解于40mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵32.5g,继续搅拌,直至完全溶解。将溶液定容至62.3mL。(4)称取100g催化剂载体S-4,将金属溶液等体积浸渍,负载镍、钨金属。然后在120℃下干燥5h后500℃焙烧4h,制得对比催化剂Cat-4-0。
对比例5
称取硅铝比为9.3、结晶度为101%的Y分子筛30.2g、硅铝比60、结晶度103%的ZSM-5分子筛10.6g、SiO2含量为30%、干基为69.2%的无定型硅铝50.6g、干基为70.5%的大孔氧化铝45.6g、干基为65.7%的小孔氧化铝20.3g混合均匀,加入45mL水后进行碾压、挤条成型,在100℃下干燥5h后550℃焙烧5h,制得催化剂载体S-5;(2)测得催化剂载体S-5吸水率为60.9%,测量方法如下:称取10.05g载体S-5于烧杯中,加入一定量水,水没过载体最上部1cm左右,放置1h。后将多余水倒除后用滤纸擦干载体表面残余水。再称取吸水后载体为16.17g。(3)称取30.6g碱式碳酸镍,溶解于40mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵32.5g,继续搅拌,直至完全溶解。将溶液定容至60.9mL。(4)称取100g催化剂载体S-5,将金属溶液等体积浸渍,负载镍、钨金属。然后在100℃下干燥5h后550℃焙烧5h,制得对比催化剂Cat-5-0。
对比例6
称取硅铝比为70、结晶度为99%的Beta分子筛40.2g、硅铝比30、结晶度97%的MCM-22分子筛16.9g、SiO2含量为30%、干基为69.2%的无定型硅铝50.6g、干基为70.5%的大孔氧化铝37.9g、干基为65.7%的小孔氧化铝30.3g以及10g聚乙二醇混合均匀,加入45mL水后进行碾压、挤条成型,在120℃下干燥4h后550℃焙烧5h,制得催化剂载体S-6;(2)测得催化剂载体S-6吸水率为66.7%,测量方法如下:称取10.34g载体S-6于烧杯中,加入一定量水,水没过载体最上部1cm左右,放置1h。后将多余水倒除后用滤纸擦干载体表面残余水。再称取吸水后载体为17.23g。(3)称取30.6g碱式碳酸镍,溶解于40mL水中,40℃下搅拌至溶解,然后加入偏钨酸铵32.5g,继续搅拌,直至完全溶解。将溶液定容至66.7mL。(4)称取100g催化剂载体S-6,将金属溶液等体积浸渍,负载镍、钨金属。然后在120℃下干燥4h后550℃焙烧5h,制得对比催化剂Cat-6-0。
表1为实施例1~6所制备催化剂与对比催化剂物化性质。
Figure BDA0002272904620000151
从表1中可以看出,本发明方法制备催化剂的孔容和比表面较大。较大的孔容可以避免中间产物的二次裂化,较大的比表面以及活性金属与酸性中心的降低可使得金属分散均匀,催化剂活性得以提高。
将上述实施例中催化剂Cat-1、Cat-3、Cat-6和对比例Cat-1-0、Cat-3-0、Cat-6-0进行活性评价试验,在30mL小型加氢装置上进行,采用一段串联工艺流程,控制裂化段进料氮含量小于15ppm。原料油性质见表2。评价结果见表3,控制各催化剂>350℃转化率63.5%,可以看出,本发明所制备催化剂活性以及产品性质均好于常规制备方法所制备的对比催化剂。
表2评价原料物化性质
Figure BDA0002272904620000161
表3本发明所制备催化剂与对比催化剂活性评价结果
Figure BDA0002272904620000162
Figure BDA0002272904620000171

Claims (10)

1.一种加氢裂化催化剂的制备方法,其特征在于,包括以下步骤:
(1)将一部分含活性金属的化合物配置成溶液,与硅源、铝源以及有机模板剂混合打浆,然后老化、晶化,制得原位型金属-分子筛,其中按氧化物计,碱、铝源、硅源、水以及模板剂的质量比为(1~500)Na2O:Al2O3:(1~850)SiO2:(10~800)H2O:(10~1000)助模板剂。
(2)将步骤(1)中制得的原位型金属-分子筛经铵交换后再经水热处理-酸处理组合工艺改性,然后干燥、焙烧,制得改性分子筛;
(3)将大孔氧化铝、小孔氧化铝及步骤(2)中制得的改性分子筛混合后碾压、挤条成型,然后干燥、焙烧,制得催化剂中间体;
(4)将另一部分含活性金属的化合物配置成溶液,等体积浸渍于步骤(3)所制得的催化剂中间体上,干燥、焙烧,即得到所述加氢裂化催化剂。
2.根据权利要求1所述的加氢裂化催化剂的制备方法,其特征在于,步骤(1)中所述打浆的搅拌转速为300~1500r/min,打浆时间0.5~2h,浆液固含量为10~20wt%,温度为常温~80℃;
步骤(1)中老化的条件为室温下老化1~5h,晶化的条件为在80-150℃下晶化1-3d;
步骤(2)、步骤(3)和步骤(4)中干燥的条件均为在80~130℃下干燥3~5h,焙烧条件均为在400~600℃下焙烧3~10h。
3.根据权利要求1所述的加氢裂化催化剂的制备方法,其特征在于,步骤(1)和步骤(4)中所述活性金属为第VIB族和第VIII的金属,以氧化物质量计,活性金属总量占催化剂总量的10~35wt%。
4.根据权利要求3所述的加氢裂化催化剂的制备方法,其特征在于,所述第VIB族金属为钼和/或钨,以氧化物质,其用量计占催化剂总量的0~12wt%;所述第VIII族金属为钴和/或镍,以氧化物质量计,其用量占催化剂总量的10~25wt%。
5.根据权利要求3或4所述的加氢裂化催化剂的制备方法,其特征在于,步骤(1)和步骤(4)中活性金属以氧化物质量计,二者的用量比为1:9~9:1,且其中第VIB族金属和第VIII族金属以氧化物摩尔比计为1:5~5:1。
6.根据权利要求1所述的加氢裂化催化剂的制备方法,其特征在于,所述硅源为正硅酸乙脂,硅酸钠,白碳黑和水玻璃中的一种或多种;
所述铝源为偏铝酸钠、氧化铝和硫酸铝中的一种或多种;
所述有机模板剂为四甲基氢氧化铵、四乙基氢氧化铵、十六烷基三甲基溴化铵、咪唑类离子液体和醋酸酯中的一种或多种。
7.根据权利要求1所述的加氢裂化催化剂的制备方法,其特征在于,步骤(2)中所述铵交换采用0.5~2mol/L的氯化铵或硝酸铵溶液,在30~90℃搅拌交换0.5~2h;
所述水热处理为水蒸气气氛下,在0.01~0.05MPa、400~700℃下处理0.5~6h;
所述酸处理为浓度0.01~1mol/L的醋酸-醋酸铵或草酸-草酸铵络合溶液,在30~90℃下,处理0.5~2h。
8.根据权利要求1所述的加氢裂化催化剂的制备方法,其特征在于,在步骤(1)中,加入助剂磷,以氧化物质量计,助剂磷占催化剂总量的10wt%以下。
9.根据权利要求1所述的加氢裂化催化剂的制备方法,其特征在于,在步骤(2)中加入扩孔剂,所述扩孔剂是有机扩孔剂聚乙二醇或物理扩孔剂炭黑。
10.一种加氢裂化催化剂,其特征在于,其是采用权利要求1-10中任意项所述的加氢裂化催化剂的制备方法所制得,其比表面积300~500m2/g,孔容为0.4~0.6cm3/g,红外酸度0.3~1.0mmol/g,其中强酸比例占30~60%,B酸和L酸比值为0.01~0.5。
CN201911111696.4A 2019-11-14 2019-11-14 一种加氢裂化催化剂的制备方法 Active CN112791741B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911111696.4A CN112791741B (zh) 2019-11-14 2019-11-14 一种加氢裂化催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911111696.4A CN112791741B (zh) 2019-11-14 2019-11-14 一种加氢裂化催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN112791741A true CN112791741A (zh) 2021-05-14
CN112791741B CN112791741B (zh) 2023-07-25

Family

ID=75803622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911111696.4A Active CN112791741B (zh) 2019-11-14 2019-11-14 一种加氢裂化催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN112791741B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113786859A (zh) * 2021-10-21 2021-12-14 福州大学 一种加氢裂化催化剂及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262084A (ja) * 1993-03-12 1994-09-20 Agency Of Ind Science & Technol 炭化水素油の水素化分解触媒
US20030105248A1 (en) * 2001-11-30 2003-06-05 Guang Cao Method of synthesizing molecular sieves
CN101037614A (zh) * 2006-03-17 2007-09-19 中国石油天然气股份有限公司 一种加氢精制催化剂、制备方法及应用
CN102533317A (zh) * 2010-12-23 2012-07-04 中国石油天然气股份有限公司 一种加氢裂化生产化工原料的方法
JP2013047166A (ja) * 2011-08-29 2013-03-07 Jgc Catalysts & Chemicals Ltd アルミナ含有メソポーラス多孔体の合成方法およびアルミナ含有メソポーラス多孔体
CN103100402A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种加氢裂化催化剂的制备方法
CN103240114A (zh) * 2012-02-08 2013-08-14 中国石油天然气股份有限公司 一种加氢裂化催化剂及其制备和应用
CN103301888A (zh) * 2013-06-21 2013-09-18 中国海洋石油总公司 一种蜡油加氢预处理催化剂载体的制备方法
CN104640632A (zh) * 2012-09-17 2015-05-20 国际壳牌研究有限公司 制备加氢裂化催化剂的方法
CN108262063A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种加氢催化剂及其制备方法
CN110038621A (zh) * 2018-01-16 2019-07-23 中国石油化工股份有限公司 加氢裂化催化剂的生产方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06262084A (ja) * 1993-03-12 1994-09-20 Agency Of Ind Science & Technol 炭化水素油の水素化分解触媒
US20030105248A1 (en) * 2001-11-30 2003-06-05 Guang Cao Method of synthesizing molecular sieves
CN101037614A (zh) * 2006-03-17 2007-09-19 中国石油天然气股份有限公司 一种加氢精制催化剂、制备方法及应用
CN102533317A (zh) * 2010-12-23 2012-07-04 中国石油天然气股份有限公司 一种加氢裂化生产化工原料的方法
JP2013047166A (ja) * 2011-08-29 2013-03-07 Jgc Catalysts & Chemicals Ltd アルミナ含有メソポーラス多孔体の合成方法およびアルミナ含有メソポーラス多孔体
CN103100402A (zh) * 2011-11-09 2013-05-15 中国石油化工股份有限公司 一种加氢裂化催化剂的制备方法
CN103240114A (zh) * 2012-02-08 2013-08-14 中国石油天然气股份有限公司 一种加氢裂化催化剂及其制备和应用
CN104640632A (zh) * 2012-09-17 2015-05-20 国际壳牌研究有限公司 制备加氢裂化催化剂的方法
CN103301888A (zh) * 2013-06-21 2013-09-18 中国海洋石油总公司 一种蜡油加氢预处理催化剂载体的制备方法
CN108262063A (zh) * 2016-12-30 2018-07-10 中国石油天然气股份有限公司 一种加氢催化剂及其制备方法
CN110038621A (zh) * 2018-01-16 2019-07-23 中国石油化工股份有限公司 加氢裂化催化剂的生产方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113786859A (zh) * 2021-10-21 2021-12-14 福州大学 一种加氢裂化催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN112791741B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
CN105536854B (zh) 一种制备含y分子筛的加氢裂化催化剂的方法
CN107008487B (zh) 柴油和喷气燃料生产用加氢裂化催化剂及其制备方法
CN106669780B (zh) 一种化工型加氢裂化催化剂及其制备方法
CN105618112A (zh) 一种含y分子筛的加氢裂化催化剂及其制备方法
JP2000279816A (ja) 炭化水素混合物の品質改良用触媒組成物
JP7366043B2 (ja) 炭化水素油の水素化処理触媒、その製造方法、および炭化水素油の水素化処理方法
CN112791741A (zh) 一种加氢裂化催化剂的制备方法
CN108067292B (zh) 一种加氢裂化催化剂的制备方法
CN111068757B (zh) 一种加氢催化剂的制备方法
CN105709805B (zh) 一种化工型加氢裂化催化剂及其制备方法
CN116060108B (zh) 一种柴油加氢改质催化剂及其制备方法和应用
CN116060106B (zh) 一种Al-SBA-15/β核壳型复合分子筛及其制备方法和应用
CN106732749B (zh) 一种加氢裂化催化剂的一步合成制备方法
CN106669781B (zh) 一种多产中间馏分油加氢裂化催化剂及其制备方法
CN112717981B (zh) 一种加氢裂化催化剂及其制备方法和应用
CN112725023B (zh) 一种两段加氢裂化工艺
CN111672534B (zh) 加氢裂化催化剂及其制备方法与应用
CN116060113B (zh) 一种直馏柴油加氢改质催化剂及其制备方法和应用
CN112791742B (zh) 一种加氢裂化催化剂的制备方法
CN116060112B (zh) 一种加氢脱芳烃催化剂及其制备方法和应用
CN107344117B (zh) 加氢裂化催化剂及其制法
CN107344116B (zh) 加氢裂化催化剂及其制法和应用
CN116060111B (zh) 一种生产中间馏分油加氢裂化催化剂及制备方法和应用
CN116060107B (zh) 一种加氢裂化催化剂及其制备方法和应用
CN116060114B (zh) 一种加氢精制催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant